PROW: A STEP TOWARD AUTOMATIC PROGRAM WRITING
Richard J. Waldinger

Carnegie-Mellon Univ.,
Richard C.

National

Bethesda, Md.

Summary

This paper aescriDes a program, called "PRUW"
which writes programs. FRON accepts the specifi-
cation of the program in the language of predicate
calculus, decides the algorithm for the program
and then produces a LISP program which is an im-
plementation of the algorithm. Since the construc-
tion of the algorithm is obtained by formal
theorem-proving techniques, the programs that
PRON writes are free from logical errors and do
not have to be debugged. The user of FRON can
make FRON write programs in languages other than
LISP by modifying the part of FRON that translates
an algorithm to a LISP program. Thus FRON can be
modified to write programs in any language. |In
the end of this paper, it is shown that FRON can
also be used as a question-answering program.

Section 1: Introduction

A programmer can easily make two kinds of mis-
takes. First, the grammar of the programming lan-
guage that he uses is so complex that he easily
makes syntactical errors. Second, it is not easy
to always think logically, so he Is liable to make
mistakes in constructing algorithms, thus prod-
ucing logical errors.

Much effort has been made in simplifying the
programming languages so that programmers will
make fewer syntactical errors. Although one can
still complain that the advanced languages avail-
able today are still not simple and natural enough,
he should find comfort in noting that they are
much easier than machine language.

As yet, not much has been done to overcome the
second difficulty mentioned above. In this paper,
the authors will describe a program called "PROW'
(Program Writing), which is designed for this pur-
pose. PFRON resembles the "state description”
portion of the heuristic compiler (7) by Simon
and is much in the spirit of Slagle (8), Raphael
and Green (l) in fully using the power of formal
logic.

In PROW, the instructions of LISP are axioma-
tized and stored as axioms. The user expresses the
relationship between the input and output variables
as a well-formed formula in the first order predi-
cate calculus (2). Suppose the Input and output
variables of the program are Xl, xm and

Yl' Yz’ cees Yn respectively and that the relation

between them is R(Xl, STVIR VIR SVIEREY Yn)--PRCW

then constructs the theorem:

Pittsburgh, Pa.
T, Lee
Institutes of Health
(X)) o (G)(EY,) Lou (BY)
R(xl, xm,rl, cees 1),

FRON first calls a theorem prover to prove the
theorem, thus establishing the existence of the
program. The output of the theorem prover is a
"proof" of the theorem. FRON then calls another
program to process the proof and gives the desired
program.

Since FRON uses theorem prover to write pro-
grams, the programs that it writes are free from
logical errors. As shown in Section 6, FRON can
also be used to aid robots, to design circuits as
well as to write programs in languages other than
LISP.

The authors have tried hard to make this paper
self-contained. However, the readers who want to
thoroughly understand "PROW" should be familiar
with LISP (3,10) and automatic theorem proving
(13,6,8).

It should be noted that the function of FRON
is quite different from that of a compiler because
the user of a compiler, such as a FORTRAN program-
mer, has to construct the algorithm himself, while
the user of FRON has only to supply the specifica-
tions of his program and FRON is able to decide
the algorithm for him.

The proof of the correctness of the algorithm
used in FRON is omitted in this paper because of
the limitation of space. It will be included in
R. Waldinger's Ph.D. thesis later.

Section 2: The Resolution Principle and Program

The theorem prover of FRON uses Robinson's re-
solution principle (5,6,8) as its inference rule.
It will be shown later that the ordinary resolution
principle is not appropriate and adequate for pro-
gram writing. This leads to the notion of
"primitive resolution"” which will be discussed in

detail in Section 3.
Example 1: The characteristic function of the
predicate "Atom" in LISP.

Suppose we want to write a program whose output

is 1 if the input is an atom and 0 otherwise.

The axiom we need ig The tree in Fig. 2-1 can be considered as the
flowehart of the program, HNodes 3,1 and 4 are halt

Equal{X,X} (1} or terminal points and node 7 is the starting point,
The predicaetes represent testing points for tra-
The theorem to be proven is versing the arcs. For instance, the arc from (5)
to (3) is labelled with the test "Equal(l,1)".
(X}(EY)(This means that if control is at node (5) and the
predicate Equal{l,1} 1s true, then control passes
(Atom(X) & Equal{Y,1}) to node {3). Since the arc is also labelled with
the substituiion y#—1, the variable y is set to 1.
V (-Atom{X} & Equal(Y,0}) } (2}
In Fig. 2-1, the arcs leading to (1) are of
The negation of the theorem with quantifiers re- special interest because ..Equal(l,l) and
moved, (see (5)), consiste of the following ~Equal (0,0} can never be true, Therefore, control
clauses: will never be passed to node (1), In fact, it can
be showm that If & node represents an axiam or a
~htom(a) V ~ Equai(Y,1} (3) clause which is always true, then contrcl will
never be pasaed to thet polni. We cen thus safely
Atom(a) V ~ EquallY,0) (4} delete node {1) fram the tree and Fig,2-1 is simp-

iified to Fig.2-2.
The proof of the theorem iz

(1) & (3) -Atom(e) (5)
(1) & (4) Atom(a) (6)
(5) & (&) NIL {7)

The proof can be represented by a tree, where
every node represente e clause in the proof, and
under every arc, we write down the following in- Y1

formtion:
Equal{1,1)

Y0
Equ-ﬂl(oao)

{a) The substitution of the variables, 1if
there 15 any substitution made.

