PROGRAM UNDERSTANDING
WITH THE LAMBDA CALCULUS

Stanley Letovsky
Department of Computer Science
Yale University
New Haven, CT 06520

ABSTRACT

A prerequisite of any attempt to build intelligent tools to as-
sist in the programming process is a representation language for
encoding programming knowledge. Languages that have been
used for this purpose include the predicate calculus [5] and var-
ious program-schema languages [1,4]. This paper advocates a
new candidate which is as expressive as the predicate calculus
but more intimately connected with programming: the lambda
calculus. Its advantages lie in its close resemblance to conven-
tional programming languages, and in a straighforward model of
inference by rewriting, which can be applied to automatic pro-
gramming and program understanding. The use of the lambda
calculus in an automatic program understander is described.

1 INTRODUCTION

The general goal of research in Al/Software Engineering
(AlI/SW) is to construct tools which automate aspects of the
software development process that are presently carried out by
expert programmers. Such tools need knowledge bases which
encode the expertise currently possessed only by programmers.
One important category of programming knowledge is the stan-
dard plans of programming: this category includes algorithms,
data structures and associated operations, and simple cliches
such as summing and counting. This paper describes an ap-
proach to notating these plans, and to performing mechanical
inference with them.

Il METHODS OF REPRESENTING PLANS

One might think that a programming language would suffice
to notate the plans used by programmers: after all, program-
ming languages are languages for notating programming knowl-
edge. There are two problems with this idea. First, the syntax
and semantics of programming languages tends to be rather too
clunky and complex for the needs of mechanical inference. More
importantly, the types of composition of concepts supported by
programming languages, via language constucts such as subrou-
tines, packages, abstract data types, or objects, correspond to
only a subset of the ways that concepts can combine in a pro-
grammer's mind.

These limitations on the expressivity of programming lan-
guages have led AlI/SW researchers to use more expressive lan-
guages for writing down the knowledge. These include a vari-
ety of program schema languages and the predicate calculus. A
schema language (eg.,[4,1]) is usually a programming language of

'Thli research was supported by NSF under 1ST grant #8505019.

512 KNOWLEDGE REPRESENTATION

some sort augmented with pattern-matching variables. Plans are
represented as incomplete programs, with variable parts. This
approach lends itself well to syntactic matching on programs
written in the base programming language, but the reasoning
is subject to various types of errors, because the syntactic pat-
tern matching can generate semantic nonsense. In particular,
schema variables can be instantiated with code segments which
destroy the dataflow relationships assumed by other parts of the
schema.

Ancther approsch is to represent the knowladge in the pred-
icate calculus (PC). This method requires s PC repressntation
of the semantics of the target programming language: axioms
which state how variables behave, what conditionals do, and so
forth. These axioma can be used to translate programa into com-
plex assertions which decribe the bebavior of the program. Plans
can also be represented by complex axiomas. {5,6] Problems with
this npproach wre firat, the difficultios of doing general purpose
mechanical inference in the predicate calculus, and second, the
unreadability of PC tranalations of prograns. This unreadabil-
ity makes it hard for programmers or designers of knowledge-
based toals to write knowledge bases or to follow intermediate
stages of & tool's reasoning.

In the remainder of the paper I describe another approach to
representing programming knowledge using the lambda calculus
(AC). The lambda calculus postesss both the semantic precision
mimsing from the schems languages and the readability sad sase
of inference misming from the predicate caleulus. It has been
my experience in conctructing a series of prototype program
analyzers based on esch of the sbove types of reprasentations
that the lambda calculus lends itself far more easily than the
ather two candidutes to the development of simple and powaerful
inference tools.

IO THE LAMEDA CALCULUS

The Iambda calculus is basically an idealised programming
language. It was invented by Church [3] to analyzs the mathe-
matical underpinnings of computation. Since then it has been
used to analyse the semantics of programming languages {9 and
as the explicit model for several programming languages, in-
cluding LISP, and more recently T [7] and Scheme [8)].
A-calculus is & language of functional expressions over a set of
symbols, eg., (+ 1 3) or (f x), together with A, an operator
{or creating functions, For sxampls, (A{x)(+ x 1)) danotes »
function which adds 1 to its argument.

The two most important kinds of infersnce in AC ars A-
wbstraction and its opposite, S-reduction.

(+21) & (Ax){+x1)) D
B-reduction ¢ A-abetraction

Abstraction crestes new functions, whereas f-reduction simpli-
fies functions away. Interpreters for AC-based languages perform
simulated Sreduction, usunlly augmented with primitive arith-
metic procadures and the like. Compilers are also largely based
on f-reduction. Abetraction, by contrast, has little mechanical
application at present; constructing abstractions is the business
of programmers. The program snalyser developed by the author
relies heavily on A-abatraction for understanding programs.

It should be noted that parameters of A-expressions play a
role analogous to schema varisbles of schema languages, and to
universally quantified variables in the predicate calculus. The
A-calculus is expressive enough to represent all quantification;
no additional constructs are needed [2].

