
P a r a l l e l i s m i n L i s p

Michael van Biema
Columbia University

Dept. of Computer Science
New York, N.Y. 10027

Tel: (212)280-2736
MICHAEL@CS.COLUMBIA.EDU

Abs t rac t

This paper examines Lisp from the point of view of parallel
computation. It attempts to identify exactly where the potential
for parallel execution really exists in LISP and what constructs
are useful in realizing that potential. Case studies of three
attempts at augmenting Lisp with parallel constructs are
examined and critiqued.

1. Parallelism in Lisp
There are two main approaches to executing Lisp in parallel.
One is to use existing code and clever compiling methods to
parallelize the execution of the code [9, 14, 11]. This
approach is very attractive because it allows the use of already
existing code without modification, and it relieves the
programmer from the significant conceptual overhead of
parallelism. This approach, known as the "dusty deck"
approach, suffers from a simple problem: it is very hard to do.
This is particularly true in a language such as Lisp that shows
a much less well defined flow of control than languages such
as FORTRAN where such techniques have been applied
relatively successfully [13]. A result of this is that, given the
current compiler techniques, the amount of parallelism that
can be achieved is limited.

The other approach to the problem is the addition of so-called
parallel constructs to Lisp. The idea is to allow the
programmer to help the compiler out, by specifying the
parallelism using special, added language constructs. This,
depending on the constructs used, places a significant
additional conceptual burden on the programmer. The degree
of the burden depends directly on the level or the elegance and
simplicity of the constructs used. The higher the level of the
constructs, the lighter conceptual burden on the programmer.
To put it another way, the more the constructs are able to hide
and protect the programmer from the problems inherent in the
parallel execution of a language with side effects such as Lisp,
the better. This approach suffers from the additional problem
that existing code may not be executed as is, but rather must
be rewritten using these added constructs in order to take
advantage of any parallelism. Finally, there is the problem of
defining a set of constructs that fulfills the goals of placing the
minimal conceptual overhead on the programmer while
providing a complete set, in the sense that all the parallelism in
any given problem may be suitably expressed using only this
set.

In this paper, we focus on the second of the two approaches,
because it is in this area that most recent progress has been
made. We study in depth three attempts to define a useful set
of parallel constructs for Lisp and discuss exactly where the
opportunities for parallelism in Lisp really seem to lie. The

three attempts are very interesting, in that two arc very similar
in their approach but very different in the level of their
constructs, and the third takes a very different approach. We
do not study the so called "pure Lisp" approaches to
parallelizing Lisp since these are applicative approaches and
do not present many of the more complex problems presented
by a Lisp with side-effects [4, 3].

The first two attempts concentrate on what we call control
parallelism. Control parallelism is viewed here as a medium-
or course-grained parallelism on the order of a function call in
Lisp or a procedure call in a traditional, procedure-oriented
language. A good example of this type of parallelism is the
parallel evaluation of all the arguments to a function in Lisp,
or the remote procedure call or fork of a process in some
procedural language. Notice that within each parallel block of
computation, there may be encapsulated a significant amount
of sequential computation.

The third attempt exploits what we call data parallelism. Data
parallelism corresponds closely to the vector parallelism in
numerical programming. The basic idea is that, given a large
set of data objects on which to apply a given function, that
function may be applied to all the data objects in parallel as
long as there are no dependencies between the data. Here,
rather than distributing a number of tasks or function calls
between a set of processors, one distributes a set of data and
then invokes the same function in all processors.

These two forms of parallelism have been described as the
MIMD (Multiple Instruction stream, Multiple Data stream)
and SMD (Single Instruction stream, Multiple Data stream)
approaches [2], These terms are generally used in classifying
parallel architectures based on the type of computation for
which they are particularly suited. Generally, it is felt that the
finer the grain of an architecture, i.e. the simpler and the more
numerous the processors, the more SIMD in nature, and
conversely, the larger the grain, i.e. the larger and fewer the
processors, the more MIMD the architecture. The terms are
also frequently used to distinguish between distributed- and
shared-memory machines, but it is important to remember that
they actually refer to particular models of computation rather
than any given particular architectural characteristics.