(b) If cleuse N is derived from claumes N1
and N2, then on the arc from N to N1, write down
the negetion of the literal deleted from
clause N1, with the appropriate substitutions
made,

The proof of Example 1 can now be represented Ple. 2.2
Ty the tree in Fig, 2.1, -

Since there 1s no branching out of nodes {5)
and (6), no testing 18 necessary in those two nodes.
We can therefore further simplify Fig.2-2 to
Fig.2-

-242-

The LISP program produced by FROW is the
following:

{LAMBDA (&)
{PROG {Y)
(conD ({aTOM A} (GO A1)))
(SETQ Y 0)
{RETURN Y}
A1 (SETQ Y 1)
(RETUEN Y) 1))
Example 2: ! - .
The "Member" function of LISP is a widely
used function. The input hag two arguments:
X and L, where X is any S-expreesion end L iz a
ligt. The oubput will be T if X ¢ L and NIL if

otherwise,

The axioms expressing the definition of
"Member" are

X Q LV Equal(Member{(X,L),T) {8)

X ¢ I V Equal{Member(X,L),NIL) (9)
The theorem to be proven is

(x)(L)(EY) Equal(Member(X,L),Y} (10)
The Negation of the theorem gives

~Faqual(Member{a,t),Y) (11)
{8) & (11) XL (12}
(9} & (11) Xel (13)
(12) & (13) NIL ()

The tree representing the proof of Example 2
locke like Mg.2-4.

The program represented ty the tree in Fig.2-4
will necessarily involve the testing of X € L,
which is not defined or primitive in LISP. There-
fore, the program is meaningless. Proofs such as
the one described above which yield non-executable
programs must be forbidden. This is achieved as
follows: the user of FRON may declare which sym-
bols are primitive. Only primitive symbols will
appear in the program.This is made possible Tpy using
a special inference rule, called "primitive reso-
lution." The proof that is obtained by "primitive
resolution" is called a "primitive proof." The
program that is obtained by processing a primitive
proof contains only primitive symbols. This will
be discussed in the next section.

The Primitive Proof and the Post-Proof
PrPtteBSPr

Section 3:

In this section, we are going to define a new
inference rule, called the "primitive resolution."”
The proof that is obtained "ty the application of
the primitive resolution is called the "primitive
proof." For readers who are interested only in the
performance of PROVN, this section can be skipped.

First of all, the user of FRON has to declare
the following:

(@) Primitive symbols: The symbols which are
allowed to appear in the program.

(b) Insipid clauses: The clauses that the user
claims to be always true. (All the axioms are
necessarily insipid, but whether a special hypo-
thesis Is insipid or not depends on the user.)

(c) Output variables: Suppose the theorem con-
cerning the program has the following quantifier:

XX e R I(EY) L. (BY)

Negation of the theorem will make all the variable
X 's appear in the clauses as constants (4). They

are called the input constants. All the Yi's will

appear as variables in the clauses and the user

has to declare some of the 'ii‘s as output variables.

We also need the following definitions:

Def.: Halt clause: the set of halt clauses is the
set of all the clauses that the user pro-
vides as input.

Def.: Vital clause: the definition of a vital
clause is inductive.

(@) A halt clause that is not declared in-
sipid is a vital clause.

(b) In a proof, a clause B that is a resolv-
ent of clauses C and D is vital iff one
or both of C and D is vital.

Def.: Hot variables: the hot variables are also de-
fined inductively.

-243-

Inzipid clauses have no hot variables,
The hot variables of a vital halt clause
are those output varianles (if any),
appearing in that clause,

{a) Iet P be a resolvent of clauses { and D,
Say B=(C-L) €,U(D-M) &,

(a)
(1)

(1) If W is hot in C, then the variables
which occur in both W& and B ave hot
in B, If W is hot in D, then the vari=-
ables which ocour in ¥ 6 and B are hot
in B,

(2) If C and D are botk vital, then the
variables which ccour in both L q: and
B are alsc hot in B.

Example:

Let C = ...PEx) v Q(¥)
and D= PX) V R{(X),
Supposs that C and D are both vital and ¥ la the
cnly hot varieble, The resolvent of C and D is

B = Q(¥) v R(X).

B 15 vital and 1ta hot variables are ¥ and X. The
varlable Y 18 hot because it oceurs in a term of
the form W & - (W=Y and =the identity aubstitu-
tion). {(Comdition (1))}. The variable X is hot
because it cccurs in a term of the form L & ¢
where [=P(X), © = the identity substitution and
because C and D are both vital, {Comdttion (2)}.
Def.: A proof P 1s sald to be "primitive" if it
obeys the following restrictlons:

(a) Let clause B be a resclvent of clauses
C and D, say B=(C~L) & U{D-M) 64

Then if W is hot in ¢, all the constant
and funetion symbols ocourring in W&,
mst be primitive. If W is hot in D,
then al! the constant and funetionh symbols
cocurring in \\‘Gd must be primitive,

(b} If C and D are both vital, then all
the constant, function and predicate sym—
bols oceurring in L@, must be primitive.

