Computer Science > Cryptography and Security
[Submitted on 13 Jul 2022]
Title:PhishSim: Aiding Phishing Website Detection with a Feature-Free Tool
View PDFAbstract:In this paper, we propose a feature-free method for detecting phishing websites using the Normalized Compression Distance (NCD), a parameter-free similarity measure which computes the similarity of two websites by compressing them, thus eliminating the need to perform any feature extraction. It also removes any dependence on a specific set of website features. This method examines the HTML of webpages and computes their similarity with known phishing websites, in order to classify them. We use the Furthest Point First algorithm to perform phishing prototype extractions, in order to select instances that are representative of a cluster of phishing webpages. We also introduce the use of an incremental learning algorithm as a framework for continuous and adaptive detection without extracting new features when concept drift occurs. On a large dataset, our proposed method significantly outperforms previous methods in detecting phishing websites, with an AUC score of 98.68%, a high true positive rate (TPR) of around 90%, while maintaining a low false positive rate (FPR) of 0.58%. Our approach uses prototypes, eliminating the need to retain long term data in the future, and is feasible to deploy in real systems with a processing time of roughly 0.3 seconds.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.