IV EROGRAM ANALYSIS IN THE A-CALCULUS

In reascning about programs, two important tasks are pro-
gram analysis and synthesis, which are the analogs of classical
Al models planning and understanding in the programiming do-
main. In these models a planner or understander has a knowl-
edge base of plans which are used to solve a given problem or
analyze a given solution. Planning consists of replacing (or ex-
panding) top level goals with selected plans from the knowl-
edge base. Understanding is the opposite process: a set of ob-
sarved actions is identified an being an instance of some library
plan. Both the planning and understanding processes produce
the same final deta structure: a hierarchical representation of
the design of & program, The top layer of this hierarchy is called
the apecification, the bottom layer is the code.

In the suthor's program analyzer, the code, plans, and spec-
ifications are all represented using AC. The code and specifica-
tions are both sets of function definitions, which are semanti-
cally equivalent for a correct program. The design hierarchy is
represented as a set of AC rewritinga which transform one to
the other. This section briefly describes the techniques used to
represent code, specs, and plans, and the inference mechanisms
used in analysia.

A. Representing Code

Representing code in AC requires a transistion procedure
from the target language intc AC; because of AC’s similar-

ity to programming languages, such translation is not difficult.
Loops ars represented by recursions; GOTO's by function calls

ns described in [8]. Imperative language constructs related to
datafiow by side effect, such ss reference or assignment to vari-
ables, pose a more difficult problem. Memory allows causal ef-
fects to propagats during program execution in & way which the
notation reflects only implicitly; to understand what is going on
in such programs an analyser heeds to make the Sow of dats
through memory explicit so it can be reasoned about. In the
analyser this is done by translating the imperative code into
AC-expressions which represent memory explicitly, an approach
which is sometimea used in the snalysis of programming lsn-
gunge samantics [9). Memory is viewed as u function from poeini-
¢rs to values. Pointers are arbitrary cbjects: symbols, say, or
aumbers. States of memory will be represented by A-expreasions
of the form:
{) (pointar)
(12 (= pointsr pointerl} waluel

{11 (= poiater pointer2) valuel}

o))
which I will refer to as M-ezpreasions. The value of & pointer in

some state (i.e., & variable refersnce) is found by applying the M-
expression for that state to the pointer. Functions which depend
on atate must take an M-expression as an argument; actions
which modify state must take an M-expression as an argument
and return one. Actions are thus functions from states to states.
Within this framework amignment is defined as follows:
(dating (:= loc N value}
(A (pointer}
(12 (= pointer loc) value (N pointer))))
The function := takes 3 arguments rather than the usual 2: the
oxtra argument M is the M-expremion describing memeory just
pricr to the assignment. := returns a new M-expression which
describea the state of memory after the sssignmaent.

As an example, consider & program to compute the triangle
of & number n, that is, the sum of the integers from 1 through
n. In FORTRAN, it would look something like this:

subroutine TRIANGIE (n , mnswer)
angwer = 0
do 100 1 = 1i.,n
100 amawer = anewsr + i
Teturn
snd
The tranalation of this inte AC is as follows. Symbols beginning
with M are M-expressions.

(define (triangle NG n ansver)
{define (do-loop N)
(ig (> (M)N D)) N
{let ((ML (:= anawer N (+ (N nmaver)
(IR
(et (M2 (:= 1 NL (+ (ML 1) 1)))}
(do-1loop N2)))))
(trianglel (:= i (:= anawer N 0) 1)))

Notice the way consscutive sssignments get transformed to
nested lats or sets; this pattern replaces the statement-block
constructs of conventional languages. Issues relating to the scop-
ing of the varisble 1 are ignored here in the interests of brevity.

B. Analysing Code

The goal of analysis ia to recognize code in terms of standard
plans. Analysis may thus be viewed as a proces of facicring ost
known plans from s given program, or rewriting the program
in the moat concise possible form, using standard plans in the
knowledge base. Several types of rewritings are used in the
course of analysia:

Knowledge-Based A-Abstraction: The knowledge basa
containg definitions of standard plans, data objects and algo-
rithms. When s subexpressicn of the target program matches
the body of such a deflnition, the subexpression in replaced by
a call to the library function, with arguments dervied from the
match bindings. So for exsmple, if the knowladge base containg
the definition

(detine addi (A (x){+ x 1)))
then knowledge-based abstraction entitles us to rewrite the ex-
pression {+ a 1) to (sddl a).

Rewrlie Rules: The knowledgs base containa rewrite rules

of the general form

(7 (params) the) = (5 (params) rhs)
which sncode a variety of simplifications and theorems. When
a code subexpression can be paramstrived to match s, it is
rewritten to the rias form.

Letovsky 513

BS-Reduction: Used to simplify the target program in a
variety of ways 8o that other kinds of analysis can proceed. In
particular, reduction of complex M-expressions simplifies away
datafiow through memory.

