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Abs t rac t 

This paper examines Lisp from the point of view of parallel 
computation. It attempts to identify exactly where the potential 
for parallel execution really exists in LISP and what constructs 
are useful in realizing that potential. Case studies of three 
attempts at augmenting Lisp with parallel constructs are 
examined and critiqued. 

1. Parallelism in Lisp 
There are two main approaches to executing Lisp in parallel. 
One is to use existing code and clever compiling methods to 
parallelize the execution of the code [9, 14, 11]. This 
approach is very attractive because it allows the use of already 
existing code without modification, and it relieves the 
programmer from the significant conceptual overhead of 
parallelism. This approach, known as the "dusty deck" 
approach, suffers from a simple problem: it is very hard to do. 
This is particularly true in a language such as Lisp that shows 
a much less well defined flow of control than languages such 
as FORTRAN where such techniques have been applied 
relatively successfully [13]. A result of this is that, given the 
current compiler techniques, the amount of parallelism that 
can be achieved is limited. 

The other approach to the problem is the addition of so-called 
parallel constructs to Lisp. The idea is to allow the 
programmer to help the compiler out, by specifying the 
parallelism using special, added language constructs. This, 
depending on the constructs used, places a significant 
additional conceptual burden on the programmer. The degree 
of the burden depends directly on the level or the elegance and 
simplicity of the constructs used. The higher the level of the 
constructs, the lighter conceptual burden on the programmer. 
To put it another way, the more the constructs are able to hide 
and protect the programmer from the problems inherent in the 
parallel execution of a language with side effects such as Lisp, 
the better. This approach suffers from the additional problem 
that existing code may not be executed as is, but rather must 
be rewritten using these added constructs in order to take 
advantage of any parallelism. Finally, there is the problem of 
defining a set of constructs that fulfills the goals of placing the 
minimal conceptual overhead on the programmer while 
providing a complete set, in the sense that all the parallelism in 
any given problem may be suitably expressed using only this 
set. 

In this paper, we focus on the second of the two approaches, 
because it is in this area that most recent progress has been 
made. We study in depth three attempts to define a useful set 
of parallel constructs for Lisp and discuss exactly where the 
opportunities for parallelism in Lisp really seem to lie. The 

three attempts are very interesting, in that two arc very similar 
in their approach but very different in the level of their 
constructs, and the third takes a very different approach. We 
do not study the so called "pure Lisp" approaches to 
parallelizing Lisp since these are applicative approaches and 
do not present many of the more complex problems presented 
by a Lisp with side-effects [4, 3]. 

The first two attempts concentrate on what we call control 
parallelism. Control parallelism is viewed here as a medium-
or course-grained parallelism on the order of a function call in 
Lisp or a procedure call in a traditional, procedure-oriented 
language. A good example of this type of parallelism is the 
parallel evaluation of all the arguments to a function in Lisp, 
or the remote procedure call or fork of a process in some 
procedural language. Notice that within each parallel block of 
computation, there may be encapsulated a significant amount 
of sequential computation. 

The third attempt exploits what we call data parallelism. Data 
parallelism corresponds closely to the vector parallelism in 
numerical programming. The basic idea is that, given a large 
set of data objects on which to apply a given function, that 
function may be applied to all the data objects in parallel as 
long as there are no dependencies between the data. Here, 
rather than distributing a number of tasks or function calls 
between a set of processors, one distributes a set of data and 
then invokes the same function in all processors. 

These two forms of parallelism have been described as the 
MIMD (Multiple Instruction stream, Multiple Data stream) 
and SMD (Single Instruction stream, Multiple Data stream) 
approaches [2], These terms are generally used in classifying 
parallel architectures based on the type of computation for 
which they are particularly suited. Generally, it is felt that the 
finer the grain of an architecture, i.e. the simpler and the more 
numerous the processors, the more SIMD in nature, and 
conversely, the larger the grain, i.e. the larger and fewer the 
processors, the more MIMD the architecture. The terms are 
also frequently used to distinguish between distributed- and 
shared-memory machines, but it is important to remember that 
they actually refer to particular models of computation rather 
than any given particular architectural characteristics. 

