Potential of VIS-NIR-SWIR Spectroscopy from the Chinese Soil Spectral Library for Assessment of Nitrogen Fertilization Rates in the Paddy-Rice Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chinese Soil Spectral Library
2.2. Chemical Analyses
2.3. Spectral Measurements
2.4. Chemical Analyses
2.5. Spectroscopic Modelling
2.5.1. Partial Least-Squares Regression
2.5.2. Locally Weighted Regression
2.5.3. Support Vector Machine Discriminant Analogy
2.6. Assessment of Statistics
2.7. Calculating the NFR
NFR | TN | Nf | |
---|---|---|---|
Level | Range | ||
R1 | very high | >2.00 | 225 |
R2 | high | 1.50–2.00 | 253 |
R3 | moderate | 1.00–1.50 | 309 |
R4 | deficient | 0.75–1.00 | 352 |
R5 | very deficient | 0.50–0.75 | 380 |
R6 | extremely deficient | <0.50 | 394 |
3. Results and Discussion
3.1. Soil TN Concentrations and Reflectance Spectra
Data Set | N | Min. | Max. | Mean | Std Dev | CV (%) |
---|---|---|---|---|---|---|
Calibration set | 1554 | 0.19 | 3.96 | 1.18 | 0.68 | 57 |
Validation set | 518 | 0.21 | 3.76 | 1.17 | 0.67 | 57 |
All data | 2072 | 0.19 | 3.96 | 1.18 | 0.68 | 57 |
3.2. Prediction of PLSR and LWR
3.3. Classification of SVMDA
3.4. Assessment of NFR
NFR | PLSR | LWR | SVMDA | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | R6 | User’s Accuracy | R1 | R2 | R3 | R4 | R5 | R6 | User’s Accuracy | R1 | R2 | R3 | R4 | R5 | R6 | User’s Accuracy | |
R1 | 38 | 27 | 3 | 1 | 1 | 0 | 92.9 | 52 | 12 | 6 | 0 | 0 | 0 | 91.4 | 53 | 9 | 7 | 1 | 0 | 0 | 88.6 |
R2 | 14 | 23 | 14 | 5 | 0 | 0 | 91.1 | 15 | 24 | 14 | 3 | 0 | 0 | 94.6 | 21 | 19 | 13 | 2 | 1 | 0 | 94.6 |
R3 | 2 | 19 | 68 | 25 | 9 | 2 | 89.6 | 2 | 15 | 75 | 28 | 4 | 1 | 94.4 | 2 | 11 | 81 | 24 | 6 | 1 | 92.8 |
R4 | 0 | 1 | 30 | 60 | 19 | 1 | 98.2 | 1 | 0 | 26 | 72 | 11 | 1 | 98.2 | 0 | 1 | 29 | 61 | 19 | 1 | 98.2 |
R5 | 0 | 2 | 20 | 28 | 44 | 3 | 77.3 | 0 | 0 | 14 | 36 | 40 | 7 | 85.6 | 0 | 3 | 13 | 25 | 43 | 13 | 83.5 |
R6 | 0 | 1 | 4 | 12 | 21 | 21 | 71.2 | 0 | 0 | 1 | 6 | 20 | 32 | 88.1 | 0 | 0 | 2 | 5 | 11 | 41 | 88.1 |
Producer’s accuracy | 54.3 | 41.1 | 54.4 | 54.1 | 45.4 | 35.6 | 74.3 | 42.9 | 60 | 64.9 | 41.2 | 54.2 | 75.7 | 33.9 | 64.8 | 55 | 44.3 | 69.5 | |||
Cohen's kappa | 0.37 | 0.47 | 0.48 | ||||||||||||||||||
Over-fertilization | 5069 | 3942 | 4586 | ||||||||||||||||||
Under-fertilization | 6750 | 5292 | 5513 |
4. Conclusions
- (1)
- The LWR model performed better than the PLSR model in the validation process with regard to quantitative estimation of TN concentrations. Rv2 and RPD for LWR were higher than those obtained from PLSR models. This suggests that large spectral libraries can be very useful to predict soil TN with high accuracy.
- (2)
- The qualitative classification accuracies of NFR using LWR and SVMDA with moderate accuracy were more suitable than PLSR. The development of the SVMDA model is also more time-consuming than development of the LWR model, which only requires qualitative classification of soil spectral data while LWR performs quantitative estimation of soil N prior to classification.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org/publications/card/en/c/56efd1a2-0f6e-4185-8005-62170e9b27bb/ (accessed on 16 November 2014).
