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Abstract. Given the advances in camera-based tracking systems, many
soccer teams are able to record data about the players’ position during
a game. Analysing these data is challenging, since they are fine-grained,
contain implicit relational information between players, and contain the
dynamics of the game. We propose the use of qualitative spatial reasoning
techniques to address these challenges, and test our approach by learning
a model for pass prediction over a real-world soccer dataset. Experimen-
tal evaluation shows that our approach is capable of learning meaningful
models. Since we employ an inductive logic programming system to learn
the model, it has the added benefit of producing interpretable rules.
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1 INTRODUCTION

Many professional soccer teams are beginning to employ specialized camera-
based tracking systems during matches that are able to record precise locations
of the players and ball multiple times per second [17, 3]. The analysis of these
data can provide important insights into a team’s strategy as well as player’s
strenghts and weaknesses. Currently, the primary focus of automated data analy-
sis, particularly within the clubs themselves, is on computing descriptive statis-
tics. In contrast, strategic analysis and player evaluation largely rests on the
time-consuming process of a manual film evaluation. Clearly, automated tech-
nicals that can capture complex interactions among players have the potential
to provide valuable insights into the sport. Consequently, there has been an ex-
plosion of interest in automating the analysis of sport match data [13, 14, 21, 15,
1].

The analysis of information-rich spatio-temporal data poses a number of in-
teresting and significant challenges from a learning and knowledge discovery
point-of-view. First, the same group of players rarely performs an identical se-
quence of actions in the same positions within the same time span. This problem
is compounded by the fact that the size of a soccer field is not fixed and can
vary slightly from stadium to stadium. Second, players will act based on how
they are positioned with respect to other players on the field. This means that
the analyst needs to take into account the relational aspects that hold between



the individual spatio-temporal data streams of different players. Third, soccer is
inherently dynamic and accurately modelling the game requires accounting for
these dynamics.

In this paper, we explore the use of qualitative spatial reasoning techniques
to address the previous challenges. By focusing on the qualitative relationships
that hold between objects, qualitative spatial representations (QSR) provide (1)
a mechanism to abstract away the quantitative aspects of a player’s location, and
(2) a way to combine separate data streams. However, while most QSRs excel
at expressing relations between objects stationary in time (henceforth referred
to as static information), it is not obvious how they represent the dynamics and
transition effects between two distinct static states. Therefore, a contribution
of this work is to explore several ways to incorporate the important dynamic
information into existing QSRs.

To test our approach, we focus on the specific task of predicting to whom a
player will give a pass, based on the game information available to that player
up until the moment of the pass. We describe each game state using the QSR
predicates and use inductive logic programming to learn a pass prediction model.
We perform empirical evaluation on a real-world dataset consisting of 14 matches
from a Belgian professional soccer club. We conclude that, using QSRs, we are
able to extract meaningful information from the spatio-temporal data that allow
us to build pass prediction models. Additionally, we find that adding dynamic
and transition information to the prediction models increases their performance.

2 RELATED WORK

The observed trend towards a larger volume of available game data goes hand in
hand with the increase in analytical studies/tools for soccer. A lot of these focus
on providing automatic summerization and analysis on the game [6, 19]. A num-
ber of studies employ spatio-temporal player data to construct more advanced
analysis tools [10]. Various techniques have been developped. For instance, [8, 9]
have done work towards detecting movement patterns through the use of self-
organising maps and neural networks. Research has also been done on defining
the dominant region of a player on the field, which is the region he can reach
before every other player on the field [20]. Lucey et al show that individual player
movement can serve the purpose of assessing the overal team strategy [15]. Re-
lated to our task, yet not the same, is the classifcation of different passes into
categories based how good they are [11]. However, the authors produce quanti-
tative measures of performance.

3 PRELIMINARIES

We briefly review the relevant background on inductive logic programming (ILP)
[16], and qualitative spatial representations (QSRs) [2].



3.1 First-order logic and inductive logic programming

This paper considers a subset of first-order logic, where the alphabet consists
of only three symbols. Constants start with a lower-case letter and refer to
specific objects (e.g., a player pi). Variables start with an upper-case letter and
range over objects (e.g., Players). Predicates represent relations between objects
(e.g., a pass between two players pass(pi, pj)). A literal is either p(a1, ..., an)
or ¬p(a1, ..., an), where the ai are constants or variables. A definite clause is
a disjunction over finite sets of literal containing exactly one positive literal.
Definite clauses are often written in implication form B =⇒ H, where B is a
conjunction of literals and H is a single literal.

