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ABSTRACT

An audio fingerprint is a compact representation (robust
hash) of an audio signal which is linked to its perceptual
content. Perceptually equivalent instances of the signal
must lead to the same hash value. Fingerprinting finds
application in efficient indexing of music databases. We
present a theoretical analysis of the Philips audio finger-
printing method under desynchronisation for correlated
stationary Gaussian sources.

1 INTRODUCTION

There are inevitable trade-offs between the size and the
properties of a robust hash or fingerprint. An audio finger-
printing scheme which has proved to be remarkably ro-
bust is the Philips method, proposed by Haitsmaet al [1]
based on quantizing differences of energy measures from
overlapped short-term power spectra. In this paper we ex-
amine the theoretical performance of the Philips method
under desychonisation through a statistical model. This
approach allows the influence of the system parameters
to be studied and optimization strategies to minimize the
probability of bit error of the hash to be tackled. Some
previous work has tackled performance analysis of the
Philips method through a statistical model. For example a
model was proposed by Doets and Lagendijk [2], for the
case in which the signal to be hashed is uncorrelated Gaus-
sian noise. This was used to evaluate the performance of
the fingerprinting method under distortion, but the results
only apply to i.i.d. sources. The important issue of per-
formance analysis under desynchronization, which to our
knowledge has not been previously tackled, constitutes the
main contribution of this paper.

2 DESYNCHRONIZATION ERROR ANALYSIS

In the Philips method, the lengthN input signalx is di-
vided into overlapped frames before hashing. LetL be the
number of samples in a single frame,∆ be the number of
non-overlapping samples between two frames andxn be
the input signal corresponding to thenth frame. We define
the degree of overlap asθ , 1 − ∆/L, whereθ ∈ (0, 1),
and higherθ corresponds to greater overlap.
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A window w is applied toxn before computing the
power spectrum. The spectrum is divided into32 fre-
quency bands on a logarithmic scale. Denoting byEn(m)
the energy of frequency bandm for input framexn, an
unquantised hash value is given byDn(m) , [En(m) −
En(m + 1)] − [En−1(m) − En−1(m + 1)], with m =
0, 1, · · · , 31 and framesn = 0, 1, 2, · · · . The variables
Dn(m) completely determine the system, as the binary
hash valueFn(m) ∈ {0, 1} corresponding to framen and
bandm is computed asFn(m) , u (Dn(m)) , with u(·)
the unit step function. This method can be expressed as a
quadratic form on the extended vectorx̃n , (x[(n − 1) ·
∆ + 1], · · · , x[n · ∆ + L])T for n = 0, 1, 2, . . . , which
includes all the components of the overlapping vectorsxn

andxn−1 and which is of lengthM , L + ∆, such that
Dn(m) = x̃

T
n

Q(m) x̃n, for a band and window depen-
dent matrixQ(m), whose derivation is described in [3].

Desynchronization is the potential lack of alignment
between the original framing used in the acquisition stage
and the framing that takes place in the identification stage.
The Philips algorithm has a high degree of overlapping in
order to counteract desynchronization. Nevertheless, this
strategy has a cost of generating a long hash sequence,
which may be costly to store and compare. Consider a
situation in which the signal fed to the system is desyn-
chronized byk samples, withk ∈ {−∆/2+1, · · · , ∆/2}
and assuming∆/2 integer for simplicity. It is sufficient
to consider this range since a desynchronization of∆ just
shifts all the fingerprint bits one position. A desynchro-
nization byk samples results in a distorted hash value
D′

n(m) and then a certain probability of bit error. It is con-
venient to writeDn(m) andD′

n
(m) as quadratic forms in

the same extended Gaussian vector

xn , (x[(n − 1)∆ − ∆/2 − 1], · · · , x[n∆ + L + ∆/2])
T

,
(1)

of length M + ∆ − 1, which we assume is distributed
as xn ∼ N (0, Z). We write these quadratic forms as
Dn(m) = xT

n
Q

0
(m) x

n
andD′

n
(m) = xT

n
Q

k
(m) x

n
.