The case studies described in this paper deal exclusively with 
one or the other of these two forms of parallelism. 
Interestingly, the compiler, or dusty deck approaches that we 
have seen [9, 14], also seem to deal exclusively with one or 
the other of the two forms of parallelism. Some work has been 
done in the functional programming area in combining the two 
forms of parallelism [11] and the need to do so has been 
recognized by parallel Lisp designers [15], but to date very 
little work has been done in this area. This is surprising given 
that the distinction between the two forms is, in reality, quite 
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weak. This is especially true in a language such as Lisp, 
where there is a continuum between what might be considered 
code and what might be considered data. To see this more 
clearly, let us take the case of the parallel evaluation of a 
function's arguments. We have seen this is generally 
considered a form of control parallelism. Assuming each 
argument involves the evaluation of a function, for example: 

(foo (bar a) (car b) (dar c)) 

We generally view this as each argument being bundled up 
with its environment and sent off to some processor to be 
evaluated. What about the case where the same function is 
applied to each argument? 

(foo (f a) (f b) (f c)) 

This is generally viewed as an occasion for exploiting data 
parallelism. The arguments (the data in this case) are 
distributed to a number of processors and then the common 
function is called on each. In the case of moving from a data 
to a control point of view, consider a vector, each element of 
which resides in its own processor. Invoking a given function 
on each member of the vector involves first distributing one 
member of the vector to each processor (this step is often 
ignored in descriptions of SIMD execution), and then, 
broadcasting the code for that function to each processor, or if 
the code is already stored in the processor, broadcasting the 
function pointer and a command to begin execution. In the 
control model, instead of broadcasting the function to all the 
processors at one time, one must distribute the function along 
with a particular element of the vector to each processor and 
immediately begin execution. This could just as well be 
viewed as first distributing the code and the corresponding 
data element to each processor and then broadcasting the 
instruction to eval that form in each processor. The 
synchronization is different in the two models, but the actual 
steps in the execution may be viewed as being the same. 

2. Case Studies 
We will return to the subject of the distinction between control 
and data parallelism later, when we discuss where the 
opportunities for parallelism in Lisp actually lie. First, we 
present three case studies of the approaches already 
mentioned. The current efforts concentrate on adding some 
additional constructs to a dialect of Lisp. They are, therefore, 
extensions to Lisp rather than completely new parallel 
languages based on Lisp. In the text we refer to them as 
languages, but the meaning should be taken as: Lisp and the 
additional constructs used to express parallelism. In the case 
studies new constructs are indicated by italics and normal Lisp 
constructs are indicated by a t y p e w r i t e r font 

2.1. Multil isp 
The first extended Lisp language we present is Multilisp 
[7, 8] which is based on Scheme [1], a dialect of Lisp which 

treats functions as first class objects, unlike Common Lisp 
[16], but is lexically scoped, like Common Lisp. In this 

paper, we do not distinguish Lisp based languages by the 
particular dialect of Lisp on which they are based, but rather 
by the constructs that have been added to the language and the 
effect, if any, that the base dialect has on these constructs. 

Multilisp is notable both for the elegance and the economy of 
the constructs through which it introduces parallelism. In fact, 

a single construct, the future, is used for the expression of all 
parallelism in the language. A future is basically a promise or 
an IOU for a particular computation. In creating a future, the 
programmer is implicitly stating two things: One is that it is 
okay to proceed with the computation before the value of the 
future is calculated, but that the value will have been 
calculated or will be calculated at the time it is needed. The 
other is that the computation of the future is independent of all 
other computation occurring between the time of creating and 
before its use, and thus may be carried out at any time, in no 
particular order, with the rest of the computation or other 
futures that may have been created. The danger here, of 
course, is any side effects caused by the future must not 
depend on their ordering in relation to the rest of these 
computations. It is the responsibility of the programmer to 
ensure that these side effects do not cause any "unfortunate 
interactions". It is this responsibility that places additional 
conceptual overhead on the programmer. The overhead is 
reduced by having only one basic construct to deal with, but 
should not be underestimated. This overhead may be further 
reduced by what Halstead describes as a data abstraction and 
modular programming discipline. An example of the use of a 
future is: 

(setq cc (cons (future (foo a)) 
(future (bar b)))) 

Here we build a cons cell, both the car and cdr of which are 
futures, representing respectively the future or promised 
evaluation of ( foo a) and (bar b) . This cons will return 
immediately and be assigned to the atom cc. If we later pass 
cc to the function p r i n t c o n s below, 

(defun printcons (conscell) 
(print (car conscell)) 
(print (cdr conscell))) 

there are four possibilities: 
1. both futures will have already been evaluated, in 

which case the futures will have been coerced 
into their actual values and the computation will 
proceed just as if it was dealing with a regular 
cons cell, 

2. ( foo a) has not yet been evaluated in which 
case p r i n t c o n s will have to wait for it to be 
evaluated before proceeding. 