Example: The proof of the first example in
Section 2 is primitive since Afom, a, Q,and 1 are
all primitive. The predicate "Atom" i1s & standard
LISP predicate, the conetant g ie the inpui coma-
tant and Q and 1 are numerals which we can use In
LISF computations.

If, for same veasom,] were not primitive, the
deductlon of clause 5 would be {llegal in primitive
resolution since the variesble ¥ i3 hot in cleuse 3
and the resclution involves substituting L for ¥
bty condition (a}. On the other hand, if "Atom"
were not primditive, then the deduetiom of eclauvse 7
would be 1llegal hy cemditiom (b).

After the thecrem is proved, the preof which
18 a sequence of clauses 1s fed inte s poet~proof
processor, DBefore describing the processor, we

-2l

firat have to define the following:

Def,: Substituilon: A substitution iz a finite set
{Tl/Vl, Tz/\’z, vees Th/ﬁ'k]
of subatitution componenta T i/V 4+ Where V,
15 a veriable and T, 1o a term different
fram Vi, and no two companents In the set

have the same variable after the stroke
gymbol .

Def.: Operation P(&,X)

Let 6be & substitution and let X be a set of
variables,

(1) If & is the empty substituticm, then
P{ &,X) is empty.

(2} 1r & = & UTwhere T 15 & substitution
component, and the varieble of T does not
belong to X, then P(&,X)=P(&,X).

(3) Otherwise, suppose & = 'ri/vi, then
P(6,%) = (SETQ Vv, T,)P(&, %).
For example,
P ({a%, B/, (F A2}, {X,2})
= ((SETQ z (F A}) (SETQ X A}}

The poet-proof proceasor would firet single out
vital clauses of the proof and with each vital
clause B, the processor agsociates a program as
follows:

1. Syppose B 18 a halt clause, Suppose
Yl’ 1'2, eras Yn is the complete 1llat of output

variables, Including those not appearing In B. The
progran assoclated with B is then

(RETURN (LIST LY, .. Yn))

2. Suppose B is a resolvent of clauses C and D
where C at least is vital, say B = (C-L)}&a
U (D-M)€; . let H be the set of hot variables
of C, and let H, beC the set of hot variables of D.

Let ProgC and ProgD be the programs associated with
clauses C and D respectively.

(a} Suppose C end D are both vital, Let GC be
a label which does not appear in the program
assoclated with any other clause in the proof.
Then the program ProgB aseoclated with B is
defined by

Proghb
={[M &, -eo [CC]];
(6, Hp);

ProgD

P(GC,HC)

ProgCl

{a) Suppose ¢ is vital, tut D is not.
Then

ProgB = P(fgH,} Proge.

Let C; C_, «ev; Cy De Yhe 1ist of input

1!’
constants.

Iet Progn be the program agsoclated with the empty
clauwse In the proof. Iet Xl, X2, “es XJ be the

complete 1ist of wvariablee in Progn. Then the
final program that the machine produces as output
is

lambda [01,02, evay ck][PTQ ['Xl, aruy XJ} m—_n]
Seetion 4: Ihe Induction Axiom end Iooping In e
Erogran

The algorithm we gave in the last section will

not produce any program with recursive property,
i.e., the progrems will not be able to call them
selves, In PROW, the recursiveness of a program
is provided Yy induction schema., By using an in-
duction scheme, we mean that instead of proving the

main theorem, it suffices to prove some sub-theorems,

Every proof of s sub-theorem produces a sub-program.
PROW also has the ability to combine all the sub-
programs together to form the main program. We
shall illustrete these procedures by an example
Firat and glve the exact algorithm at the end of
this eection.

Exemple: We want to write the program that computes
the "factorial" function which 15 defined
inductively as fcllows:

o) =1 (1)
f{n) = n.#(n-1) (2}
let predicate Factrel(X,Y) dencte f{(X) = ¥, Then

the exioms concerning the definition of "factorial”
are:

Factrel (C,1} (3)

~Faetrel (X,Y) V Factrel(Addal{X),

Times(4dd1{X},¥)) {4)

where Add1(X) =nd zﬂ_mga_ﬁu) are both LISP
functions. (Add1l(X)=X+1 end Times(X,Y)=X-Y). The

theorem to prove In this case 18

(X} (EY) Factrel{X,Y¥) (5)

-24b-

The negation of the theorem gives the following

clause:
~Factreiln,¥) {6)

where a s the input constant and Y is the output

variable. "Factrel" is not considered as primi-
tive, of course.

