Statistics > Machine Learning
[Submitted on 18 Oct 2024]
Title:Predictive variational inference: Learn the predictively optimal posterior distribution
View PDF HTML (experimental)Abstract:Vanilla variational inference finds an optimal approximation to the Bayesian posterior distribution, but even the exact Bayesian posterior is often not meaningful under model misspecification. We propose predictive variational inference (PVI): a general inference framework that seeks and samples from an optimal posterior density such that the resulting posterior predictive distribution is as close to the true data generating process as possible, while this this closeness is measured by multiple scoring rules. By optimizing the objective, the predictive variational inference is generally not the same as, or even attempting to approximate, the Bayesian posterior, even asymptotically. Rather, we interpret it as implicit hierarchical expansion. Further, the learned posterior uncertainty detects heterogeneity of parameters among the population, enabling automatic model diagnosis. This framework applies to both likelihood-exact and likelihood-free models. We demonstrate its application in real data examples.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.