3. (bar b)has not yet been evaluated in which 
case p r i n t c o n s will have to wait for it to be 
evaluated before proceeding. 

4. both ( foo a) and (bar b) have not yet been 
evaluated in which case p r i n t c o n s must wait 
for the evaluation of the futures before 
continuing. 

Multilisp has an additional construct known as a delay or 
delayed future that corresponds to a regular future, except that 
the evaluation of the future is delayed until the value is 
required. This additional construct is necessary in order to 
represent infinite data structures and nonterminating 
computation. For example, suppose we wished to represent 
the fist of all prime numbers greater than some prime number 
n. We could do this using a delay as follows: 

(defun primes(n) 
(cons n (delay (primes (next-prime n)))) ) 
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Multilisp allows the computation of non-strict functions 
(functions whose arguments may not terminate) through the 
use of both the delay and of the future. However, in the case of 
futures, significant amounts of resources may be lost in every 
such computation, and ultimately storage will be exhausted for 
any non-finite data structure. By using delays, one only 
computes what is needed. AW futures may be removed from a 
program without changing the resources used by the program, 
but the same is not true for delays, since removing a delay may 
cause the computation of infinite data structures. 

Delays thus represent a form of lazy evaluation, whereas the 
future represents a reduction in the ordering constraints of a 
computation. Eager evaluation strategies are also possible, in 
which computations are begun that are not necessarily needed 
at all, but are computed anyway, just in case they are needed. 
Multilisp does not provide such eager constructs or any 
construct that allows a computation to be halted prematurely. 
Constructs, which allow computations to begin, but are later 
able to halt them, are useful in freeing the computational 
resources of an eager computation, once it has been 
determined that its result is not needed. An alternate technique 
is to allow such a process to run until it can be determined mat 
the result being returned is no longer needed at which time it 
may be garbage collected by the system. 

Multilisp includes one additional construct which is the pcall. 
Pcall provides for the simultaneous evaluation of the 
arguments to a function, but does not continue the evaluation 
of the function itself until all the arguments have fmished 
evaluating. Notice how this differs from a function call in 
which all the arguments are futures. Pcall thus provides a 
much more limited form of parallelism than futures, but is 
useful a midway point between the completely undefined flow 
of control between futures and the complete order of 
sequential execution. Pcall may of course be simulated by a 
function call, all of whose arguments are futures, provided the 
first act of the function is to access the values of all its 
arguments. Multilisp provides a primitive identity operator 
touch which causes a future to be evaluated and which is in 
fact used to implement the pcall construct. 

The implementation of Multilisp calls for a shared-memory 
multiprocessor, and two implementations are underway 
[8,17]. Each processor maintains its own queue of pending 

futures, and a processor that has no current task may access 
another processor pending queue to find a future to execute. 
An unfair scheduling algorithm is necessary to ensure that 
constant computational progress is made and the system does 
not deadlock. The scheduling strategy has been chosen so that 
a saturated system behaves like a group of processors 
executing sequentially, i.e. as if all future calls had been 
removed from the code. Once a future has been evaluated, it 
is coerced to its return value by changing a flag bit stored 
among the tag bits of the Lisp item that represents it. This 
causes one extra level of indirection (one pointer traversal) in 
references to values that are the result of future calculations. 
These indirect references are removed by the garbage 
collector. 

2.2. QLISP 
The additional constructs in Qlisp [5] are quite similar in 
semantics to those of Multilisp, but very different in form. 
There are a much larger number of constructs in Qlisp, 
although the increase in the expressive power of the language 
is not great. There are two primary constructs that allow the 
expression of parallelism. They are qlet and qlambda. 

