
PROW: A STEP TOWARD AUTOMATIC PROGRAM WRITING

Richard J. Waldinger
Carnegie-Mellon Un iv . , P i t t sburgh , Pa.

Richard C. T, Lee
Nat ional I n s t i t u t e s of Health

Bethesda, Md.

Summary

This paper aescriDes a program, ca l led "PRUW",
which w r i t es programs. PROW accepts the s p e c i f i ­
ca t i on of the program in the language of predicate
ca l cu lus , decides the a lgor i thm f o r the program
and then produces a LISP program which is an im­
plementat ion of the a lgor i thm. Since the construc­
t i o n of the a lgor i thm is obtained by formal
theorem-proving techniques, the programs tha t
PROW wr i t es are f ree from l o g i c a l er rors and do
not have to be debugged. The user of PROW can
make PROW w r i t e programs in languages other than
LISP by modifying the par t of PROW tha t t rans la tes
an a lgor i thm to a LISP program. Thus PROW can be
modi f ied to w r i t e programs in any language. In
the end of t h i s paper, it is shown tha t PROW can
a lso be used as a quest ion-answering program.

Sect ion 1 : I n t roduc t i on

A programmer can eas i l y make two kinds of mis­
takes . F i r s t , the grammar of the programming l a n ­
guage t h a t he uses is so complex tha t he eas i l y
makes s y n t a c t i c a l e r r o r s . Second, i t is not easy
to always t h i n k l o g i c a l l y , so he Is l i a b l e to make
mistakes in const ruct ing a lgor i thms, thus prod­
ucing l o g i c a l e r r o r s .

Much e f f o r t has been made in s imp l i f y i ng the
programming languages so tha t programmers w i l l
make fewer s y n t a c t i c a l e r r o r s . Although one can
s t i l l complain tha t the advanced languages a v a i l ­
able today are s t i l l not simple and na tu ra l enough,
he should f i n d comfort in not ing tha t they are
much eas ier than machine language.

As y e t , not much has been done to overcome the
second d i f f i c u l t y mentioned above. In t h i s paper,
the authors w i l l describe a program ca l led "PROW"
(Program W r i t i n g) , which is designed fo r t h i s pur­
pose. PROW resembles the "s ta te desc r ip t ion"
p o r t i o n of the h e u r i s t i c compiler (7) by Simon
and is much in the s p i r i t of Slagle (8) , Raphael
and Green (l) in f u l l y using the power of formal
l o g i c .

In PROW, the i ns t ruc t i ons of LISP are axioma-
t i z e d and stored as axioms. The user expresses the
r e l a t i o n s h i p between the input and output var iab les
as a wel l - formed formula in the f i r s t order p r e d i ­
cate ca lcu lus (2) . Suppose the Input and output
va r iab les of the program are and

respec t ive ly and tha t the r e l a t i o n

between them is ■ PRCW

then constructs the theorem:

PROW f i r s t c a l l s a theorem prover to prove the
theorem, thus es tab l i sh ing the existence of the
program. The output of the theorem prover is a
"proof" of the theorem. PROW then c a l l s another
program to process the proof and gives the desired
program.

Since PROW uses theorem prover to w r i t e p ro ­
grams, the programs tha t i t wr i tes are f ree from
l o g i c a l e r r o r s . As shown in Sect ion 6, PROW can
also be used to a id robots , to design c i r c u i t s as
w e l l as to w r i t e programs in languages other than
LISP.

The authors have t r i e d hard to make t h i s paper
se l f - con ta ined . However, the readers who want to
thoroughly understand "PROW" should be f a m i l i a r
w i t h LISP (3,10) and automatic theorem proving
(13,6,8).

It should be noted t ha t the func t ion of PROW
is qu i te d i f f e r e n t from that of a compiler because
the user of a compiler, such as a FORTRAN program­
mer, has to construct the a lgor i thm h imsel f , whi le
the user of PROW has only to supply the s p e c i f i c a ­
t ions of h is program and PROW is able to decide
the a lgor i thm f o r him.

The proof of the correctness of the a lgor i thm
used in PRCW is omitted in t h i s paper because of
the l i m i t a t i o n of space. I t w i l l be included in
R. Waldinger's Ph.D. thes is l a t e r .