ILP is a well-known framework for learning models, in the form of definite
clauses, from relational data [5]. In this work, we use the widely-used and publicly
available Aleph ILP system [18]. Aleph can be used in a variety of different ways,
but at its core it learns one definite clause at a time by searching through the
space of a possible definite clauses for a given target concept.

3.2 Qualitative spatial representations

QSRs are formalisms, called calculi, that define how entities in a 2D or 3D space
behave relative to eachother; see Chen et al. for an extensive survey [2]. The
key idea is to represent spatial relationships with qualitative statements (e.g.
player x is closer to player y than to player z, or player x and y move in the
same direction. . . ). QSRs allow for relations between primitive spatial entities
(points, lines, planes) or extended spatial entities (simple and complex regions).
For each QSR, the set of possible relations is finite usually also a joint exhaustive
and pairwise disjoint (JEPD) set. Relations are mostly binary. However, they
can be of a higher arity. Numerous categories of QSRs exist, we are mostly
interested in those formalisms related to: distance, direction, mereotopology1,
and movement.

Several calculi have been designed to define relations between objects in
space based on how they are located located with respect to each other. The
most common being the cone-shaped direction calculus (see Figure 1a) [7]. It
orients directionality around a reference object by using directions such as:
north, east. . . The double-cross calculus (shown in Figure 1b) provides a way
to express how a player z is located with respect to points x and y [12]. Such
calculi can be extended to include distance information such as: far, close,
very close. . . Most calculi require the designation of a target entity (e.g., a
player), a reference entity (e.g., the passer), and a reference frame (e.g., the
pitch) to construct the relations.

Expressing relations between larger spatial entities becomes possible when
using the region connected calculus (RCC) [4]. RCC8 (shown in Figure 2a) is a
reduced version of RCC that allows for eight JEPD base relations between two

1 Mereotopology is the integration of mereology, or the study of parts and the wholes
they form, and topology.



(a) Extended cone-based. (b) Double-cross.

Fig. 1. Various formalisms exist to describe directional relations between objects.

objects. We could use it to encode whether a player is free or not by observing
the area around him and relating it to other players.

(a) Region connected calculus. (b) Qualitative trajectory
calculus.

Fig. 2. The RCC provides a way to describe topological relations between regions,
while the QTC captures the movement of objects with regard to each other.

We use the qualitative trajectory calculus (QTC) to map relative motions
between players to a number of qualitative values denoting: moving towards
eachother, moving away from eachother, and maintaining the same distance (see
Figure 2b) [22].

4 METHODOLOGY

Our goal is to explore the use of QSRs to extract various kinds of information
from spatio-temporal data within the context of soccer pass prediction. Formally,
we will define this problem as follows:

Given: a temporal sequence of the spatial configurations of players during a
soccer match, and a corresponding stream of event data, up until the present
time t when player pi has the ball and is about to give a pass



Predict: to which player pj the ball will be passed and j 6= i.2

4.1 Considered qualitative relationships

The key challenge is to define predicates that accurately model the important
characteristics of the spatio-temporal and event stream data such that the ILP
system can make correct inferences about who is the target of the pass. It is
helpful to consider which aspects of the game a player takes into account before
deciding to whom he will pass. Looking at the data (see Figure 3), it seems
that a player considers the direction of movement, the position, and the speed of
other players. Additionally, a player might make assumptions about the ability
of his team to receive the ball, or how likely it is a player of the opposing team
will intercept the pass. We define three categories of features, and relate them
to the existing QSRs:

Static qualitative relationships. In the static setting, the data only consists
of a snapshot of the game state at the moment the pass was attempted.
Specifically, we employ the extended cone-based calculus to describe the rel-
ative position of players versus some reference point (chosen to be the passer
and receiver). The double-cross calculus is used to describe the positioning
of players with respect to each possible passline (i.e., the line connecting the
passer and each possible receiver at the moment of the pass).

Dynamic relationships. In the dynamic setting, we also consider the mo-
ments leading up to the pass, which allows us to construct predicates that
capture game dynamics. First, we construct a movement vector for each
player. Second, we apply calculi such as the QTC to these vectors to infer
predicates describing how players move across the field with respect to each
other. Third, inspired by the concept of a dominant player region [20], we
use the information encoded in the movement vector to estimate the region
of the pitch the player can reasonably reach within a certain amount of time.
While [11] uses this concept to calculate non-overlapping, player dominated-
regions on the field, and infers quantitative features from this, we allow for
overlapping regions and describe qualitative relations between using RCC.3

Finally, we extract information related to the line of sight of a player, given
the assumption that the latter coincides with the direction of the movement
vector.