- Wang, W.; Lu, J.; Ren, T.; Li, X.; Su, W.; Lu, M. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crop. Res. 2012, 137, 37–48. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, S.; Li, Y.; Zhuang, H.; Li, C.; Liu, C. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China. Sci. Total Environ. 2014, 472, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level: 2006/07–2007/08; International Fertilizer Industry Association (IFA): Paris, France, 2009. [Google Scholar]
- Zhu, Z.L.; Chen, D.L. Nitrogen fertilizer use in China—Contributions to food production impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Zhang, F.S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, C.J.; Dise, N.B.; Mountford, J.O.; Gowing, D.J. Impact of nitrogen deposition on the species richness of grasslands. Science 2004, 303, 1876–1879. [Google Scholar] [CrossRef] [PubMed]
- Aber, J.; McDowell, W.; Nadelhoffer, K.; Magill, A.; Berntson, G.; Kamakea, M.; Fernandez, I. Nitrogen saturation in temperate forest ecosystems. BioScience 1998, 48, 921–934. [Google Scholar] [CrossRef]
- Richter, D.D., Jr.; Markewitz, D.; Reiners, W.A.; Sanchez, P. Understanding Soil Change: Soil Sustainability over Millennia Centuries and Decades; Cambridge University Press: New York, NY, USA, 2001; pp. 182–205. [Google Scholar]
- Cerrato, M.E.; Blackmer, A.M. Comparison of models for describing, corn yield response to nitrogen fertilizer. Agron. J. 1990, 82, 138–143. [Google Scholar] [CrossRef]
- Dowdle, S.; Portch, S. A systematic approach for determining soil nutrient constrains and establishing balanced fertilizer recommendations for sustained high yields. In The Soil and Fertilizer Institute of the Chinese academy of Agricultural Science Proceedings of the Soil International Symposium on Balanced Fertilization; China Agriculture Press: Beijing, China, 1988; pp. 8–12. [Google Scholar]
- Rice, C.W.; Havlin, J.L. Integrating mineralizable nitrogen indices into fertilizer nitrogen recommendations. In Soil testing: Prospects for Improving Nutrient Recommendations; Havlin, J.L., Ed.; SSSA: Madison, WI, USA, 1994; pp. 1–13. [Google Scholar]
- Ben-Dor, E.; Banin, A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Walsh, M.G. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [Google Scholar] [CrossRef]
- Brown, D.J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma 2007, 140, 444–453. [Google Scholar] [CrossRef]
- Sankey, J.B.; Brown, D.J.; Bernard, M.L.; Lawrence, R.L. Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C and inorganic C. Geoderma 2008, 148, 149–158. [Google Scholar] [CrossRef]
- Knadel, M.; Deng, F.; Thomsen, A.; Greve, M.H. Development of a Danish national VIS-NIR soil spectral library for soil organic carbon determination. In Digital Soil Assessment and Beyond; Minasny, B., Malone, B.P., McBratney, A.B, Eds.; Taylor & Francis: London, UK, 2012; pp. 403–408. [Google Scholar]
- Viscarra Rossel, R.A.; Webster, R. Predicting soil properties from the Australian soil visible-near infrared spectroscopic database. Eur. J. Soil Sci. 2012, 63, 848–860. [Google Scholar] [CrossRef]
- Stevens, A.; Nocita, M.; Tóth, G.; Montanarella, L.; van Wesemael, B. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS ONE 2013, 8, e66409. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, Q.L.; Peng, J.; Ji, W.J.; Liu, H.J.; Li, X.; Viscarra Rossel, R.A. Development of national VNIR soil-spectral library for soil classification and the predictions of organic matter. Sci. China Earth Sci. 2014, 57, 1–10. [Google Scholar]
- Gogé, F.; Gomez, C.; Jolivet, C.; Joffre, R. Which strategy is best to predict soil properties of a local site from a national Vis-NIR database? Geoderma 2014, 213, 1–9. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Martens, H.; Næs, T. Multivariate Calibration; John Wiley & Sons: Chichester, UK, 1989; p. 419. [Google Scholar]
- Næs, T.; Isaksson, T.; Kowalski, B. Locally weighted regression and scatter correction for near infrared reflectance data. Anal. Chem. 1990, 62, 664–673. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Stanford, G. Rationale for optimum nitrogen fertilization in corn production. J. Environ. Qual. 1973, 2, 159–166. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the People’s Republic of China. Protocols of Soil Testing and Formulated Fertilization Technology. Available online: http://www.moa.gov.cn/ztzl/ctpfsf/gzdt/201109/P020110922365288911962.doc (accessed on 7 September 2014).
