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Abstract

Let G be an (edge-)colored graph. A path (cycle) is called monochromatic
if all of its edges have the same color, and is called heterochromatic if all
of its edges have different colors. In this paper, some sufficient conditions
for the existence of (long) monochromatic paths and cycles, and those for
the existences of long heterochromatic paths and cycles are obtained. It
is proved that the problem of finding a path (cycle) with as few different
colors as possible in a colored graph is NP-hard. Exact and approxima-
tion algorithms for finding a path with the fewest colors are provided.
The complexity of the exact algorithm and the performance ratio of the
approximation algorithm are analyzed. We also pose a problem on the
existence of paths and cycles with many different colors.

* Supported by NSFC.
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1 Introduction

We use Bondy and Murty [3] for terminology and notations not defined here and
consider simple graphs only.

Let G = (V, E) be a graph. By an edge-coloring of G we will mean a function
C : E — N, the set of nonnegative integers. If G is assigned such a coloring, then we
say that G is a colored graph, denote the colored graph by (G, C), and call C(e) the
color of the edge e € E. All edges with the same color form a color class of the graph.
We note that C' is not necessarily a proper edge-coloring, i.e., two adjacent edges
may have the same color. For a subgraph H of G, we let C(H) = Ueep){C(e)} and
c(H) = |C(H)|. For a vertex v of G, the color neighborhood C N(v) of v is defined as
the set {C(e) : e is incident with v} and the color degree d°(v) = |[CN(v)|. A path
(cycle) is called monochromatic if all of its edges have the same color; and it is called
heterochromatic if all of its edges have different colors.

If we regard an uncolored graph as a colored graph in which all edges have different
colors, then the number of colors of a subgraph is simply the number of its edges,
and the color degree of a vertex is the degree of it.

There are many existing literature dealing with the existence of paths and cycles
with special properties in edge-colored graphs. In [19], the authors showed that for
every positive integer ¢, every real number 6,0 < § < ﬁ, and every n sufficiently
large with respect to t and J, there exists a graph G on n vertices, such that G has
girth at least ¢t + 2 and every proper edge coloring of G contains a heterochromatic
cycle of length 4, for all i,2¢t + 2 < 4 < n’. In [5], the authors showed that for a
2-edge-colored graph G and three specified vertices z,y, 2, to decide whether there
exists a color-alternating path from x to y passing through z is NP-complete. Many
results deal with colored complete graphs. In [13] Giraud studied the existence of
monochromatic triangles and heterochromatic triangles in colored complete graph.
A problem on the conditions for a colored complete graph to contain heterochro-
matic Hamiltonian cycles was mentioned in [8] by Erdds, Nesettil and Rodl. The
heterochromatic Hamiltonian cycle or path problem was also studied by Hahn and
Thomassen [14], R6dl and Winkler (see [11]), Frieze and Reed [11], and Albert, Frieze
and Reed [1]. For more references, see [2, 9, 10, 16, 17]. Many results in these papers
are proved by using probabilistic methods.

This paper contains some basic results on paths and cycles in general colored
graphs. In Sections 2 and 3, we give some sufficient conditions for the existence of
(long) monochromatic paths and cycles, and those for the existence of long hete-
rochromatic paths and cycles. In Section 4, we prove that the problem of finding a
path (cycle) with as few different colors as possible between two given vertices in a
colored graph is NP-hard and propose two exact algorithms and two approximation
algorithms for finding a path with the fewest colors. The complexity of the two exact
algorithms and the performance ratio of the approximation algorithms are analyzed.
We also pose a problem on the existence of paths and cycles with many different
colors in Section 5.
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2 Monochromatic paths and cycles

First, let us consider the problem under what conditions a colored graph contains a
monochromatic path or a monochromatic cycle. It is clear that every colored graph
contains at least one monochromatic path. Moreover, it is obvious that not every
colored graph contains monochromatic cycles.

The arboricity a(G) of a graph G is defined as the minimum number of edge-
disjoint forests into which G can be decomposed. Clearly, it is also the minimum
number of colors necessary to color the edges of G so that no cycle is monochromatic.
So we have

Remark 1 Let G be a colored graph. If ¢(G) < a(G), then G contains at least one
monochromatic cycle. [ |

The arboricity a(G) can be determined by applying the matroid partitioning
algorithm of Edmonds [15]. In [18] Picard and Queyranne showed that this parameter
can be determined in at most O(n*) operations, by using network flow methods. It
is (almost) trivial to check whether a colored graph contains a monochromatic cycle:
for each color class E; check whether the induced subgraph G[E;] contains a cycle.