Transition features. We argue that it is interesting to capture the info embed-
ded in the transition between two states of a spatial calculus. Concretely, if
predicates p1(a1, ..., an) and p2(a1, ..., an) express the state of the calculus re-
spectively at times t1 and t2, we derive a new predicate ptrans that describes
this transition. For the cone-based calculus, ptrans encodes both the change

2 Consider that the resulting model only determines to whom a pass is given, not
when it is given, which is an entirely different issue.

3 We construct these regions by defining a circle around the player with its size in
accordance with the movement vector. According to [10], as long as the speed of the
player is below 14.5 km per hour, this approximation is a reasonable assumption.



in directionality and distance. For the RCC, ptrans encodes the changing
mereotopology between two regions.

Background knowledge. We augment previous features with background knowl-
edge about the role of each player during a match. We observe that the im-
plicit discretization of the continuous feature space employed by the spatial
calculi, will often be either too coarse or too fine-grained. Hence, we introduce
a hierarchy of relations within each QSR. On each level, the discretizations
are jointly exhaustive, while a discretization on a higher level encompasses a
subset of those on the level below. For instance, in the extended cone-based
calculus, we add a hierarchy to both direction and distance.

(a) Pass between defenders.
==

(b) Pass to the front.

Fig. 3. Snapshots of two pass events. The passer and receiver are respectively repre-
sented by the black and white dot, and they are both part of the blue team. The thin
line indicates the trajectory of each player in the moments leading up to the pass, while
the thicker bar represents the movement vector.

4.2 Model learning

We consider the problem as a ranking problem, since in many game states,
several team members might constitute an equally good option to pass to. After
constructing the features of each pass instance, we use the Aleph system with
the inducemax search strategy to learn a theory/model (which consists of a
number of rules). Next, we test this theory on unseen game states. Each possible
receiver is then assigned a pass probability based on the number of rules from the
theory that cover the player. Using this probability, one can construct a ranking
between players. The most likely receiver according to the model is ranked first.

5 EXPERIMENTS

The experimental set-up aims at answering following research questions:

1. Does the qualitative approach yield an advantage over the quantitative?



2. Does adding the dynamic and transition information lead to a better pre-
diction model, as opposed to using only static information?

3. Can we use the learned model to test interesting soccer-related hypotheses
on the data?

5.1 Data and experimental set-up

We possess data for 14 soccer matches from a team in the Belgian Pro League.
The data consists of three major parts: event data (e.g., pass, shot on target. . . ),
the exact positions of each player on the pitch during the game, sampled with
a frequency of 10Hz, and limited background information (see Table 5.1). From
this dataset, we select all successful passes for a team. We ignore unsuccessful
passes as the data do not contain information about the intended target when
a pass is intercepted, so we have no way of checking whether the prediction of
our model is correct. Will this influence the results? It seems likely that an in-
tercepted pass is proportionally more risky than its completed counterpart. The
latter ensures that the subset of passes we work with, spans the more conser-
vative ones. Consequently, when predicting the pass target in an unseen game
situation, a model trained over this subset will be biased towards selecting the
safer player. However, since we are careful in selecting both training and test
data from the same subset, this should not influence the results. Finally, we also
omit goal kicks. Each snapshot leads to one positive example (the player who
received the pass) and nine negative examples (the players who did not receive
the pass). We use 5-fold cross-validation. To evaluate the ranking, we use the
mean reciprocal rank measure (MRR):

MRR =
1

n

n∑
i=1

1

ranki
∈ [0, 1] (1)

where n is the total number of examples, rank is the rank of the actual receiver
in each example and rank ∈ [1, 10]. Due to the underlying exponential function,
the MRR increasingly rewards the model the higher the ranking of the actual
receiver. We also report recall in the top-1, top-2, and top-3 of the ranking.4

Table 1. The table gives an overview of the data contained in the original database.
The different tables are listed, as well as a compressed list of the attributes for each of
these tables.

Tablename Index Attributes

Tracking time x-position y-position player ID events half
Players player ID team ID name position jersey nr
Events event ID time players description position

4 This constitutes the percentage of times the real receiver is ranked accordingly.



5.2 Results and discussion

Research question 1 and 2. We learn models in six different settings: static setting
with non-relational quantitative features, static setting with relational quantita-
tive features, static setting with relational qualitative features, dynamic setting
with relational qualitative features, transition setting with relational qualitative
features, and the last three settings combined. The quantitative approach em-
ploys exact distances and angles between players, allowing it to learn thresholds
over them. We expect that the relational approach will be better than the non-
relational approach, and that the qualitative model outperforms its quantitative
counterpart.