The case studies described in this paper deal exclusively with
one or the other of these two forms of parallelism.
Interestingly, the compiler, or dusty deck approaches that we
have seen [9, 14], also seem to deal exclusively with one or
the other of the two forms of parallelism. Some work has been
done in the functional programming area in combining the two
forms of parallelism [11] and the need to do so has been
recognized by parallel Lisp designers [15], but to date very
little work has been done in this area. This is surprising given
that the distinction between the two forms is, in reality, quite

56 ARCHITECTURES AND LANGUAGES

weak. This is especially true in a language such as Lisp,
where there is a continuum between what might be considered
code and what might be considered data. To see this more
clearly, let us take the case of the parallel evaluation of a
function's arguments. We have seen this is generally
considered a form of control parallelism. Assuming each
argument involves the evaluation of a function, for example:

(foo (bar a) (car b) (dar c))

We generally view this as each argument being bundled up
with its environment and sent off to some processor to be
evaluated. What about the case where the same function is
applied to each argument?

(foo (f a) (f b) (f c))

This is generally viewed as an occasion for exploiting data
parallelism. The arguments (the data in this case) are
distributed to a number of processors and then the common
function is called on each. In the case of moving from a data
to a control point of view, consider a vector, each element of
which resides in its own processor. Invoking a given function
on each member of the vector involves first distributing one
member of the vector to each processor (this step is often
ignored in descriptions of SIMD execution), and then,
broadcasting the code for that function to each processor, or if
the code is already stored in the processor, broadcasting the
function pointer and a command to begin execution. In the
control model, instead of broadcasting the function to all the
processors at one time, one must distribute the function along
with a particular element of the vector to each processor and
immediately begin execution. This could just as well be
viewed as first distributing the code and the corresponding
data element to each processor and then broadcasting the
instruction to eval that form in each processor. The
synchronization is different in the two models, but the actual
steps in the execution may be viewed as being the same.

2. Case Studies
We will return to the subject of the distinction between control
and data parallelism later, when we discuss where the
opportunities for parallelism in Lisp actually lie. First, we
present three case studies of the approaches already
mentioned. The current efforts concentrate on adding some
additional constructs to a dialect of Lisp. They are, therefore,
extensions to Lisp rather than completely new parallel
languages based on Lisp. In the text we refer to them as
languages, but the meaning should be taken as: Lisp and the
additional constructs used to express parallelism. In the case
studies new constructs are indicated by italics and normal Lisp
constructs are indicated by a t y p e w r i t e r font

2.1. Multil isp
The first extended Lisp language we present is Multilisp
[7, 8] which is based on Scheme [1], a dialect of Lisp which

treats functions as first class objects, unlike Common Lisp
[16], but is lexically scoped, like Common Lisp. In this

paper, we do not distinguish Lisp based languages by the
particular dialect of Lisp on which they are based, but rather
by the constructs that have been added to the language and the
effect, if any, that the base dialect has on these constructs.

Multilisp is notable both for the elegance and the economy of
the constructs through which it introduces parallelism. In fact,

a single construct, the future, is used for the expression of all
parallelism in the language. A future is basically a promise or
an IOU for a particular computation. In creating a future, the
programmer is implicitly stating two things: One is that it is
okay to proceed with the computation before the value of the
future is calculated, but that the value will have been
calculated or will be calculated at the time it is needed. The
other is that the computation of the future is independent of all
other computation occurring between the time of creating and
before its use, and thus may be carried out at any time, in no
particular order, with the rest of the computation or other
futures that may have been created. The danger here, of
course, is any side effects caused by the future must not
depend on their ordering in relation to the rest of these
computations. It is the responsibility of the programmer to
ensure that these side effects do not cause any "unfortunate
interactions". It is this responsibility that places additional
conceptual overhead on the programmer. The overhead is
reduced by having only one basic construct to deal with, but
should not be underestimated. This overhead may be further
reduced by what Halstead describes as a data abstraction and
modular programming discipline. An example of the use of a
future is:

(setq cc (cons (future (foo a))
(future (bar b))))

Here we build a cons cell, both the car and cdr of which are
futures, representing respectively the future or promised
evaluation of (foo a) and (bar b) . This cons will return
immediately and be assigned to the atom cc. If we later pass
cc to the function p r i n t c o n s below,

(defun printcons (conscell)
(print (car conscell))
(print (cdr conscell)))

there are four possibilities:
1. both futures will have already been evaluated, in

which case the futures will have been coerced
into their actual values and the computation will
proceed just as if it was dealing with a regular
cons cell,

2. (foo a) has not yet been evaluated in which
case p r i n t c o n s will have to wait for it to be
evaluated before proceeding.

