Computer Science > Computer Science and Game Theory
[Submitted on 21 Dec 2023]
Title:Parameterized Guarantees for Almost Envy-Free Allocations
View PDF HTML (experimental)Abstract:We study fair allocation of indivisible goods among agents with additive valuations. We obtain novel approximation guarantees for three of the strongest fairness notions in discrete fair division, namely envy-free up to the removal of any positively-valued good (EFx), pairwise maximin shares (PMMS), and envy-free up to the transfer of any positively-valued good (tEFx). Our approximation guarantees are in terms of an instance-dependent parameter $\gamma \in (0,1]$ that upper bounds, for each indivisible good in the given instance, the multiplicative range of nonzero values for the good across the agents.
First, we consider allocations wherein, between any pair of agents and up to the removal of any positively-valued good, the envy is multiplicatively bounded. Specifically, the current work develops a polynomial-time algorithm that computes a $\left( \frac{2\gamma}{\sqrt{5+4\gamma}-1}\right)$-approximately EFx allocation for any given fair division instance with range parameter $\gamma \in (0,1]$. For instances with $\gamma \geq 0.511$, the obtained approximation guarantee for EFx surpasses the previously best-known approximation bound of $(\phi-1) \approx 0.618$, here $\phi$ denotes the golden ratio.
Furthermore, for $\gamma \in (0,1]$, we develop a polynomial-time algorithm for finding allocations wherein the PMMS requirement is satisfied, between every pair of agents, within a multiplicative factor of $\frac{5}{6} \gamma$. En route to this result, we obtain novel existential and computational guarantees for $\frac{5}{6}$-approximately PMMS allocations under restricted additive valuations.
Finally, we develop an algorithm that efficiently computes a $2\gamma$-approximately tEFx allocation. Specifically, we obtain existence and efficient computation of exact tEFx allocations for all instances with $\gamma \in [0.5, 1]$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.