To prove this theorem, we need a famous in-
duetion axicm for natural numbers. Let R{X,Y)
meen £{X)=Y where r(X) is any function of natural
murbers, Then the induction axiom can be ex=
preased as follows:

({E¥1)R(0,Yy)

& (%)((E'Yz)ﬂ(xp_.Y2)~(EY3)R(M¢1(13),Y3)))
={X)(ET)R(X,T) (7)
Formule {7) suggests that, instead of proving
{X)(EY)Factrel(X,Y)
directly, we prove the following two sub-theorems:
(EY)Factrel(0,Y) {8)
and (x)¢ (Erl)Factrel(X,Yl)
~(EY,)Factrel(Addl(X), Y,)) (9)
The negation of (8) gives
~Factre1({0,Y) (10)
The negatian of (9} glves
Pactrel(a,b) (11)
& ~Factrel(Addl(a},¥) (12)

Iet the programs associated with (8) and (9) be
Progl and Prog2 respectively. Progl has no input
parameter while Prog2 has & end b as Input para-
meters,

Begides the Induction axiom, PROW also stores
in its memory the information on how to comect
Progl and Proge together 1o form the program
computing £(X). For this case, the funetien £(X)
can be expressed in terms of Pregl and Prog2 in
the following form:

£(X)
= { equal [X;0] - Progl;
T = Prog2 {a;b} {Subl [X]; £ [Subl[x]]})
where Subl [x] = x-l.
Progl and Prog? can be found by using the

algorithm introduced in Sectian 3. The reader
can easily convince himself that:

Prog A
= (LAMBDA ()
(PROG (Y)
(SETQ Y 1)
(RETURN Y)))
ProgB
= (LAMEDA (B C)
(PROG (Y)
(SETQ Y (TIMES (ADD1 B) C})
{RETURN Y)))
The program that computes "factorial" is thus
Factorial
= (LAMBDA (X)
(conp ((BQUAL X Q)
(LaMEDA ()
(PROG (¥)
(SETQ Y 1)
(RETURN Y)}}}))
{T ((LaMmsba (B C)
{PrOG (Y)
(SEMQ ¥ (TIMES (aDD1 B) C)}
(RETURN Y))}
{sUBl X) (FACTORIAL (SUB1 X))))))
In the LISP system, we may algo introduce in-
duetion exioms. For example, the following axiom
is a very useful one:

((Hl)H(NIL,Yl)

& (2)2,)¢ (8Y,)R(xr¥,)

~(EY_)R(oons(2,,X,),¥)))

~(X)(ZT)R(X,Y) (14)
Again, R{X,Y) means £(X)=Y,

Roughly apeaking, this means that if

(1)NIL has property P, and (2) cons{y,x) hea

property P, whenever X hep property P, then every
S-expresaion that is expressible in "1iat"

notation has property P.

Again, the Induction axiom will suggest two
sub-~theorems to prove:

(EY)R(NIL,Y) (15)
& (X){2)((EYI)R{X,YI)

i (Efz)R(CO!IS (z:x) :Yz) (16}
The negation of (15) gives
~ R(NIL,Y) (17)
and the negation of (16) gives
R(a,c} (18)
~ R{eens(b,a},Y) (19}
The program assoclated with (17), Progl, has no
input ts while the program assoclated with
(18) & {19}, Prog2, has a,b & ¢ ns input arguments,
The function that computes f(x) in terms of Progl
end Prog? takes the following form:
£(x)
= [null [x]
T =~ Prog2{a,b,c} {edr(x];car[x];f{odr[x]]}]}

If' there are two Input variables, then the In-
duction axiom may take the following form:

(0%,) (82 JRCK, NIL,Z,)

& (V)(r,) { (X)(E2,)R(X,,Y,,2,)
-'(Xj)(333)R(13,cms(vz,YE),2 1)
= (X)(Y)(EZ)R(X,Y,2Z) (20)

Formula {20) is a very ugeful axiom, It can
be used to wrlte the "Member" fumcticm in LISP,
We shall devote the whole next sectian to show
how this is done.

Section 5t ! "

Due to the limited capablility of the theorem
prover of FROW, FROW carmot prove the thecrems in-
volved 1n the "Member" fumetion of LISP. The
following example is a hand-simuleted ome.

The "Member" function ie defined as follows:
Input: X ie an S-expreagion,
L is n 1ist,
Output: Y=T if X €L

Y = NIL 1f otherwise.

let P(X,L) dencte X € L, Memrel(X,L,Y) dencte
Member(X,L) = Y and Equal(X,Y) denote X =Y.

The axioms concerning the definitlon of

—246-~

"member”; the property of P(X,L) as well as the re- The negation of thils theorem gives

lationship between P(X,L) end Equal (X,Y) are
collected ag follows:

~P(X,L) V Memrel(X,L,T) (1)

P(X,L) V Memrel{X,L,NIL) (2)
~Equal(X,Y) Vv P(X,cons(¥,L)) (3)
~P(X,L) V P(X,cons(Y,L}) (4)
Equal(X,Y) V B(X,L) V.P(X,cons(Y,L)) (5)
~Equal{X,Y) V-Equel(¥,Z) V Equal{X,Z) (&)
~Equal(X,Y) V Equal(Y,X) (7)
~Equal(X,Y} VaEqual {Z,Y) V Equal(X,Z) {8)
~P(X,NIL) (9)

~Memre1(X,L,U) ¥~Equall{U,V) V Memrel(X,L,V) (10)

~Memrel(X,L,U) V.Memrel(X,L,V} V¥ Equal (U,V) (i1)