3. (bar b)has not yet been evaluated in which
case p r i n t c o n s will have to wait for it to be
evaluated before proceeding.

4. both (foo a) and (bar b) have not yet been
evaluated in which case p r i n t c o n s must wait
for the evaluation of the futures before
continuing.

Multilisp has an additional construct known as a delay or
delayed future that corresponds to a regular future, except that
the evaluation of the future is delayed until the value is
required. This additional construct is necessary in order to
represent infinite data structures and nonterminating
computation. For example, suppose we wished to represent
the fist of all prime numbers greater than some prime number
n. We could do this using a delay as follows:

(defun primes(n)
(cons n (delay (primes (next-prime n)))))

van Biema 57

Multilisp allows the computation of non-strict functions
(functions whose arguments may not terminate) through the
use of both the delay and of the future. However, in the case of
futures, significant amounts of resources may be lost in every
such computation, and ultimately storage will be exhausted for
any non-finite data structure. By using delays, one only
computes what is needed. AW futures may be removed from a
program without changing the resources used by the program,
but the same is not true for delays, since removing a delay may
cause the computation of infinite data structures.

Delays thus represent a form of lazy evaluation, whereas the
future represents a reduction in the ordering constraints of a
computation. Eager evaluation strategies are also possible, in
which computations are begun that are not necessarily needed
at all, but are computed anyway, just in case they are needed.
Multilisp does not provide such eager constructs or any
construct that allows a computation to be halted prematurely.
Constructs, which allow computations to begin, but are later
able to halt them, are useful in freeing the computational
resources of an eager computation, once it has been
determined that its result is not needed. An alternate technique
is to allow such a process to run until it can be determined mat
the result being returned is no longer needed at which time it
may be garbage collected by the system.

Multilisp includes one additional construct which is the pcall.
Pcall provides for the simultaneous evaluation of the
arguments to a function, but does not continue the evaluation
of the function itself until all the arguments have fmished
evaluating. Notice how this differs from a function call in
which all the arguments are futures. Pcall thus provides a
much more limited form of parallelism than futures, but is
useful a midway point between the completely undefined flow
of control between futures and the complete order of
sequential execution. Pcall may of course be simulated by a
function call, all of whose arguments are futures, provided the
first act of the function is to access the values of all its
arguments. Multilisp provides a primitive identity operator
touch which causes a future to be evaluated and which is in
fact used to implement the pcall construct.

The implementation of Multilisp calls for a shared-memory
multiprocessor, and two implementations are underway
[8,17]. Each processor maintains its own queue of pending

futures, and a processor that has no current task may access
another processor pending queue to find a future to execute.
An unfair scheduling algorithm is necessary to ensure that
constant computational progress is made and the system does
not deadlock. The scheduling strategy has been chosen so that
a saturated system behaves like a group of processors
executing sequentially, i.e. as if all future calls had been
removed from the code. Once a future has been evaluated, it
is coerced to its return value by changing a flag bit stored
among the tag bits of the Lisp item that represents it. This
causes one extra level of indirection (one pointer traversal) in
references to values that are the result of future calculations.
These indirect references are removed by the garbage
collector.

2.2. QLISP
The additional constructs in Qlisp [5] are quite similar in
semantics to those of Multilisp, but very different in form.
There are a much larger number of constructs in Qlisp,
although the increase in the expressive power of the language
is not great. There are two primary constructs that allow the
expression of parallelism. They are qlet and qlambda.