Letting S , Dn(m) andV , D′

n
(m), we note that

stationarity implies thatZ is Toeplitz and hence the mean
of S andV is zero. Assume thatS andV can be jointly
modeled as a bivariate normal distribution centered at the
origin with correlation coeficientρ, which can be written
as

ρk(m) =
tr

[

Z Q
0
(m) ZQ

k
(m)

]

tr [(Z Q(m))2]
. (2)



Definingǫk
n
(m) , {F ′

n
(m) 6= Fn(m) | k} we have that

Pr[ǫk

n
(m)] =

1

2
(Pr[S > 0|V ≤ 0] + Pr[S ≤ 0|V > 0])

=
1

π
arccos(ρk(m))

In order to average overk, we assume thatk is uniformly
distributed. An upper bound is based on assuming that
ρk(m) ≥ 0 which holds as long asPr

[

ǫk
n(m)

]

≤ 1/2.
Hence,arccos(·) is a concave function and we may apply
Jensen’s inequality [4] to upper bound the probability of
bit error at framen and bandm as

Pr[ǫn(m)] = E

[

1

π
arccos(ρ(m))

]

≤
1

π
arccos(E[ρ(m)]).

(3)

2.1 Optimal Window and Asymptotic Performance

Notice that (2) implies that, even for i.i.d. input, the bound
(3) on the probability of bit error is dependent on the win-
doww (through the matricesQ

i
(m)) and on the bandm.

It is possible to minimize (3) with respect to the window
w in the i.i.d. case. In [3], we show that the optimal win-
dow satisfies a non-linear system of equations that can be
solved numerically using a generalised eigenvalue solver.
Furthermore, this optimisation can be exploited to obtain a
closed-form bound onPe solely dependent on the overlap
levelθ, that holds asL → ∞ andθ → 1, namely,

Pe ≤
1

π
arccos

(

sin((1 − θ)π)

(1 − θ)π

)

. (4)

3 EXPERIMENTAL RESULTS

Firstly, we obtain results on zero-mean Gaussian i.i.d. sig-
nals. For a range of values of overlapθ, Pe is averaged
over all desynchronization levelsk in the range−∆/2 +
1, . . . , ∆/2 and over all bands. In Figure 1, this is illus-
trated both for the von Hann window and for a window
obtained by averaging the band-dependent optimal win-
dows over all bands. The empirical values are obtained by
averaging over2×105 frames. We see that withθ = 0.945
and the optimized window we can get the samePe as with
θ = 0.955 and the von Hann window. This overlap de-
crease accounts for a reduction of approximately20% in
the hash size. In any case, these results show that the von
Hann window is very close to optimal. In Figure 2, we
also apply our analysis to5-second excerpts of three real
audio signals used in [1]. We observe that the empirical
results are very similar to each other and very similar to
the i.i.d. Gaussian case. The performance of the i.i.d.
case acts as a natural upper bound for desynchronization.
This bound is tight due to the weak dependence of the
results on the autocovariance matrix. Therefore, we can
use (4) to predict accurately performance for any signal,
especially when frames sizes have realistic (large) values.
Notice that this expression has been obtained for the best
possible window in the i.i.d. case, and for this reason the
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Figure 1. Probability of bit error under uniform desynchroniza-
tion versus overlap level, using an i.i.d. Gaussian hashed signal.
Empirical results correspond to the von Hann window and to the
averaged band-optimal windows, respectively. Frame duration,
Tf ≈ 0.3 seconds. Theoretical I and II refer to two theoretical
upper bounds applicable to this situation (see [3]).
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Figure 2. Probability of bit error under uniform desynchro-
nization versus overlap level, using 5-second excerpts of three
real audio signals and i.i.d. Gaussian signal. Frame duration
Tf = 0.3 seconds, von Hann window. The theoretical result is
the asymptotic performance for an optimal window.

plot lies below the i.i.d. Gaussian empirical values which
correspond to the von Hann window.
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