Qlet does much what one might expect It performs the 
bindings of a let in parallel. Qlet takes an extra predicate as an 
argument along with its usual binding pairs. When this extra 
predicate evaluates to n i l , qlet behaves exactly like l e t . 
When the predicate evaluates to the atom eager, the qlet 
spawns a process to evaluate each of its arguments and 
continues the execution of the following computation. Finally, 
if the predicate evaluates to neither n i l nor eager the qlet 
spawns processes for each of its arguments as before, but waits 
for all of them to finish evaluating before continuing with the 
subsequent computation. These last semantics for qlet closely 
resemble those of pcall in Multilisp and may be easily used to 
mimic its semantics exactly (by placing the function call 
within the qlet that assigns the value of the functions 
arguments to temporaries). Further, a qlet where the predicate 
evaluates to eager may be used to simulate a function call 
where all the arguments were passed as futures: 

(qlet 'eager 
((x (foo a)) (y (bar b)) (z (car c))) 

(f x y 2)) 

Qlambda takes the same additional predicate as qlet and forms 
a closure in the same way as its namesake lambda. If the 
predicate evaluates to n i l , then qlambda behaves exactly as a 
lambda does. If the predicate evaluates to eager, the 
process representing the closure is spawned as soon as the 
closure is created. If the predicate evaluates to something 
other than n i l or eager, the closure is run as a separate 
process when it is applied. When a process closure defined by 
a qlambda is applied in a non value requiring position, such as 
in the middle rather than at the end of a prog, it is spawned, 
and the subsequent computation continues. Upon return of the 
spawned process, its return value is discarded. If a process 
closure is spawned in a value requiring position the spawning 
process waits for the return value. In addition, two operators 
are supplied to alter this behavior. They are wait and no-wait 
with the obvious semantics. The constructs that have been 
defined up to this point give the language the same semantic 
power as Multilisp's/wrwre mechanism. 

Qlisp deals with an issue not handled in Multilisp, which is 
what happens if a spawned process throws itself out, that is, 
what happens if a spawned process throws to a ca tch 
outside its scope? When a ca tch returns a value in Qlisp, all 
the processes that were spawned in the scope that ca tch are 
immediately killed. The additional construct qcatch behaves 
slightly differently. If the qcatch returns normally (i.e. it is not 
thrown to), it waits for all the processes spawned below it to 
complete before returning its value. Only if it is thrown to 
does it kill its subprocesses. In addition, Qlisp defines the 
semantics of an unwind-protect form over spawned processes 
which ensures the evaluation of a cleanup form upon a non­
local exit These additional constructs allow the programmer 
the power to begin and later kill processes, and therefore give 
him the power to perform the type of eager evaluations not 
available in Multilisp. 

Qlisp has more of a process-oriented flavor to it than 
Multilisp, and, although its constructs have similar power to 
those of Multilisp they appear to be on a much lower level. A 
similar statement may be made for the C-lisp language [18]. 

In Qlisp, processes are scheduled on the least busy processor 
at the time of their creation. Unlike Multilisp, more than one 
process is run on a single processor and processes are time 
swapped in a round robin fashion. The predicates of qlet and 
qlambda allow for dynamic tuning of the number of processes 
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created at run-time. This is another feature that Multilisp does 
not have, but one that is also better left to the runtime system 
rather than the programmer. 

2.3. Connection Machine Lisp 
Connection Machine Lisp, unlike the previous two languages, 
introduces parallelism in the form of data rather than control. 
The basic parallel data structure in Connection Machine Lisp 
is a xapping (a distributed mapping). A xapping is a set of 
ordered pairs. The first element of each pair is a domain 
element of the map, and the second is the corresponding range 
element. The mapping representing the square of the integers 
1, 2, 3 would be denoted in Connection Machine Lisp as: 

{ 1->1 2->4 3->9 } 

If the domain and range elements of all the pairs of the 
xapping are the same (i.e. an identity map), this is represented 
as: 

{ 1 2 3 } - { 1->1 2->2 3->3 } 

and is called a xet. Finally, a xapping in which all of the 
domain elements are successive integers is known as a xector 
and is represented as: 

[ John torn andy ] = 
{ l->john 2->tom 3->andy } 

Connection Machine Lisp also allows the definition of infinite 
xappings. There are three ways to define an infinite xapping. 
Constant xapping takes all domain elements (or indices as they 
are also called in Connection Machine Lisp) and maps them 
into a constant. This is denoted: 

{ ->v ) 

Where v is the value all indices are mapped into. The 
universal xapping may also be defined. It is written { -> } and 
maps all Lisp objects into themselves. Finally, there is the 
concept of lazy xappings which yield their values only on 
demand. For example the xapping that maps any number to its 
squarte root may be defined by: 

{ - sqrt } 

and ( x r e f {. s q r t } 100) would return 10. Notice that 
xappings are a type of Common Lisp sequence and many of 
the common sequence operators are available and may be 
meaningfully applied to them. 