The following result on the existence of monochromatic paths and cycles with a
prescribed length is obvious.

Remark 2 Let G be a colored graph with color classes Ey, Es, ..., E.. Then G has
a monochromatic path (cycle) of length l if and only if for some i with 1 < i < ¢,
the induced subgraph G[E;] has a path (cycle) of length [. |

If we regard an uncolored graph G as a colored graph (G, C) for which all edges
have the same color, then (G, C) contains a monochromatic path (cycle) of length
at least [ if and only if G contains a path (cycle) of length at least I. Since the
problem of deciding whether for general [ there is a path (cycle) of length at least
! in an (uncolored) graph is NP-complete, the problem of deciding whether there
is a monochromatic path (cycle) of length at least [ in a colored graph is also NP-
complete.

There are many results on the existence of long paths and cycles in (uncolored)
graphs. Here we list two of them.

Theorem A (Erdés and Gallai [7]) Let G be a graph of order n and size m. Then

2m
G contains a path of length at least —.
n

Theorem B (Erdds and Gallai [7]) Let G be a graph of order n and size m such

2
that m > n. Then G contains a cycle of length at least ml.
n

Using Remark 2 and Theorems A and B, it is not difficult to prove the following
results:

Proposition 3 Suppose that G is a colored graph of order n and size m. Then G

) . m
contains a monochromatic path of length at least ——. |

c(G)n
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Proposition 4 Suppose that G is a colored graph of order n and size m such that

2
m > ¢(G)n. Then G contains a monochromatic cycle of length at least m
c

(@)(n—1)
n

As it was shown in [7], both Theorems A and B are best possible. To see the
sharpness of Theorem A, let pK, denote the disjoint union of p copies of K,. This
pr(r —1)

2
2
o r — 1. On the other hand, pK, contains no path of length greater than r — 1.

graph has n = pr vertices and m = edges. It is easy to check that

Onf course, this graph also shows that the result in Proposition 3 in the case ¢(G) =1
is best possible. This example can be extended to general cases to show the sharpness
of the result in Proposition 3.

Let G and H be two colored graphs. The colored Cartesian product of G and H
is the graph G x H with a coloring defined as follows: From the definition of the
Cartesian product of graphs, to every vertex u of G, there corresponds a subgraph
H, of G x H such that H, is isomorphic to H. To each edge e of H,, assign the
color of the edge corresponding to e in H. Similarly, to every vertex v of H, there
corresponds a subgraph G, of G x H such that G, is isomorphic to G. To each edge
e of Gy, assign the color of the edge corresponding to e in G. The colored Cartesian
product G; X G X --- X Gy, of k > 2 colored graphs G;,G5--- , G}, can be defined
inductively.

Let G; (1 <i < ¢) be the colored graph K, such that all the edges of G; receive
the same color 7. By K¢ we denote the colored Cartesian product G; x Gy X -+ - X G.
cré(r — 1)
5 2
edges and ¢ colors. This implies that ™+ 1. On the other hand, the colored

It is not difficult to see that the colored graph K¢ has n = r¢ vertices, m =

graph K¢ has no monochromatic path g?length greater than » — 1. This shows that
the result in Proposition 3 is best possible. Clearly the disjoint union of some copies
of the colored graph K¢ defined above can also be used to show the sharpness of the
result of Proposition 3.

The sharpness of Theorem B can be shown by the graph I',, defined as follows:
The graph Iy, is a connected graph which has exactly n = p(r — 1) + 1 vertices and
pr(r—1)
5 2
edges and clearly n—ml = r. On the other hand, it has no cycle of length greater

each of the p blocks of it is a clique on r vertices. This graph has m =

than 7. Of course this example also shows that the result of Proposition 4 is best
possible in the case ¢(G) = 1.