~Equal(Member(X,L),U}) V Memrel(X,L,U) (12}
Equal(X,X) (13)
The main theorem to prove is

(L) (BY)Memrel (X, L,¥)
The negation of this theorem is

~Memreli(a,b,¥) (14)

The Tnducticn Axlom is
X
((l)(EYl)R{Xl,NIL,Yl)

& (10 X HEY R(K Ty, 7))
- (XB)(K4}(EY3)R(X3,GOILB(X4,L1),YB}))

= (X(L)(EY)R(X, L,Y) (15)

From {15), we have tc prove the following
two theorems:

First theorem:

(X) (EY)Memrel(X,NIL,Y) (16)
The negation of this thecrem 1s
~ Memrel(al,NIL,Y) (17}

Second theorem:
(L)((Xl)(ml)uemrel(xl,L,Yl)

Memrel (X,az,f:X)) {20)
~ Memrel (ba,cons(cz,az),r} (21)
The following symbols are declared "primitive."

(A) Constants: NIL, T, 8,08, By, e

(B) Functions: £{X}, Member(X,L),ccns(X,Y)
(C) Predicates; Equal{X,¥Y)

The vitel cleuses are (17) & (21)., In each
of them, the cutput variable Y is a hot variable.
Let the programs assoclated with the first theo-
rem and the second theorem be Progl and Proge
respectively. The funciion that combines Progl
and Prog2 is

{x,1)
= [[null [1] - Progl;
T ~ Prog2fa,,b,,¢5] [edr[1l,x,car[11]]

To help the reasders understand the.resolution
principle which 15 used in PHOW to prove theorems,
we write (01,11,02,12} in front of clause C in

case that clause C is a resolvent of clauses Cl
and 02 by deleting the llt-h literal of Cl and

the 12th literal of 02. If clawse C 18 a factor
of clause Cl by matchling the ll't.h and the 12't.h

literals of Oy, then we write (Cq,L

1’Cl’L2) in

ll

front of ¢lause O,
The proof of the secand theorem:

(1,1,3,2) ~Equal(X,Y) V Memrel(X,cons(¥,L),T} {22)
(1,1,4,2) ~P{X,L) V Memrel(X,coms(Y,L),T) (23)

(1,2.,11,2) ~P(X,5L) V ~Memrel{X,L,U) V
Equel(U,T} (24)

{23,2,11,2) ~P{X,L) V nMeml(X,cons(Y,L),U; v
Equal(U,T} (25)

{24,3,8,1) ~P(X,L) V Memrel(X,L,U)
¥V ~Equal(Z,T) V¥ Equal(U,Z) {26)

(25,3,26,3) ...P(xl,Ll) v ...P(Ka,Lz) v
..z.mem-eltxl,cons(rl,Ll} ,U)
v .Memrel(xz,Lz,v) ¥V Equal(V,U) (27}

(2,1,5,3) Equal(X,Y) Vv P(X,1) V

- (xz)(x3)(EY2)Mem'el(x2, cans(X,,1),Y,)) (18) Memrel(X,cons (¥, L),NIL) (28)

The above theorem 1s egquivalent to:
L EX
()0 (B)Y, Jdomre (X, Y,)

(28,3,11,2) Equal(X,¥) Vv P(X,L) V
~Memrel{X,cons(Y,L),V)
V Equal(V,NIL) (29)

V (X5) (A3} (BT, MMemre1(Xp , cons (X4, L), ¥a3) (19)

-247-

{z,2,11,1) P(X,I) V ~Memrer(X,L,V) V

Equal{V,NIL} (30}
(29,4,8,1) Equal(X,Y) Vv P(X,L) V
~Menrel(X,cons(Y,L),V} V
~Fqual(Z,NIL) V Equal(V,Z) (31)
(31,4,30,3) P(xl,Ll) V ~Memrel(X L ,U) V
Equal(l(z,‘[) v P(xg’Lz) v
..hbml(xz,cmla(l’,lrz),v)
V Equai{V,U) (32)
(32,1,32,4} P(X,L) V Equal{X,Y) V ~Memrel(X,L,U)
V ~Memrel{X,cens(¥,L),V) V
Equal(V,V) (33)
(27,1,27,2) ~P(X,L) V -Memrel(X,consa(Y,L},U)
V ~Memrel(X,L,V} V Equal(V,U) (34)
(33,1,34,1) Equal(X,Yy)} ¥ .Mam'el(x,L,Ul)
v ..uenmel(x,cmm(Yl,L),vl) v
E““’l(vl*ul) v
~Marrel(X,cona (Y,,L),U,} V
Jhmrel(l,L,Vz) v Equal(\’z,uz) (35)
(35,2,35,6) Equal(X,Y} V Memmel(X,L,U,) V
.mm-el(x,cm(rl,L),vl) v Equal{vl,ul)
V ~Memrel(X, cons(Y,,1},U,)
V Equa{U,,U,) (36)
(36,3,36,5) Equal(X,¥) V Memrel(X,L,U)
V ~Memrel(X,consa(¥,L),V) ¥V Equal(V,U)
V Equsl{U,V) (27)
(37,5,7,1) Equal{X,Y) V ~Merrel(X,L,U)
V Memrel(X,oons(Y,L),V) V
Equal(V,T) {38)
(38,3,12,2) Equal(X,Y) V ~Memrel(X,L,U)V Equal{V,U)}
V ~Equal{Member(X,cans(¥,L)),v; (39)
(39,4,13,1) Equal(X,Y) V .Memrel(X,L,U)
V Equal(Member(X,cons(¥,L)),U} (40)
{40,3,12,1) Equel(X,Y) V ~Memrel{X,L,U}
V Memrel(X,ccns(Y,L),U) (41)
(41,2,20,1) Equal(X,Y) Vv
Memrel(X, cona(Y,e,), £(X)) (42)
#(42,2,21,1) Equal(b,,c,) (43)