Qlet does much what one might expect It performs the
bindings of a let in parallel. Qlet takes an extra predicate as an
argument along with its usual binding pairs. When this extra
predicate evaluates to n i l , qlet behaves exactly like l e t .
When the predicate evaluates to the atom eager, the qlet
spawns a process to evaluate each of its arguments and
continues the execution of the following computation. Finally,
if the predicate evaluates to neither n i l nor eager the qlet
spawns processes for each of its arguments as before, but waits
for all of them to finish evaluating before continuing with the
subsequent computation. These last semantics for qlet closely
resemble those of pcall in Multilisp and may be easily used to
mimic its semantics exactly (by placing the function call
within the qlet that assigns the value of the functions
arguments to temporaries). Further, a qlet where the predicate
evaluates to eager may be used to simulate a function call
where all the arguments were passed as futures:

(qlet 'eager
((x (foo a)) (y (bar b)) (z (car c)))

(f x y 2))

Qlambda takes the same additional predicate as qlet and forms
a closure in the same way as its namesake lambda. If the
predicate evaluates to n i l , then qlambda behaves exactly as a
lambda does. If the predicate evaluates to eager, the
process representing the closure is spawned as soon as the
closure is created. If the predicate evaluates to something
other than n i l or eager, the closure is run as a separate
process when it is applied. When a process closure defined by
a qlambda is applied in a non value requiring position, such as
in the middle rather than at the end of a prog, it is spawned,
and the subsequent computation continues. Upon return of the
spawned process, its return value is discarded. If a process
closure is spawned in a value requiring position the spawning
process waits for the return value. In addition, two operators
are supplied to alter this behavior. They are wait and no-wait
with the obvious semantics. The constructs that have been
defined up to this point give the language the same semantic
power as Multilisp's/wrwre mechanism.

Qlisp deals with an issue not handled in Multilisp, which is
what happens if a spawned process throws itself out, that is,
what happens if a spawned process throws to a ca tch
outside its scope? When a ca tch returns a value in Qlisp, all
the processes that were spawned in the scope that ca tch are
immediately killed. The additional construct qcatch behaves
slightly differently. If the qcatch returns normally (i.e. it is not
thrown to), it waits for all the processes spawned below it to
complete before returning its value. Only if it is thrown to
does it kill its subprocesses. In addition, Qlisp defines the
semantics of an unwind-protect form over spawned processes
which ensures the evaluation of a cleanup form upon a non­
local exit These additional constructs allow the programmer
the power to begin and later kill processes, and therefore give
him the power to perform the type of eager evaluations not
available in Multilisp.

Qlisp has more of a process-oriented flavor to it than
Multilisp, and, although its constructs have similar power to
those of Multilisp they appear to be on a much lower level. A
similar statement may be made for the C-lisp language [18].

In Qlisp, processes are scheduled on the least busy processor
at the time of their creation. Unlike Multilisp, more than one
process is run on a single processor and processes are time
swapped in a round robin fashion. The predicates of qlet and
qlambda allow for dynamic tuning of the number of processes

58 ARCHITECTURES AND LANGUAGES

created at run-time. This is another feature that Multilisp does
not have, but one that is also better left to the runtime system
rather than the programmer.

2.3. Connection Machine Lisp
Connection Machine Lisp, unlike the previous two languages,
introduces parallelism in the form of data rather than control.
The basic parallel data structure in Connection Machine Lisp
is a xapping (a distributed mapping). A xapping is a set of
ordered pairs. The first element of each pair is a domain
element of the map, and the second is the corresponding range
element. The mapping representing the square of the integers
1, 2, 3 would be denoted in Connection Machine Lisp as:

{ 1->1 2->4 3->9 }

If the domain and range elements of all the pairs of the
xapping are the same (i.e. an identity map), this is represented
as:

{ 1 2 3 } - { 1->1 2->2 3->3 }

and is called a xet. Finally, a xapping in which all of the
domain elements are successive integers is known as a xector
and is represented as:

[John torn andy] =
{ l->john 2->tom 3->andy }

Connection Machine Lisp also allows the definition of infinite
xappings. There are three ways to define an infinite xapping.
Constant xapping takes all domain elements (or indices as they
are also called in Connection Machine Lisp) and maps them
into a constant. This is denoted:

{ ->v)

Where v is the value all indices are mapped into. The
universal xapping may also be defined. It is written { -> } and
maps all Lisp objects into themselves. Finally, there is the
concept of lazy xappings which yield their values only on
demand. For example the xapping that maps any number to its
squarte root may be defined by:

{ - sqrt }

and (x r e f {. s q r t } 100) would return 10. Notice that
xappings are a type of Common Lisp sequence and many of
the common sequence operators are available and may be
meaningfully applied to them.