Let G, (1 <7 < ¢) be the colored graph I'y, , such that all the edges of it receive
the same color 7. Denote by G the colored Cartesian product G, X Gy, X =+« X Gy,
Then G has

n:Z Z pjlpjz"'pji(’r_l)i"i_l

1=1 1<j1<j2<<ji<c
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vertices,
r(r—1) . =
m:TZZ > PinPi Py = 1)
i=1 1<j1<j2<+<j;<c
edges, and ¢ colors. Therefore,
r(r—1) e . =
2XTZZ Z iy pi(r = 1)
om i=1 1<j1<j2<-<ji<e

1 )
e(n=1) > PPyt pi(r = 1) +1-1)
11<j1<j2<<gi<e

(c—1) > PPy pyi(r = 1)1
i=1 1<j1<je<<ji<c

Q
Py
Mo

c

c Z Z Pj1Pjy * - " Pj; (T - 1)171

1=11<j1<j2<<ji<e

2
It is clear that [(77711)] = r. On the other hand, the colored graph G contains
c(n —

no monochromatic cycle of length greater than r. This shows that the result in
Proposition 4 is best possible.

3 Heterochromatic paths and cycles

If we regard an uncolored graph G as a colored graph (G, C) in which all edges have
different colors, then for general | G contains a path (cycle) of length at least { if and
only if (G, C) contains a heterochromatic path (cycle) of length at least I. As we
mentioned earlier, the problem of deciding whether there is a path (cycle) of length
at least [ in an (uncolored) graph is NP-complete. Therefore the problem of deciding
whether there is a heterochromatic path (cycle) of length at least [ in a colored graph
is NP-complete, too. In this section we will consider under what conditions there is
a heterochromatic path (cycle) with a prescribed length in a colored graph.

Let G be a colored graph. By selecting precisely one edge from each color class
of G, we obtain a new colored graph G’, such that all the edges of G’ have different
colors, and ¢(G') = ¢(G). Using Theorems A and B, it is easy to prove the following
results.

Proposition 5 Let G be a colored graph of order n. Then G contains a heterochro-

2¢(G
matic path of length at least M |
n
Proposition 6 Let G be a colored graph of order n such that ¢(G) > n. Then G
2¢(G
contains a heterochromatic cycle of length at least at 1) |

Furthermore, we have the following two results on the existence of long hete-
rochromatic paths.
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Proposition 7 Let G be a colored graph and k an integer. Suppose that d°(v) > k
for every vertex v of G. Then for every vertex z of G there exists a heterochromatic

E+1
path of length at least f%] with z as one of its end vertices.

Proof Choose a longest heterochromatic z-path P with length [. Denote the other
end-vertex of P as v. Then from the assumption of the proposition, we know that all
incident edges of v with the other end not on P have colors also appearing in E(P).
Therefore, d°(v) < 1+ (I — 1) = 2l — 1. On the other hand, d°(v) > k, so we have
E+1
1> [, m
2
If one considers heterochromatic paths which do not need to start from a given
E+1
vertex z, A. Saito showed that [ > f%] +1, and furthermore, he conjectured that

2k +1
e

Proposition 8 Let G be a colored graph and s an integer. Suppose that |CN(u) U
CN(v)| > s > 1 for every pair of vertices u and v of G. Then G contains a

heterochromatic path of length at least f%] +1.

Proof Choose a longest heterochromatic path P with length [. Denote the end-
vertices of P as v and v. Then from the assumption of the proposition, we know that
all incident edges of v and v with the other end not on P have colors also appearing
in E(P). Therefore, |[CN(u) UCN(v)| <1+ (I—1)+ (Il —2) =3l — 3. On the other

hand, |[CN(u) UCN(v)| > s, so we have [ > f%] + 1L u

In the following, we give a sufficient condition for the existence of heterochromatic
triangles or quadrilaterals.

Proposition 9 Let G be a colored graph of order n > 4, such that |CN(u) U
CN(v)| > n —1 for every pair of vertices uw and v of G. Then G contains at least
one heterochromatic triangle or one heterochromatic quadrilateral.

Proof If |[CN(u)| =n — 1 for every vertex u of G, then d(u) =n —1, and G is a
complete graph. It is clear that every triangle of GG is heterochromatic. So, we need
only consider the case that there is some vertex u € V(G) with |CN(u)| <n — 1.