-248-

(44)
(44,1,43,1) {45}

In the above preof, those clauses that have
"#!l signs attached are vital clauses. The pro-
grama corresponding to these vital cleuwses are the
following:

#{22,2,21,1) ..Equal(bz,cz}
NIL

(SETQ Y (MEMBER B A))
(RETURN Y}

(SETQ Y T)
{RETURN Y)
(COND{ (EQUAL B ¢) (G0 A1)))

Prog43

Progis

Progi5
(SETQ Y (MEMEER B A})

{RETURN Y)

(SETQ ¥ T)

(RETURN Y)

S0, Prog2 corresponding to the second theorem 1s

Prog2 = (LAMBDA (A B C)
(PROG (Y)
{(CoND ((BQUAL B c)(GD A1)))
(SETQ Y (MEMEER B 4))
(RETURN Y)

Al (SETQ Y T)

(RETUEN Y))})

It now remains to find the progrem correspond-
ing to the firat theorem. The proof is much
eagler asa compared with that of the second theorem,

Proof of the first theorem:

* (17,1,2,2) P(al,NIL) (46)
(47}

The programs associeted with clauses {46) and
{47) are

* (46,1,9,1) NIL

Progib (SETQ Y NIL)
{RETURN Y)

Prog47 (SETQ Y NIL)
{RETURN Y)

The program associated with the first theorem Let P(XM, 2M, XC, S) reprezent the sentence,
is "State S is attainable in which the monkey is at
Progl = (LAMEDA () position XM on the floor, at height ZM while the
chair is at the horizontal pesition XC en Lhe flcoor."
(PROG (Y)
We also deline ihe following funetions:
{SETQ Y NIL)
(1) Walk{X,5): the state achieved if the monkey

(RETURN Y} }) is In state 8 and then walks to position X.
Let us restate the funetion combining these (2} Carry(X,3): the state achieved if the monkey
two programs together: is in state S and walks to poslition X,

carrying the chaeir with him.
r{x,1)
(3) C1imb(X,8): the state achieved 1f the monkey
=l null T11 - Progl; igs in state S end ciimbs the chair whose
horizontal position is X,
T —Progz[az,bz,cz][cdr M11,x,car {1317
The problem cen be axiomatized as below:

Member
~ P(X,0,Y,2) V P(W,0,Y Walk(W,Z)} (1)
=(LAMBDA (X L)
~ P(X,O,X,Y) v P(W,O,w:Cam(W.Y)) (2)
(COND ({NULL L) {(IAMBDA ()
~ P(X,0,X,Y} ¥ P(X,W,X, Climb (W,Y)) (3)
{(PROG (¥}
The theorem is
(SFTQ Y NIL)

(%)Y (38) (%) (¥,) (B2,) (55,)
(RETURN Y))))
(POX},Y 2 ,8,) =P(X,,Y), 25.5,) (4)

The negstiom of the theorem gives

{T ((1AMBDA (A B C)

(PROG (¥}

(COND ((EQUAL B €} (60 A1))) T\ADi®sP) (5)

E,H,X 6
(SETQ Y (MEMBER B 4)) ~P(E,H,X,Y) (6)
All the comstants as well as the funetlion symbols
are primitive, The output variable is ¥ in (&)
which is the final state,

(RETURN Y)

Al (SETQ Y T)

(RETURN Y))) PROW generates a program as bolow:

(COR 1) X (CAR L)) D) (TAMEDA (A B C D E H)

Section 6: Inc Annlicablon of PROV to Deduative (PROG (23 22 2)

Question-Answering (SETQ 73 D)

Since the output of FPROW can be considered (SETQ 22 C)
as a sequence of instructions, it can)also be used
as a question-answering progrem (1,8). In this J
section, we shall show four exampleé of how this (SETQ 22 (WALK 22 73))
can be done. (SETQ 72 (CARRY E 22))
Example 1: The first monkey-banana problem, (SETQ 2 (CLIMB H Z2))

The problem can be briefly stated as follows:
A banena 1ls suspended from the eeiling of a room, {RETURN (LIST 2)) })
A momkey 1s on the floor, but is toco short to
reach the bapana. There is & chalr in the room, The reader can sece that the program describes

and the monkey can walk freely in the room, carry- +the solution of the problem es the following steps:
ing the chair together with him. Furthermore, the
monkey can climb the chair, (1) The monkey walks {rom where originally he
stands to the chair,
This problem has been golved by the programs
of Slagle (8) and Green (1).