Connection Machine Lisp defines two main operators that can
be applied to xappings. The a operator is the apply-to-all
elements of a xapping operator. It takes a function and applies
it to all of the elements of the xapping in parallel. If the
function to be applied is n-ary, it takes n xappings as
arguments and is applied in parallel to the n elements of each
xapping sharing a common index. If the correct number of
arguments to the function are not available, that index is
omitted from the result element. For example:

(acona {a->l b->2 c->3 d->4 e->5}
{b->6 c->4 e->5)) ->

(b-><2.6) c->(3.4) e->(5.5)}

Notice that the domain of the result is the intersection of the
domains of the function and argument xappings. The a
operator is the main source of parallelism in Common
Machine Lisp.

The other main operator is the P or reduction operator. It takes
a xapping and a binary function and reduces the xapping to a
value by applying the binary function to all the elements of the
xapping in some order. Since the order in which the function
is applied to the xapping is undefined, the functions used are
generally limited to being associative and commutative. For
example:

(P+ (I 2 3})
always returns 6, but

(p- {1 2 3})
may return 0,-2, 2, 4 or -4. A non-commutative or non-
associative function may be useful on occasion however; for
example, P applied to the function (lambda (x y) y)
will return some arbitrary element of the xapping to which it is
applied. This particular function has been found to be so useful
in Connection Machine Lisp that it has been made into a
regular operator called choice. The P operator has a second
form in which it may serve as a generalized communication
operator. When the p operator is passed a binary function and
two xappings, the semantics are that the operator returns a new
xapping whose indices are specified by the value of its first
argument and whose values are specified by the values of the
second argument. If more than one pair with the same index
would appear in the resulting xapping (which is, of course, not
allowed), the xector of values or these pairs is combined using
the binary function supplied with the p operator. For example:

(pmax
'{john->old tom~>young phil->dead

joe->young al->22}
'{john->66 tom->12 phil->120 joe->l l }) ->

{old->66 young->12 dead->120}
In this example, we are using a database of xappings about
people to generate some new knowledge. Given a qualitative
measure of some people's age (old, young, and dead) and their
actual age, we generate a value for the qualitative measures.
Notice that when two indices collide, the results are combined
by max, our heuristic being that it is best to represent an age
group by its oldest member (not a terribly good heuristic in the
general case). The interprocessor communication aspect of the
p operator becomes clearer if one considers that all the
information for one person (one index) is stored in one
processor. In order to generate our new xapping, we transfer
all the information about each age group to a new processor
and do the necessary calculation there. In the above example,
the information from Philip and George is transferred to the
processor with label "young" and combined with the max
operator there.

The parallelism in Connection Machine Lisp may be
compared with the parallelism of the pcall construct of
Multilisp. As pointed out by Guy Steele, the distinction
between the two is due to the MIMD nature of pcall and the
SIMD nature of the a operator in Connection Machine Lisp.
To be more specific, although in the pcall all the arguments
are evaluated in parallel, their synchronous execution is not
assured. In fact, in both Multilisp and Qlisp the proposed
implementations would almost guarantee that the evaluation
would occur asynchronously. In Connection Machine Lisp,
when a function is applied to a xapping, the function is

van Biema 59

executed synchronously by all processors. In the case of
Connection Machine Lisp, the control has been centralized,
whereas in the case of Multilisp, it is distributed. This
centralization of control definitely reduces the conceptual
overhead placed on the programmer, as well as reducing the
computational overhead by requiring only a single call to
e v a l rather than many calls occurring in different processors.
The price for this reduced overhead is that the opportunity for
exploiting the control parallelism that exists in many problems
is lost Steele comments on this, suggesting that some of the
lost control parallelism may be reintroduced by allowing the
application of xectors of functions. For example, the
following construct in Connection Machine Lisp:

(Otfuncall ' [s i n cos tan) [x y z])

is equivalent to the Multilisp construct:

(pcall #'xector (sin x) (cos y) (tan z))

As of yet, this aspect of the language has not been developed.