Connection Machine Lisp defines two main operators that can 
be applied to xappings. The a operator is the apply-to-all 
elements of a xapping operator. It takes a function and applies 
it to all of the elements of the xapping in parallel. If the 
function to be applied is n-ary, it takes n xappings as 
arguments and is applied in parallel to the n elements of each 
xapping sharing a common index. If the correct number of 
arguments to the function are not available, that index is 
omitted from the result element. For example: 

(acona {a->l b->2 c->3 d->4 e->5} 
{b->6 c->4 e->5)) -> 

(b-><2.6) c->(3.4) e->(5.5)} 

Notice that the domain of the result is the intersection of the 
domains of the function and argument xappings. The a 
operator is the main source of parallelism in Common 
Machine Lisp. 

The other main operator is the P or reduction operator. It takes 
a xapping and a binary function and reduces the xapping to a 
value by applying the binary function to all the elements of the 
xapping in some order. Since the order in which the function 
is applied to the xapping is undefined, the functions used are 
generally limited to being associative and commutative. For 
example: 

(P+ ( I 2 3}) 
always returns 6, but 

(p- {1 2 3}) 
may return 0,-2, 2, 4 or -4. A non-commutative or non-
associative function may be useful on occasion however; for 
example, P applied to the function (lambda (x y) y) 
will return some arbitrary element of the xapping to which it is 
applied. This particular function has been found to be so useful 
in Connection Machine Lisp that it has been made into a 
regular operator called choice. The P operator has a second 
form in which it may serve as a generalized communication 
operator. When the p operator is passed a binary function and 
two xappings, the semantics are that the operator returns a new 
xapping whose indices are specified by the value of its first 
argument and whose values are specified by the values of the 
second argument. If more than one pair with the same index 
would appear in the resulting xapping (which is, of course, not 
allowed), the xector of values or these pairs is combined using 
the binary function supplied with the p operator. For example: 

(pmax 
'{john->old tom~>young phil->dead 

joe->young al->22} 
'{john->66 tom->12 phil->120 joe->l l } ) -> 

{old->66 young->12 dead->120} 
In this example, we are using a database of xappings about 
people to generate some new knowledge. Given a qualitative 
measure of some people's age (old, young, and dead) and their 
actual age, we generate a value for the qualitative measures. 
Notice that when two indices collide, the results are combined 
by max, our heuristic being that it is best to represent an age 
group by its oldest member (not a terribly good heuristic in the 
general case). The interprocessor communication aspect of the 
p operator becomes clearer if one considers that all the 
information for one person (one index) is stored in one 
processor. In order to generate our new xapping, we transfer 
all the information about each age group to a new processor 
and do the necessary calculation there. In the above example, 
the information from Philip and George is transferred to the 
processor with label "young" and combined with the max 
operator there. 

The parallelism in Connection Machine Lisp may be 
compared with the parallelism of the pcall construct of 
Multilisp. As pointed out by Guy Steele, the distinction 
between the two is due to the MIMD nature of pcall and the 
SIMD nature of the a operator in Connection Machine Lisp. 
To be more specific, although in the pcall all the arguments 
are evaluated in parallel, their synchronous execution is not 
assured. In fact, in both Multilisp and Qlisp the proposed 
implementations would almost guarantee that the evaluation 
would occur asynchronously. In Connection Machine Lisp, 
when a function is applied to a xapping, the function is 
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executed synchronously by all processors. In the case of 
Connection Machine Lisp, the control has been centralized, 
whereas in the case of Multilisp, it is distributed. This 
centralization of control definitely reduces the conceptual 
overhead placed on the programmer, as well as reducing the 
computational overhead by requiring only a single call to 
e v a l rather than many calls occurring in different processors. 
The price for this reduced overhead is that the opportunity for 
exploiting the control parallelism that exists in many problems 
is lost Steele comments on this, suggesting that some of the 
lost control parallelism may be reintroduced by allowing the 
application of xectors of functions. For example, the 
following construct in Connection Machine Lisp: 

(Otfuncall ' [ s i n cos tan) [x y z]) 

is equivalent to the Multilisp construct: 

(pcall #'xector (sin x) (cos y) (tan z)) 

As of yet, this aspect of the language has not been developed. 

3. Discussion 
In the languages, presented above we have seen two different 
methods of providing parallelism in Lisp. In one case, there is 
a process style of parallelism where code and data are bundled 
together and sent off to a processor to be executed. In the 
other, there is a distributed data structure to which sections of 
code are sent to be executed synchronously. The major 
question that remains is whether these two methods of 
exploiting parallelism can be merged in some useful way, or is 
there a different model that can encompass both methods. 
Before exploring this question further it is interesting to 
examine Lisp itself in order to see where the opportunities for 
parallelism actually lie. 