Suppose that G contains neither heterochromatic triangles nor heterochromatic
quadrilaterals. Without loss of generality, we can assume that V(G) = {@1, 2, ...,
Ty U S Uy Yty Yktds - - s Yn2,Un—1}, d(u) = k+1 < n —1, Cluz;) = i for i =
1,2,...,k, Cluw) =k+1and Clvyj) =jforj=k+2,...,n—1.

First, consider the vertex w and a vertex z; € {z1,zs,...,2}. Since CN(v) U
(CN(z;) N {C(wiz1), Clwixs),. .., Claiwir), C(xivig1), - - ., Claixy), Clzu)}) C
{1,2, ...,k 4+ 1} and |CN(u) UCN(z;)| > n — 1, ; must be adjacent to each ver-
tex yj € {Unt2, Yrt3, - - -, Yn—1}, and C(z;y;) = j by our assumption that G contains
neither heterochromatic triangles nor heterochromatic quadrilaterals.

Now consider the two vertices u and y,,_;. Since CN(u)U(CN(y—1)N{C(Yn-121),
C(Yn—122),s .-, Cyn—1zx)}) € {1,2,...,k+1,n—1} and |CN(u)UCN (yp_1)| > n—1,
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we have that y,_1y; € E(G) and C(y,—1y;) = j for j = k+2,...,n — 2 by our
assumption that G contains no heterochromatic triangles.

So, we have CN(u) U (CN(yn—2) N {C(yn—2x1), C(Yn—2z2), - .-, C(yYn—2zr),
Cyn—2u), C(Yn—20), C(Yn—2yn-1)}) € {1,2,...,k, k+ 1,n — 2}. Therefore, |C'N(u)
UCN (Yn-2)| < {1,2,...,k,E+1,n = 2} + {Yr+2, Yn+3> - - Yns}| = (K +2) + (n —
kE—4)=n—2 <n -1, a contradiction.

The proof of the result is complete. |

Although the proofs of the results in Propositions 7 to 9 are easy, it can be shown
that these results are best possible in the sense that there exist some graphs of small
orders showing that they cannot be improved. However, we think that perhaps much
stronger results are possible to obtain if one excludes some small counter-examples
or simple classes of counter-examples. The proof techniques we applied here do not
seem to be strong enough for obtaining such improvements. Maybe an approach
using probabilistic proof techniques could yield such improvements.

4 Paths and cycles with few colors

If we regard an (uncolored) graph G as a colored graph (G, C) for which all edges
have different colors, then a shortest path between two given vertices in G is a path
between the two vertices with the fewest colors in the colored graph (G,C). It is
well-known that the problem of finding a shortest path between two given vertices
in a (weighted) graph can be solved efficiently. There are many polynomial-time
algorithms to solve this problem. In this section, we will consider the complexity
aspects of finding a path between two given vertices with the fewest colors in a
colored graph.

Problem 10
INSTANCE: Graph G = (V,E) with a coloring C : E — N and two given
vertices so and to, positive integer K < ¢(G).

QUESTION: Is there a path P from so to to such that ¢(P) < K?
The following problem is NP-complete, see [12] for a reference.

3-SATISFIABILITY (3-SAT)
INSTANCE: Collection C = {C1,Cy,...,Cn} of clauses on a finite set U of
variables such that |C;| = 3 for 1 <i < m.
QUESTION: Is there a truth assignment for U that satisfies all the clauses in
c?
In this section, we use this result to show that Problem 10 is NP-complete, too.

Theorem 11 Problem 10 is NP-complete.

Proof It is easy to see that Problem 10 is in NP. One way to see this is to observe
that a nondeterministic algorithm need only guess an (so, to)-path P in G, and check
in linear time whether ¢(P) < K.

We shall now show that 3-SAT can be polynomially transformed to Problem 10.
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Given a Boolean formula F consisting of m clauses C1, Cs, . . ., Cp, (with three literals
per clause) and involving n variables x1, xs, . .., ,, we shall construct a graph G =
(V,E) with a coloring C' : E — N and two vertices so and tg, such that G has an
(s0,t0)-path P with ¢(P) < n+ 1 if and only if F is satisfiable.