3. Discussion
In the languages, presented above we have seen two different
methods of providing parallelism in Lisp. In one case, there is
a process style of parallelism where code and data are bundled
together and sent off to a processor to be executed. In the
other, there is a distributed data structure to which sections of
code are sent to be executed synchronously. The major
question that remains is whether these two methods of
exploiting parallelism can be merged in some useful way, or is
there a different model that can encompass both methods.
Before exploring this question further it is interesting to
examine Lisp itself in order to see where the opportunities for
parallelism actually lie.

The obvious place to apply control parallelism in Lisp is in its
binding constructs. We have seen examples of this both in the
pcall of Multilisp and the qlet of Qlisp. In addition to this
form of parallelism, any function application may be executed
in parallel with any other provided that there are no
"unfortunate interactions" between them. We have seen this in
the futures of Multilisp and the qlambda of Qlisp. A different
approach often taken in traditional block-structured languages
is to have a parallel block, or a parallel prog in the case of
Lisp, in which all function calls may be evaluated in parallel.
An interesting approach that has been taken along these lines
is to treat each function application as a nested transaction and
attempt to execute all applications in parallel, redoing the
application when a conflict is detected [10]. A hardware
version of this is also being investigated [12]. Yet another
very interesting approach to control parallelism is that of
making environments first class objects which may be created
and evaluted in in parallel [6].

Conditionals may also be executed in parallel. In particular,
and and or are natural places for expressing eager evaluation.
In a parallel and or or, one might imagine all of the
arguments being spawned in parallel and then killed as soon as
one of them returns with a false or a true value respectively.
This, of course, results in very different semantics for these
special forms, which must be made clear to the programmer.
Conditionals and case statements may, of course, also be
executed in parallel in an eager fashion. In addition to
evaluating their antecedents in parallel, if more parallelism is
desired, the evaluation of the consequents may be commenced
before the evaluation of the predicates has terminated, and it
has been determined which value will actually be used. These

eager evaluation methods bring with them a number of
problems. Computations that used to halt may no longer do
so, side effects may have to be undone, and the scheduling
mechanism must ensure that some infinite computation does
not use up all of the resources.

In order to understand the potentials for data parallelism in
Lisp, we must look at both the data structures themselves and
the control structures used to traverse them. The data
structures that provide the potential for parallelism fall under
the type known as sequences in Common Lisp. They are lists,
vectors and sets. Sets are implemented as lists in Common
Lisp, but need not be in a parallel implementation. The
control structures that operate on these data structures in a way
that may be exploited are iterative constructs, mapping
constructs and recursion. The parallelism available from
sequences and iterative constructs is much the same as the
parallelism that has been exploited in numerical processing
[13]. The flow of control in Lisp, as has already been

mentioned, is generally more complex then that in numerical
programs, complicating the compile time analysis. Mapping
functions, on the other hand, are easily parallelized. Since a
mapping construct applies the function passed to it to every
element of a list, it can be modeled after the a construct in
Connection Machine Lisp.

Recursion in the simplest case reduces to iteration (tail
recursion) and the same comments that were made above
apply. Notice also that in the general case the structure of
recursion is very similar to that of iteration. There is the body
of the recursion and the the recursion step, just as in iteration
there is the body of the iteration and the iteration step. This
similarity is taken advantage of by some compilers [9].
Recursion is also frequently used in the same way as the
mapping constructs to apply a function to a sequence. What
distinguishes recursion is that it may also be applied to more
complex data structures, such as tree structured data. In
traversing these more complex data structures, the parallelism
available is often dependent on the actual structure of the data.
For example, much more parallelism is available in a balanced
rather than an unbalanced tree [5]. This type of parallelism is
generally exploited as control rather than data parallelism, but
mere is no reason that this must be so. The only thing that is
necessary to enable a data point of view is the distribution of
the tree structured data. Such distribution of tree structures
may, in fact, be accomplished through the use of nested
xappings in Connection Machine Lisp. Finally, there are some
problems that are recursive in nature and do not lend
themselves to any iterative or parallel solution; the Tower of
Hanoi is the classic example.

