
OntoTrack: Fast Browsing and Easy Editing of
Large Ontologies

Thorsten Liebig1 and Olaf Noppens1

Dept. of Artificial Intelligence
University of Ulm

D-89069 Ulm
{liebig|olaf.noppens}@informatik.uni-ulm.de

Abstract. OntoTrack is a new browsing and editing “in-one-view” on-
tology authoring tool. It combines a sophisticated graphical layout with
mouse enabled editing features optimized for efficient navigation and ma-
nipulation of large ontologies. The system is based on SpaceTree [PGB02]
and implemented in Java2D. OntoTrack provides animated expansion
and de-expansion of class descendants, zooming, paning and uses elab-
orated layout techniques like click-able miniature branches or selective
detail views. At the same time OntoTrack allows for quite a number of
editing features using mouse-over anchor buttons and graphical selec-
tions without switching into a special editing layout. In addition, every
single editing step is synchronized with an external reasoner in order to
provide instant feedback about relevant modeling consequences.

1 Introduction

The availability of adequate tools for end users is a pivotal element in order
to push Semantic Web techniques from academia to commercial environments.
Simple, flexible, and intuitive user interfaces play an important role within this
context. In contrast to current tool evaluations which concentrate mainly on
language specific issues (e. g. language conformity) and technical criteria (e. g.
turn around ability for interoperability) [AS02] we will focus on adequate visu-
alization, navigation and simple editing of large ontologies in the remainder of
this paper.

Currently, many ontology editors use two functionally disjunct interfaces for
either editing or browsing ontologies. Editing interfaces are commonly based on
vertical expand and contract lists representing the class hierarchy. When select-
ing a particular class in the list one can inspect and manipulate its corresponding
definition using predefined forms in an additional display area. Our experiences
with expand and contract style interfaces identified a number of conceptual
drawbacks:

– The number of visible classes is limited by the screen height. Even middle
sized ontologies very likely require scrolling after some level expansions.



– The larger the ontology the harder it will get to identify the inheritance
path from a particular class up to the root of the ontology. This is due to
the fact of exclusively two level states. An ontology level is either completely
expanded or contracted and is not allowed to display a selection of context
relevant classes.

– Depending on the branching factor of an ontology a list representation makes
it difficult to compare two different expansion paths concerning level depth
or common ancestors.

– Because of the tree based nature of expansion lists multiple inheritance is
difficult to represent in general. Multiple ancestors of a class are usually
displayed with help of an auxiliary display area. Inversely, this class will
appear as “cloned” class in the list of descendants of every super class. This,
however, will result in a proportional growth of redundant classes with the
number of multiple inheritance statements.

– When defining a class one commonly needs to access and select other classes.
This temporally requires additional expand and contract style selection lists
for a class hierarchy already on screen.

An extreme example for which the list representation will be inherently unsuit-
able is the task of showing the complete inheritance path of a class in a large
ontology having multiple ancestors.

In order to better support those tasks most tools incorporate an additional
graphical browsing interface using tree like, tree map, ven or hyperbolic layout
techniques more or less suitable for navigating large ontologies. However, those
interfaces do not allow for substantial editing and are designed as view-only
plugins in most cases.

Our novel ontology editor, called OntoTrack, combines hierarchical layout
technologies with context sensitive zooming features and mouse enabled editing
abilities optimized for navigation and manipulation of large ontologies. Onto-
Track is based on the linked tree diagram approach of SpaceTree [PGB02] which
dynamically zooms and lays out tree branches to best fit the available screen
space. OntoTrack’s ontology layout is driven by an animated “expansion on user
demand” strategy making use of elaborated minimization techniques for alter-
native inheritance paths or descendants. At the same time OntoTrack allows for
quite a number of editing features from mouse-over anchor buttons to context
sensitive choose lists without switching into a special editing layout.

The remainder of this paper is organized as follows. In the next section we
present OntoTrack our new graphical authoring tool for ontologies. In particular,
we explain OntoTrack’s browsing, editing, and searching abilities as well as its
inference features via link-up to an external reasoner. In section 3 we describe
the current implementation status and discuss current and future work. Sec-
tion 4 contains preliminary benchmarking results concerning to some qualitative
navigation criteria. We will end with a short summary and some notes about
possible enhancements.



2 A New Graphical Authoring Tool For Ontologies

2.1 Browsing Features

Fig. 1. Partially expanded ontology in top-down layout showing miniature tree
thumbnails summarizing not expanded sub-branches.

OntoTrack aims at integrating optimized layout techniques for hierarchies
with graphical editing features. Currently, the system is based on SpaceTree
[PGB02] an interactive tree browser with dynamic rescaling of branches, op-
timized camera movement, and preview icons for non expanded sub-branches.
Within SpaceTree the expansion of a new tree level is animated and may re-
sult in trimming of branches of previous levels when needed. SpaceTree allows
for changing the overall orientation of the layout and for explicit de-expansion
blocking of user selected branches.