First, for the variable x; (1 < i < n), we construct a subgraph A; of G, where
V(A:) = {8i-1, win, win, $;} and E(A;) = {si—1ui, i1 i, Sim1Uia, Ui S ). Assign a spe-
cial color 0 to the edges s;_1u;; and s;_1u;2, the color i to the edge u;;s; and the color
i’ to the edge u;ps; for i = 1,2,...,n. Then we get a colored graph A = Ul A,.
For the clause C; (1 < j < m), we construct a subgraph B; of G, where V(B;) =
{tjfl,vjl,ng,ng,t]‘} and E(B]) = {tj,10j17tjflng,tj,lng,vjltj,Ujgfj, ’Uj3t]'}. For
j=12,...,mand k = 1,2,3, assign the color 0 to the edge t;_,vj;, the color h
to the edge vj;t; if the kth literal of C; is x;, and the color h' to the edge vjxt; if
the kth literal of Cj is ). Then we get a colored graph B = U7L; B;. The colored
graph G is obtained by connecting the two graphs A and B with an edge s,t,, and
coloring this edge with the color 0, see Figure 1. Clearly the construction of G can
be accomplished in polynomial time.

U1l Un1

V13 Um3

Figure 1: The graph in the proof of Theorem 11
in the case Cy = x1Tox3.

It is not difficult to verify that there is an (sg,tp)-path P with ¢(P) < n+ 1 if
and only if F is satisfiable. We leave the details to the reader. |

The following consequence of Theorem 11 is immediate.

Corollary 12 For a given pair of vertices s and t in a colored graph G, finding a
path between s and t in G with as few different colors as possible is NP -hard. |

Remark 13 Broersma and Li [4] proved that the problem of finding a spanning tree
with as few colors as possible in a colored graph is NP-hard by using the minimum
dominating set problem. It is not difficult to see that the graph G we constructed in
the proof of Theorem 11 has a spanning tree with at most n 4 1 colors if and only if
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F is satisfiable. So, our technique also provides a new proof to Broersma and Li’s
result.

The problem of finding a cycle with as few colors as possible in a colored graph
is also NP-hard. We consider the following decision problem.

Problem 14
INSTANCE: 2-connected graph G = (V, E) with a coloring C : E — N and a
given vertez u, positive integer K < c(G).

QUESTION: Is there a cycle C passing through w such that ¢(C) < K?
Theorem 15 Problem 14 is NP-complete.

Proof Let G a connected colored graph. Construct a 2-connected colored graph
G’ by adding a new vertex u, connecting u to every vertex v of G with an edge
and assigning an extra color 0 to the new edges. Then G contains a path P such
that ¢(P) < K if and only if G’ contains a cycle C' passing through w such that
¢(C) < K + 1. Tt follows from Corollary 12 that Problem 14 is NP-complete. |

Corollary 16 Finding a cycle with as few colors as possible in a 2-connected colored
graph is NP-hard. |

As we proved in Theorem 11, finding a path with as few colors as possible (min-
imum path) between two given vertices in a colored graph is NP-hard. However, if
¢(G@) is much smaller than |V(G)|, say, ¢(G) = O(log, |[V(G)|), there will be some
efficient algorithm for solving this problem.

An approach to finding a minimum path between two given vertices so and tg
is to check whether there is an (sg,?)-path in the graphs G[E;,] with 1 < i < F,
G[Ezl @] EZJ with 1 S i17i2 S k and il 7é i2, ey and G[E“ @] Eiz [ORERNY! Eid] with
1 <iy,ds,...,4¢ < kand ¢y # i, for 1 < p # q < k, where Ey, E,, ..., Ej are the
color classes, k = ¢(G), and d is the distance between sy and ty. The complexity of
such an algorithm is

[@ " @ ot (mm{kd,k}ﬂ o(V(G))

= min{O(k’|V(G)]), 02 |V(G))}-

It is of interest to consider approximation algorithms for the minimum path prob-
lem. If we use a shortest path between two vertices as an approximate solution for
a minimum path, the approximation ratio is ¢(G). We can also design an approx-
imation algorithm which is similar to Dijkstra’s Algorithm for finding a shortest
path.