By examining Lisp itself, we have seen exactly where the
opportunities for parallelism are and we can judge the extent
to which each of the languages studied is successful in
allowing its expression. One thing that is immediately clear is
that none of the languages allows for the expression of control
and data parallelism within a single coherent model of parallel
execution. It is quite possible that no single such model exists,
but it should be the goal of future efforts to provide at least for
the convenient expression of both forms of parallelism within
a single language.

60 ARCHITECTURES AND LANGUAGES

References

[I] Abelson, H., Sussman, G. J.
Structure and Interpretation of Computer Programs.
Massachusetts Institute Technology Press, 1985.

[2] FlynnM.J.
Some Computer Organizations and Their

Effectiveness.
The Institute of Electrical and Electronic Engineers

Transactions on Computers v-21, September, 1972.

[3] Friedman, D., Wise, D.
CONS should not evaluate its arguments.
In Michaelson, S., Milner, R. (editors), Automata,

Languages and Programming, pages 257-284.
Edinburgh University Press, Edinburgh, 1976.

[4] Friedman, D. P.
Aspects of Applicative Programming for Parallel

Processing.
IEEE Transactions on Computers c-27(4):289-296,

April, 1978.

[5] Gabriel, R. P., McCarthy, J.
Queue-based Multi-processing Lisp.
In Symposium on Lisp and Function Programming,

pages 25-44. ACM, 1984.

[6] Gelemter, D., Jagannathan, S., London, .T,.
Environments as First Class Objects.
In Proceedings of the ACM Symposium on the

Principles of Programming Languages. ACM, Jan,
1987.

[7] Halstread, R. H.
Implementation of Multilisp: Lisp on a Multiprocessor.
In Symposium on Lisp and Function Programming,

pages 9-18. ACM, 1984.

[8] Halstead, R. H.
Multilisp: A Language for Concurrent Symbolic

Computation.
ACM Transactions on Programming Languages and

Systems 7(4):501-538, October, 1985.

[9] Harrison, W. L.
Compiling Lisp for Evaluation on a Tightly Coupled

Multiprocessor.
PhD thesis, University of Illinois, 1986.

[10] Katz,M.J.
A Transparent Transaction Based Runtime Mechanism

for the Parallel Execution of Scheme.
May, 1986
Master Thesis.

[I I] Keller, R.
Rediflow Multiprocessing.
In IEEE COMPCON, pages 410-417. IEEE Compcon,

Feb, 1984.

[12] Knight, Tom.
An Architecture for Mostly Functional Languages.
In Conference on Lisp and Functional Programming,

pages 105-112. ACM, 1986.

[13] Kuck, D., Muraoka, Y., Chen, S.
On the number of operations executable

simultaneously in Fortran like programs and their
resulting speedup.

IEEE Transactions on Computing
C-21(12):1293-1310, December, 1972.

[14] Marti, J., Fitch, J.
The Bath Concurrent Lisp Machine.
In EUROCAM '83, pages 78-90. EUROCAM,

Springer Verlag, 1983.

[15] Steele, G. L., Hiliis W. D.
Connection Machine lisp.
In Conference on Lisp and Functional Programming,

pages 279-297. ACM, 1986.

[16] Guy L. Steele.
Common Lisp: The Language.
Digital Press, Burlington, M.A., 1984.

[17] Steinberg, S. A., et al.
The Butterfly Lisp System.
In AAAI-86 , pages 730-734. AAAI, August, 1986.

[18] Sugimoto, S., Agusa, K., Ohno, Y.
A Multi-Microprocessor System for Concurrent LISP.
In International Conference on Parallel Processing,

pages 135-143. IEEE, June, 1983.

van Biema 61