Section 2: The Resolution Principle and Program

The theorem prover of PROW uses Robinson's r e ­
s o l u t i o n p r i n c i p l e (5 ,6 ,8) as i t s inference r u l e .
I t w i l l be shown l a t e r t ha t the ordinary reso lu t i on
p r i n c i p l e is not appropr iate and adequate fo r p ro ­
gram w r i t i n g . This leads to the no t ion of
" p r i m i t i v e r e s o l u t i o n " which w i l l be discussed in
d e t a i l i n Sect ion 3 .

Example 1: The c h a r a c t e r i s t i c func t ion of the
predicate "Atom" in LISP.

Suppose we want to w r i t e a program whose output
is 1 if the input is an atom and 0 otherwise.

- 2 4 1 -

The program represented ty the tree in Fig.2-4
w i l l necessarily involve the test ing of X € L,
which is not defined or pr imi t ive in LISP. There­
fore, the program is meaningless. Proofs such as
the one described above which y ie ld non-executable
programs must be forbidden. This is achieved as
fol lows: the user of PROW may declare which sym­
bols are pr imi t ive . Only pr imit ive symbols w i l l
appear in the program.This is made possible Tpy using
a special inference ru le , called "pr imit ive reso­
l u t i o n . " The proof that is obtained by "pr imit ive
resolut ion" is called a "pr imit ive proof." The
program that is obtained by processing a pr imi t ive
proof contains only pr imit ive symbols. This w i l l
be discussed in the next section.

Section 3: The Primitive Proof and the Post-Proof
PrPtteBSPr

In th is section, we are going to define a new
inference ru le , called the "pr imit ive resolut ion."
The proof that is obtained "by the application of
the pr imit ive resolution is called the "pr imit ive
proof." For readers who are interested only in the
performance of PROW, th is section can be skipped.

F i rs t of a l l , the user of PROW has to declare
the fol lowing:

(a) Primitive symbols: The symbols which are
allowed to appear in the program.

(b) Ins ip id clauses: The clauses that the user
claims to be always t rue . (A l l the axioms are
necessarily i ns ip id , but whether a special hypo­
thesis Is ins ip id or not depends on the user.)

(c) Output variables: Suppose the theorem con­
cerning the program has the following quant i f ier :

Negation of the theorem w i l l make a l l the variable
X 's appear in the clauses as constants (4) . They
are called the input constants. A l l the
appear as variables in the clauses and the user
has to declare some of the " 's as output variables.

We also need the following def in i t ions:

Def.: Halt clause: the set of hal t clauses is the
set of a l l the clauses that the user pro­
vides as input.

Def.: V i t a l clause: the de f in i t ion of a v i t a l
clause is induct ive.

(a) A hal t clause that is not declared i n ­
s ip id is a v i t a l clause.

(b) In a proof, a clause B that is a resolv­
ent of clauses C and D is v i t a l i f f one
or both of C and D is v i t a l .

Def.: Hot variables: the hot variables are also de­
f ined induct ively.

-243-

(2) The monkey walks from the p o s i t i o n of the
cha i r to the p o s i t i o n o f the banana, c a r r y ­
ing the cha i r w i t h him.

(3) The monkey cl imbs the cha i r .

In the next example, we s h a l l show a very im­
por tan t fea tu re of PRCW. That i s , i f used as a
quest ion-answering program, i t can answer quest ions
whose answers invo lve " c o n d i t i o n a l express ions . "
For example, i t may say, " I f the door is locked,
use the window." This is a great improvement of the
present quest ion-answering programs. A l so , i n t h i s
example, the reader can see the importance of the
" p r i m i t i v e r e s o l u t i o n . "

Example 2: There are two boxes, one and only one of
which has a banana in i t . The monkey can walk
f r e e l y and he does not know which box contains the
banana. But i f the monkey is where the box i s , he
can look i n t o the box and see whether the box con­
t a i n s the banana or n o t . What should the monkey do
to get the banana?

Let P(X,Y,S) mean t h a t " the s t a t e S is a t t a i n ­
able in which the monkey is at X and the banana is
a t Y . "

Let Find(S) mean t h a t "S is the s ta te in
which the monkey can f i n d the banana."

Axioms:

-250-