Algorithm 17
Step 1. Set C(so) =0, C(So) =0, c(v) = oo for v # sg, So = {so} and i = 0.
Step 2. For each v € V\S;, replace C(v) by C(u;) U{C(uv)} if c(v) > |C(u;) U
{C(uv)}| and set c(v) = |C(v)|. Compute H‘l/l\ns {c(v)} and let w;y
vE i

denote a vertex for which this minimum is attained. Set S;y; = S; U

{uitr}



308 BROERSMA, LI, WOEGINGER, AND ZHANG

Step 3. If ujq = to, stop. Otherwise, replace i by ¢ + 1 and go to Step 2.

The approximation factor of this algorithm can get arbitrarily large. This can be
shown by the graph in Figure 2.

1(m)” __ (m)
4 sl N 1mde- (n+1)(m1)
1y \ A ~ \ _
SmEl0) 90 ©10 " 9(0) © R
1 2 (m+n) 2 (mAn) 1o =81 1(0)
Hy, Hpa H, ﬂ)
2(0)
> Hy
I I I
32 _ tl m+n) 0)
=58 si=to
m g\ 7N
\ \ / l \

Figure 2

The graph in Figure 2 is constructed as follows. Let Hy be an (sg,?)-path Py
with m + n edges and assign the colors 10, 2 . (m + n)© to the edges of P,
respectively. For 1 < ¢ < m, the graph H; is obtained from H; ; by adding a new
(8i_1,ti_1)-path P; with m +n — i edges and assigning the colors 19,2 . (m +
n— i)(i) to the edges of P;, respectively. We denote the two vertices s;_; and ¢;_; of
H; by s; and t;, respectively. By denoting the vertices s; by s} and ¢; by t;, we get
a new graph H] for each ¢ with 1 < ¢ < m. The graph in Figure 2 is constructed
from the graphs Hy, H; and H] (1 < i < m) by identifying the vertices ¢y with s,
the vertices s,_; with ¢;, and the vertices s; with ¢/_, for 1 < i < m.

It is easy to see that the minimum path between s,, and ¢/, in the graph H is of

1
m + n colors. Whereas we will get an approximate result n(m + 1) + M if

we apply the above algorithm to the graph H. So the approximation factor is

1 1
nim 1)+ mOFD o mmt D)
m-+n m-+n

when m — oo in the case n = 1 or n = m!*¢ (¢ > 0).
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5 Paths and cycles with many colors

If we regard an uncolored graph as a colored graph in which all edges have different
colors, then the number of colors of a subgraph is just the number of edges of it. It is
well-known that the problem of finding a longest path or a longest cycle in a graph
is NP-hard. Therefore, the problem of finding a path or a cycle with as many colors
as possible in a colored graph are also NP-hard.

In the past decades, many sufficient conditions for the existence of long paths
and cycles have been derived. The oldest result of this type is due to Dirac.

Theorem C (Dirac [6]) Let G be graph and d an integer. If d(v) > d for every
vertex v of G, then G contains (1) a path of length at least d, and (2) a cycle of
length at least d+ 1 if d > 1.

It is an interesting problem to establish whether Theorem C admits a generaliza-
tion to colored graphs. This leads to the following problem.

Problem 18 Let G be a colored graph such that d°(v) > d for every vertez v of G,
where d is an nonnegative integer. For what values p and ¢ does G contain a path
with at least p colors, and a cycle with at least ¢ colors if d > 17

There are some examples which show that in Problem 18, both p and ¢ cannot
be greater than d — 1.

By imposing a higher connectivity, the bound on the cycle length in Theorem C
can be increased.

Theorem D (Dirac [6]) Let G be a 2-connected graph and d an integer. If d(v) > d
for every vertex v of G, then G contains either a Hamilton cycle or a cycle of length
at least 2d.

Let K, n+1 be the complete bipartite graph with bipartition (X,Y") such that
|X| =nand |Y| =n+1. Assign a coloring to K, 41 as follows: first color the graph
K, nt1 —y for some vertex y € Y by a proper n-edge-coloring, then assign the same
n colors of K, ,4+1 to the n edges incident to y, respectively. It is easy to show that
d°(v) > n for each vertex v of K, 41, but K, ,41 contains neither a Hamilton cycle
nor a cycle with more than n colors. This shows that, different from Theorem D,
imposing a higher connectivity on the graphs in Conjecture 18 cannot guarantee the
existence of cycles with more colors.

Acknowledgement: The authors are grateful to the referees for their suggestions and
comments, which are very helpful for improving the presentation of this paper.
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