249

(2) The monkey walks from the position of the
chair to the position of the banana, carry-
ing the chair with him.

(3) The monkey climbs the chair.

In the next example, we shall show a very im-
portant feature of PRCW. That is, if used as a
question-answering program, it can answer questions
whose answers involve "conditional expressions."
For example, it may say, "If the door is locked,
use the window." This is a great improvement of the
present question-answering programs. Also, in this
example, the reader can see the importance of the
"primitive resolution."

Example 2: There are two boxes, one and only one of
which has a banana in it. The monkey can walk
freely and he does not know which box contains the
banana. But if the monkey is where the box is, he
can look into the box and see whether the box con-
tains the banana or not. What should the monkey do
to get the banana?

Let P(X,Y,S) mean that "the state S is attain-
able in which the monkey is at X and the banana is
at vY."

Let Find(S) mean that "S is the state in
which the monkey can find the banana."

Axioms:
~ B(X,X,8) v Find{S) (1)
~ B(X,Y,8) Vv P{W,Y,Walk(W,S)}) {2)

The theorem is
X))
(P(Xl,Yl,Sl) v P(Xl,rz,sl)) ~(ES,)Fina (S,) (3)

Thies thecrem says that no matter where the banana
is, the monkey can find it,
The negation of (3) is

P(4,B,C} V P(4,D,C) (4)

(5)

The primitive symbols are A,B,C,D,Find, and Walk.
The vital clause {g (5) and the hot variable is S.

Proof:

~Find(5}

(1,2,5,1) J(zl,zl,zz) (6)
(2,2,6,1) J(ZI,ZE,ZB} (7)
(7,1,4,1) P(a,D,0) (¢)
(8,1,2,1) P(Z,,D,¥alk(2,,C)) (2)
(9,1,1,1) Find{Walk(D,C}} (10)
(10,1,5,1) NIL (11)

-250-

Applying the algorithm given in Secticn 2 agailn,
we obiain the following program;

(IAMEDA (& B C D)
(PROG (23, Z2, Z)
(COND ((NOT (FIND (WALK D ©))){c0 A1}))
(SETQ Z (WAIK D €))
(RETURN Z)
Al (SETQ 23 ©)
(SETQ 22 B)
(SETQ Z2 (WALK 22 23))
(SETQ 2 Z2)
(RETURN Z)))
The program can be interpreted as:
1. Go to box B.

2, If you can find the banana in box B, then go
back 10 the starting point and go to box B.

3. Ctherwise, go to box A.

The wnfortunete thing is that, as one can see,
the monkey hats to go back to the starting point,
This is simply because PROW is designed for a pro-
gram writer. Therefore it ignores the side-effect
of 8 testing.

If we allow P(X,Y,3) to be primitive, we would
get the following solutiom:

(LAMBDA (A B € D)
(PROG (23 22 Z)
(COND ({NOT (P &4 D C)) (GO A1)))
(SETQ 23 C)
(SETQ 22 D)
(SET Z2 (WAIK 22 23))
(SETQ Z 22)
(RETURN Z)
Al (SETIQ 23 C)
(SETQ Zz2 B}
(SETQ 122 (WALX 22 23)})
(SETQ 2 Z2)
(RETURN 2)))

L0165 Program iMVOLVeE a Testing Or the predicate
P(A,B,C) which means that the monkey should decide
whether the banana is at box B or not. This is,
of course, not deslrable,

In the third example, FROW 15 asked to design
computer cireuits,

Example 3: We have to coanstruct an "Or" gate out of
"AIld" BIld IINot" gates‘

let I(X) mean X has value T,

Let And(X,Y) = X & Y

Or{X,Y) =X VY

and Not{X) ~ X

1

The axioms for this problem are

~ I(ANA{X,Y)) v I{X) (1)
~ I(and(X,¥}) v I(Y) {2)
~ I(X) V AI(Y) ¥ I(And(X,Y)) {3)
I{Not(X)) V I(X) (4
~ I(Not (X)) V ~I(X) (2)
I(0r(X,Y}) Vv ~I(X) (&)
I(0or(X,Y)) ¥ ~I(Y) {7)
~ I(0r(X,¥)) ¥V I(X) v I(Y) (8)
~ I(X) ¥V I(Y) V Equal{X,¥) {9}
(X} v I(Y} V Equal(X,Y) {10}
~ I(X) Vv I{Y) V ~EquallX,Y) {11)
I{X} V I{Y) V ~Equal(X,Y) 112)

The functions "And" and "Not" are denlared primd-
tive and "Or" is not. Both predicatea "Equal"
and "I" are not primitive, Ctherwise, we might
be vulnerable to conditional expressions appearing
in our circuits, as if they were LISP progrems.