Table 5.2 contains an overview of the results. First, the relational approach
is vastly superior to the non-relational. Additionally, we observe a strong im-
provement in terms of MRR and recall when moving from a quantitative to a
qualitative model. Models learned from dynamic and transition predicates also
outperform the quantitative model, but do worse than the static models. The
combined model performs best and improves both recall and MRR compared to
the purely static model. Almost half of the time, the combined model ranks the
actual receiver in the top 3 of most likely players to receive the ball (out of 10).

Table 2. Performance of quantitative versus qualitative models for soccer pass predic-
tion. MRR is the mean reciprocal rank, while e.g. top-3 shows the percentage of times
the actual receiver is ranked accordingly by the learned model. Each model is trained
and tested on pass data of one team.

MRR top-1 top-2 top-3 Rules

Quant. Non-rel. 0.11 0.84 0.93 0.93 8
Rel. 0.24 10.82 18.16 21.76 524

Qual. Static 0.39 25.49 36.33 41.22 582
Dynamic 0.32 15.48 26.49 34.75 687
Transition 0.33 17.48 29.24 35.00 681
Combined 0.42 27.87 41.59 46.70 555

Research question 3. From an analyst’s perspective, the learned models can be
used to test several interesting soccer-related hypotheses in a data-driven way.
First, we suspect there is a difference in a team’s passing behavior at home and
away. To test this, we learn a model from a set of home games, and test it on
both home and away games. Table 5.2 displays the results. We observe a decrease
in performance when applying a model learned from home games to data from
away games, suggesting a difference in passing strategy. Second, throughout
the game, players get tired and might become more prone to making mistakes,
or the opposing team might be winning, leading to a more aggressive style of
play. . . These things could affect the passing behavior of a team. We hypothesize
that this difference should manifest itself as a decrease in performance when using



models trained in one time segment, to predict passes in another. The results in
Table 5.2 reinforce this belief; notice there is a slight decrease in MRR, and a
strong downward shift in recall when mixing time frames. Lastly, passing strategy
should be team specific. We test this by constructing a model from pass data of
one particular team, and use it to predict passes also for different teams. The
corresponding decrease in performance suggests that models of passing behavior
are team-specific.

Table 3. The table displays the results of testing a qualitative model in a number of
scenario’s. Each model is trained using the full range of static, dynamic, and transition
features.

MRR top-1 top-2 top-3 Rules

Train home - test home 0.42 27.87 41.59 46.70 555
Train home - test away 0.37 21.56 35.25 40.58 712
Train 1st half - test 1st half 0.42 27.87 41.59 46.70 555
Train 1st half - test 2nd half 0.38 27.15 31.95 36.03 620
Train 1 team - test multiple 0.28 13.15 22.44 30.00 591
Train multiple - test multiple 0.37 23.71 35.05 40.33 381

6 Conclusion

This paper investigates using qualitative spatial reasoning techniques to over-
come a number of challenges inherent to the analysis of spatio-temporal data. We
tested our approach by constructing qualitative models for soccer pass predic-
tion. The experiments demonstrated three things. First, qualitative, relational
models outperform their purely quantitative counterpart. Second, it is possible
to extend the existing QSR frameworks to encode dynamic and transition in-
formation that leads to improved performance when used in conjunction with
static qualitative relations. Last, our approach is capable of extracting infor-
mation that captures the characteristics of a certain game states. In principal,
our model can be applied to other team sports, as long as spatio-temporal data
about players’ positions are available.
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Österreichische Artificial-Intelligence-Tagung/Seventh Austrian Conference on Ar-
tificial Intelligence. pp. 157–167. Springer (1991)

8. Grunz, A., Memmert, D., Perl, J.: Analysis and simulation of actions in games by
means of special self-organizing maps. International Journal of Computer Science
in Sport 8(1), 22–37 (2009)

9. Grunz, A., Memmert, D., Perl, J.: Tactical pattern recognition in soccer games by
means of special self-organizing maps. Human movement science 31(2), 334–343
(2012)

10. Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Com-
puters, Environment and Urban Systems 47, 16–27 (2014)

11. Horton, M., Gudmundsson, J., Chawla, S., Estephan, J.: Classification of passes in
football matches using spatiotemporal data. arXiv preprint arXiv:1407.5093 (2014)
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