- Wang, H.L.; He, X.W. “3414” fertilizer response experiment on rice in 2008 at Jixi county, Anhui province. Soils 2009, 41, 320–323. (in Chinese). [Google Scholar]
- Xu, Z.P.; Yao, B.Q.; Zhang, M.Q.; Lin, Q.; Chen, Z.C.; Li, J.; Yan, M.J.; Zhang, J.L. Soil testing and fertilizer formulation for major crops in Fujian-effects of soil condition of and fertilization on crop yield. Fujian J. Agric. Sci. 2008, 23, 396–402. (in Chinese). [Google Scholar]
- Wei, Y.G.; Zhao, L.Q. Effects of formula fertilization by soil testing on rice. Heilongjiang Agric. Sci. 2007, 37–39. (in Chinese). [Google Scholar]
- Fan, H.D.; Jiang, L.N.; Feng, G.G.; Zhang, D.; Lv, J.; Shen, J. Effects of formula fertilization by soil testing on single-cropped rice verified by nutrient-restrict-factor trials. J. Zhejiang Agric. Sci. 2006, 2, 171–173. (in Chinese). [Google Scholar]
- Mulvaney, R.L. Nitrogen—Inorganic forms. In Methods Soil Anal.Part 3–Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; SSSA: Madison, WI, USA, 1996; pp. 1123–1185. [Google Scholar]
- State Soil Survey Service of China (SSSC). Technical Report of the National Soil Survey of China; China Agriculture Press: Beijing, China, 1992. (in Chinese) [Google Scholar]
- Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderm 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Harris, W.G. Spectroscopic models of soil organic carbon in Florida USA. J. Environ. Qual. 2010, 39, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Mutuo, P.K.; Shepherd, K.D.; Albrecht, A.; Cadisch, G. Prediction of carbon mineralization rates from different soil physical fractions using diffuse reflectance spectroscopy. Soil. Biol. Biochem. 2006, 38, 1658–1664. [Google Scholar] [CrossRef]
- Fystro, G. The prediction of C and N content and their potential mineralisation in heterogeneous soil samples using Vis–NIR spectroscopy and comparative methods. Plant Soil 2002, 246, 139–149. [Google Scholar]
- Moron, A.; Cozzolino, D. Determination of potentially mineralizable nitrogen and nitrogen in particulate organic matter fractions in soil by visible and near-infrared reflectance spectroscopy. J. Agric. Sci. 2004, 142, 335–343. [Google Scholar] [CrossRef]
- Reeves, J.B.; McCarty, G.W.; Meisinger, J.J. Near infrared reflectance spectroscopy for the analysis of agricultural soils. J. Near Infrared Spectrosc. 1999, 7, 179–193. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Mutters, C.S.; Horwath, W.R.; Van Kessel, C. NIR and DRIFT-MIR spectrometry of soils for predicting soil and crop parameters in a flooded field. Plant Soil 2003, 250, 155–165. [Google Scholar] [CrossRef]
- Guerrero, C.; Stenberg, B.; Wetterlind, J.; Viscarra Rossel, R.A.; Maestre, F.T.; Mouazen, A.M.; Zornoza, R.; Ruiz-Sinoga, J.D.; Kuang, B. Assessment of soil organic carbon at local scale with spiked NIR calibrations: Effects of selection and extra-weighting on the spiking subset. Eur. J. Soil Sci. 2014, 65, 248–263. [Google Scholar] [CrossRef]
- Kuang, B.; Mouazen, A.M. Effect of spiking strategy and ratio on calibration of on-line visible and near infrared soil sensor for measurement in European farms. Soil Till. Res. 2013, 128, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.; Shi, Z.; Huang, J.; Li, S. In situ measurement of some soil properties in paddy soils using vis-NIR spectroscopy. PLoS ONE 2014, 9, e105708. [Google Scholar]
- Li, S.; Shi, Z.; Chen, S.; Ji, W.; Zhou, L.; Yu, W.; Webster, R. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai-Tibet Plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [Google Scholar] [CrossRef] [PubMed]
- Idso, S.B.; Jackson, R.D.; Reginato, R.J.; Kimball, B.A.; Nakayama, F.S. The dependence of bare soil albedo on soil water content. J. Appl. Meteorol. 1975, 14, 109–113. [Google Scholar] [CrossRef]
- Torrion, J.A.; Maas, S.J.; Guo, W.; Bordovsky, J.P.; Cranmer, A.M. A three-dimensional index for characterizing crop water stress. Remote Sens. 2014, 6, 4025–4042. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Ben Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma 2015, 245, 112–124. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Accounting for the effects of water and the environment on proximally sensed VIS-NIR spectra and their calibrations. Eur. J. Soil Sci. 2015. [Google Scholar] [CrossRef]
- Ge, Y.; Morgan, C.L.S.; Ackerson, J.P. VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact. Geoderma 2014, 221, 61–69. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Ji, W.; Chen, S.; Peng, J.; Zhou, Y.; Shi, Z. Potential of VIS-NIR-SWIR Spectroscopy from the Chinese Soil Spectral Library for Assessment of Nitrogen Fertilization Rates in the Paddy-Rice Region, China. Remote Sens. 2015, 7, 7029-7043. https://doi.org/10.3390/rs70607029
Li S, Ji W, Chen S, Peng J, Zhou Y, Shi Z. Potential of VIS-NIR-SWIR Spectroscopy from the Chinese Soil Spectral Library for Assessment of Nitrogen Fertilization Rates in the Paddy-Rice Region, China. Remote Sensing. 2015; 7(6):7029-7043. https://doi.org/10.3390/rs70607029
Chicago/Turabian StyleLi, Shuo, Wenjun Ji, Songchao Chen, Jie Peng, Yin Zhou, and Zhou Shi. 2015. "Potential of VIS-NIR-SWIR Spectroscopy from the Chinese Soil Spectral Library for Assessment of Nitrogen Fertilization Rates in the Paddy-Rice Region, China" Remote Sensing 7, no. 6: 7029-7043. https://doi.org/10.3390/rs70607029