The theorem to be proved is

(X)(Y)(E2) Equal{Ow{X,Y)},2) (13)

The proof is omitted, By tracing the hot
variable Z, we obtain

7 = Not (And (Not (X}, Not.(¥)})
which ig the ecirecuit we want,

In the present status, PROW cen only write
programs in LISE. Actually, the ldea of PROW is
general enough to write programs in any langusage,
In the next example, wc shall show how FROW ean
handle problems in machine languege,

Example 4: Let us imagine a machine with three
reglsters A,B and C and one accumulator. We would

like O write a program 1o reverse the contents ot
registers A and B.

Let P{U,X,Y,Z,5) mean that "State S in which the
accumilator contains U and registers 4, B and C
contain X, ¥, and Z respectively is attainable.”

Let lomda(s), loadb(s) end loade(s) be the states
after the accumlator is loaded with the contents
of registers A, B and C in state S5, respectively.

Let Storea{s), Storeb(s) and Storec(s) be the
stetes after the content of the accumilator is
stored intc registers A, B and ¢ in atate S re-
epectively,

The entire machine can be axiomatized as
follows:

~ P(U,%,¥,2,8) v P(U,U,Y,Z,1loada(s)) {1)
~ P(U,%,Y,Z,8) v P(U,X,U,2,10adb(s)) (2)
~ P(U,X,¥,Z%,8) Vv P{U,X,Y,U,loade{s)) ()
~ P{U,X,Y,2,8} Vv P(U,U,Y,Z,5torea(s)) (%)
~ P(U,X,Y,2,8) V P(U,X,U,Z,5toreb(s)) (5)
~ P(U,X,¥,Z,3) Vv P{U,X,Y,U,Sterec(s)} {6)

The theorem 1B
(U)(x)(¥)(2,) (8,) (EU,)(EZ,) (ES,)
(P(Ul,x,x,zl.sl) _.p(uz,x,x,zz,szn (7)
The negation of the theorem is
P(Ace,A,B,C0,D) (8)
NP[U,B,A,Z,S) (9)
The program thet FROW produces is the following:
(LAMBDA (D)
(PROG (232 Z)
(SETQ 23 D)
(SEIQ Z3 (LOADA 23})
(SETQ 23 {STOREC 23))
(SETQ 23 (LOADB Z3))
(SETQ 23 (STOREA 23))
(SETQ 23 (LOADC Z3))
(SETQ z (STOREB 23))
(RETURN 2}))

This program, elthough written in LISP, repre-
sents a machine language program, The sequence

=251~

of instructions is: load the accumulator with g,
register A, Store it into register &. ILoad the
sccumulator wilth register B. Store it into regis-
ter A, Load the asccumuletor with reglster C and
store it into register B, The contents of regis-
ters A and B are now reversed.

Section 7: Canclugiopng

10.
The ultimate goal of developing PROW is to
have a system such that the programmers are not
required to know particular computer languages 11.

thorowhly and do not have to construct the glgo-
rithms. If this goal is achieved, programming
would be more delightful and less time consuming.
As yet, PROW is only a step towards this goal,

At present, FEOW only understands the first
order predicate caleulus, It is therefore some-
times more difficult to specify a program than
writing the program directly. PROW would be much
more improved 1f some easier-to-use lengusge, such
as English, replaces predicate calculus as its in-

put langusge,

As one can see, the efficiency of PROW depends
heavily upon the efficlency of the thecrem prover
that FROW uses, It is absolutcly necessary to
improve the efficiency of the theorem prover,

Aglmowledeements

The authors wish to express their gratitude to
Professor H., A, Simon of Carnegie-Mellon University,
Dr. J. R. Slagle and Dr, C, L, Chang of the Natiomal
Institutes of Health for their advice, guidance
and constructive syggestions.

Beferences

1. Green, C. and Raphael, G.: The Use of Theorem-
Proving Teclmiques in Question-Answering Sys-
tema, i

Confereneg, 163-181,
2. Hilbert, A, and Ackerman, W,:

Erinciples of
, Chelsea Publishing Company,
N.Y. (1950},

3. Mclarthy, J.: Hﬂ';]..ﬁ.i:mmmdusmual, the
M.I.T, Press, Cambridge, Masa, (1962).
4. Quine, W.: A Proof Procedure for Quantification

Theory, MI_ELEMM, Vol. 20,
No.2, (Tune,1955), 141-149.

5. Rovinson, J.: A Machine Oriented Logic Besed
on the Resoluiion Principle, JACM, Vol. 7,
(Jan.,1965), 23-51.

6. Robinaon, J.: A Review of Automatic Theorem
Proving,

Voi.XIX, (1966},

7. Simen, H,A.: Experiments with a Heuristic
Compiler, JACM, (Oct., 1963), 482-506.

-252-

Slagle, J.: Experiments with a Deductive

Question-Answering Program, Copm.ACH, Vol.8,
No.12,{Dec.,1965) 792-798,

Slagle, J.: Automatle Theorem Proving with
Renameable and Semantic Resolution, JACM,
Vol. 14, No. 4, (Oct., 1967}, 687-697.

Welssman, C.: LISP 1,5 Primcr, Dickenson Pub-
lishing Compary, Belmont, Galifornia (1967).

Robinson, G. and Wos, L.: Prramodulation and
Theorem-Proving in First-Order Theories with
Equality, (to appesr in Machine Intellizence,
Voi.IV, ed, by D. Michie,)