The obvious place to apply control parallelism in Lisp is in its 
binding constructs. We have seen examples of this both in the 
pcall of Multilisp and the qlet of Qlisp. In addition to this 
form of parallelism, any function application may be executed 
in parallel with any other provided that there are no 
"unfortunate interactions" between them. We have seen this in 
the futures of Multilisp and the qlambda of Qlisp. A different 
approach often taken in traditional block-structured languages 
is to have a parallel block, or a parallel prog in the case of 
Lisp, in which all function calls may be evaluated in parallel. 
An interesting approach that has been taken along these lines 
is to treat each function application as a nested transaction and 
attempt to execute all applications in parallel, redoing the 
application when a conflict is detected [10]. A hardware 
version of this is also being investigated [12]. Yet another 
very interesting approach to control parallelism is that of 
making environments first class objects which may be created 
and evaluted in in parallel [6]. 

Conditionals may also be executed in parallel. In particular, 
and and or are natural places for expressing eager evaluation. 
In a parallel and or or, one might imagine all of the 
arguments being spawned in parallel and then killed as soon as 
one of them returns with a false or a true value respectively. 
This, of course, results in very different semantics for these 
special forms, which must be made clear to the programmer. 
Conditionals and case statements may, of course, also be 
executed in parallel in an eager fashion. In addition to 
evaluating their antecedents in parallel, if more parallelism is 
desired, the evaluation of the consequents may be commenced 
before the evaluation of the predicates has terminated, and it 
has been determined which value will actually be used. These 

eager evaluation methods bring with them a number of 
problems. Computations that used to halt may no longer do 
so, side effects may have to be undone, and the scheduling 
mechanism must ensure that some infinite computation does 
not use up all of the resources. 

In order to understand the potentials for data parallelism in 
Lisp, we must look at both the data structures themselves and 
the control structures used to traverse them. The data 
structures that provide the potential for parallelism fall under 
the type known as sequences in Common Lisp. They are lists, 
vectors and sets. Sets are implemented as lists in Common 
Lisp, but need not be in a parallel implementation. The 
control structures that operate on these data structures in a way 
that may be exploited are iterative constructs, mapping 
constructs and recursion. The parallelism available from 
sequences and iterative constructs is much the same as the 
parallelism that has been exploited in numerical processing 
[13]. The flow of control in Lisp, as has already been 

mentioned, is generally more complex then that in numerical 
programs, complicating the compile time analysis. Mapping 
functions, on the other hand, are easily parallelized. Since a 
mapping construct applies the function passed to it to every 
element of a list, it can be modeled after the a construct in 
Connection Machine Lisp. 

Recursion in the simplest case reduces to iteration (tail 
recursion) and the same comments that were made above 
apply. Notice also that in the general case the structure of 
recursion is very similar to that of iteration. There is the body 
of the recursion and the the recursion step, just as in iteration 
there is the body of the iteration and the iteration step. This 
similarity is taken advantage of by some compilers [9]. 
Recursion is also frequently used in the same way as the 
mapping constructs to apply a function to a sequence. What 
distinguishes recursion is that it may also be applied to more 
complex data structures, such as tree structured data. In 
traversing these more complex data structures, the parallelism 
available is often dependent on the actual structure of the data. 
For example, much more parallelism is available in a balanced 
rather than an unbalanced tree [5]. This type of parallelism is 
generally exploited as control rather than data parallelism, but 
mere is no reason that this must be so. The only thing that is 
necessary to enable a data point of view is the distribution of 
the tree structured data. Such distribution of tree structures 
may, in fact, be accomplished through the use of nested 
xappings in Connection Machine Lisp. Finally, there are some 
problems that are recursive in nature and do not lend 
themselves to any iterative or parallel solution; the Tower of 
Hanoi is the classic example. 

By examining Lisp itself, we have seen exactly where the 
opportunities for parallelism are and we can judge the extent 
to which each of the languages studied is successful in 
allowing its expression. One thing that is immediately clear is 
that none of the languages allows for the expression of control 
and data parallelism within a single coherent model of parallel 
execution. It is quite possible that no single such model exists, 
but it should be the goal of future efforts to provide at least for 
the convenient expression of both forms of parallelism within 
a single language. 
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