Recursion Ellmination: The simple methods just de-
scribed fail on recumsive definitions, because recursive defini-
tions can oceur in arbitrarily many syntactic forms, and it is
not feasible to anticipate esch of these forms in the plan library.
Recursion elimination trazsforms a recursive definition into sn
equivalent definition which is expressed in terma of operations
on streams of data values ~ the ssquence of values taken on by
the loop variables during loop execution. Definitions expressed
in this form can be further analyzed using the above methods.

The recursion elimination transformation is & AC adapta-
tion of a technique developed by Waters {10] to unalyze loops
in the plan calculus. He showed that most loops can be viewed
as compouitions of a few primitive looping plans: enumerator,
accurnulators, filters, terminators, and maps. These plana can
be viewed as operations on streama of dats. For example, wn
enumerator generates a stream by repeatedly applying an op-
eration to the previous element in the stream: an example is
counting, which enumerates using the addl operstion, starting
with 1 as an intial value. A running total in an accumulation
with the operator +; sccumulation is the sarmne as APL's scan
operator.

In the analysis of TRIANGLE, a few applications of f-reduction
sirnplify the body of the do-loop subdefinition significantly. In
the resulting definition, the argument to the recursive call is
s simple M-expression which specifies the values of each loop
variable at the end of each iteration as & function of the values
at the start of the iteration. The racursion elimination algorithm
is applied to definitions of this form. Space constraints permit
only a brief aketch of the algorithm.

The firat step is to construct semi-steam expressions for each
loop variable: these are the potentially infinite (sems-finite)
streams of values which each variable would take on if the loop
never terminated. The semi-stream expressions are formed from
the basic looping plans, plus fragments of the original definition,
A-abstracted according to the pattern of interdependence among
the variables. For the do-loop in TRIANGLE, the semi-strearms
are;

(dafine i-semi-strmam
(enomerate (4 {(a){+ & 1)) (N 1)))

(define answer-asmi-strean
(accumulase + (N answer) i-semi-stresn))

These semi-streams must be truncated as dictated by the exit
tests to yield streams. Each semi-stream must be truncated
once for sach exit test. There are two basic truncate operations:
truncate and extrude. Truncate truncates s strowm at the point
where a pradicate is satisfied, while extrude extrudes a stream to
a specified length., Variables which are not explicitly tested by an
exit test are extruded up to & length dstermined by the variables
which are tested. The predicates supplied to these operations are
formed by A-abatracting the exit tests in the original definition.
The streams for do-loop are:

514 KNOWLEDGE REPRESENTATION

{defins i~stream
(truncate (X (a){> u (N £))) 1-semi-strean))

(dafine apswar-straam
{extrude (langth i-strean} scaver-semi-stream))

A new noorecursive definition is constructed from these ole-
ments, in which each loop variable ia set to the last elernent
of its corresponding atreamn.
(define (do-loop N)
(:= 1 {:= anawer X (lust ansver-strean))
(last i-stream)))

Application of the other rewrite methods can then procesd until

the following specification is produced for the original program:
(define (triangle N o wnewer}
{:= apsver N (sum (integers-betwesn 1 n))))

V CONCLUSIQNG

The A-calculus is a useful vehicle for encoding the planning
knowledge needed by intelligent programming tools. An impor-
tant strength of the language is the existence of & notation which
is similar to conventional programming langusges, but more ex-
presaive and more amenable to machine manipulation. A pro-
gram analyser based on these ideas has been constructed which
is currently able to transform simple programs into compositions
of standard plans.

References

[I] David Barstow. Knowledge-Based Program Construction. Else-
vier North Holland Inc., 1979.

[2] Robert S. Boyer and J. Strother Moore. A Computational Logic.
Academic Press, 1979.

[3] Alonio Church. The calculi of lambda conversion. Annals of
Mathematical Studies, 6, 1951.

[4] W. L Johnson and E. Soloway. Proust: knowledgebased pro-
gram understanding. In Proceedings of the 7th International Con-
ference on Software Engineering, IEEE, Orlando, Florida, 1983.

[5] Charles Rich. A formal representation of plans for the
mer's apprentice. In Proceedings ofthe Seventh International
Joint Conference on Artificial Intelligence, pages 1044-1053, |J-
CAl, Vancouver, B.C., 1981.

[6] Charles Rich. Inspection Methods in Programming. Technical
Report Al-TR-604, MIT Al Lab, 1981.

[7] Stephen Slade. The T Programming Language: A Dialect of
LISP. Prentice Hall Inc., 1987.

[8] Guy Lewis Steele and Gerald Jay Sunman. The Revised Report
on SCHEME, a Dialect of LISP. Technical Report Al-Memo-
452, MIT Al Lab, January 1978.

(9] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. The MIT Press, 1977.

[10] Richard C. Waters. A method for analysing loop programs.

IEEE Transactions on Software Engineering, SE-5(3):237-247,
1979.