Our attempt was to adapt SpaceTree for browsing and editing ontologies by
extending its inheritance centered layout algorithm in a first step. The primary
structuring element of ontologies and trees is the inheritance relation. Conse-
quently, SpaceTree’s as well as OntoTrack’s layout algorithm dynamically adapt
their graphs in order to be able to display the complete inheritance path ei-
ther in a top-down or left-right orientation. As an option, the path from the
last expanded class to the root will be outlined. Depth, width and the num-
ber of descendants of not expanded sub-branches are symbolized by triangles of
varying length, width, and shading or as an iconified branch in order to pro-
vide information about deeper levels. In addition, the whole ontology layout can
continously be zoomed or paned simply by mouse-down movements. Figure 1
shows an OntoTrack screen capture of an ontology1 after some level expansions.
Here, a classical top-down orientation and a miniature tree thumbnail style has
been chosen. In comparison, figure 2 shows the same ontology in a less expanded
state using a left-to-right orientation and a triangle thumbnail style. Here, the

1 Showing the top-level classes in an early version of Cyc.



inheritance path for the last expanded class “IndividualObject” is outlined by a
darker node background.

Fig. 2. Ontology of figure 1 in left-right layout and triangle thumbnails.

In the case of expanding a level containing classes having multiple ancestors
in currently not expanded branches, those ancestors are drawn as click-able icons.
As an example, figure 3 shows the ontology of figure 2 after expansion of class
Stuff via middle mouse click. Both descendants of Stuff have multiple ancestors.
A further ancestor of Process is an already expanded class Event. In contrast, one
ancestor of IntangibleStuff (namely IntangibleObject as can be seen in figure 1) is
within the currently not expanded sub-branch of class Intangible and therefore
drawn as a click-able icon.

When moving over an iconified ancestor with the mouse pointer a tool-tip
message with the corresponding class name appears. Clicking on such an ances-
tor icon results in an expansion of this class. This strategy guarantees that all
ancestors of all expanded classes are displayed either expanded or abbreviated as
click-able icons. Having all inheritance paths visible up to the root helps a user
to keep orientated concerning to the primal structuring principle of ontologies.

Fig. 3. Ontology of figure 2 after expansion of class Stuff.



2.2 Editing Features

As mentioned before OntoTrack is a browsing and editing in-one-view authoring
tool. This allows to re-use already available navigation principles for the task of
building and manipulating ontology definitions. The most primitive manipula-
tion feature consists of the direct editable class name field of every class node.
Beyond that, OntoTrack’s click-and-drop editing features are enabled by switch-
ing into the “anchor button” mode. Within this mode anchor buttons appear
when moving the mouse over editable entities. Figure 4 shows the anchor buttons
of a class IndividualObject displayed in top-down orientation (in left-right orien-
tation the button layout is rotated 90◦ anti-clockwise). The triangle symbol on
top of the class box represents the superclass relationship. With a click on this
button one can specify this class to be an descendant of another class selectable
with a click on that class. A new sub class can be created with a click onto the
bottom triangle. In correspondence with the RDFS and OWL specification the
semantics of multiple subclass statements for one class is that of a conjunction
in OntoTrack.

Fig. 4. Anchor buttons of a class in top-down layout.

In addition, OntoTrack offers further editing functions while in its “detailed
view” mode. The detailed view mode is activated or deactivated for each class
separately using the mouse-wheel up- resp. down-wards while being over the
class with the mouse pointer. When activated, OntoTrack uses a slightly adapted
UML style class diagram syntax. In contrast to the UML specification our class
diagram is divided into two (instead of three) compartments. The top compart-
ment contains the name of the class. The bottom compartment contains a list
of property restrictions of this class. In case of OWL Lite each row of this list
contains (implicit conjuncted) one existential or universal quantification or un-
qualified cardinality restrictions displayed in abstract Description Logic (DL)
syntax (see [Baa03] for the abstract DL terminology). Figure 5 shows a class
with one minimal and one exact cardinality restriction. An existing restriction
can be deleted by clicking on the red dot on the right side of the corresponding
row. A new restriction is added to a class by using the green dot at the bottom
of the class box (see figure 5). The cells of each row are editable via choose lists.
An unqualified cardinality restriction provides three choose lists, one for the car-
dinality operator (≥,≤,=) one for the value (0 or 1 in OWL Lite) and one for
the currently available properties. Quantifications also require three choose lists



Fig. 5. Class in detailed view mode.

(one for the quantifier ∃ or ∀, one for the property, and one for the qualifying
class). Additional editing features like switching between complete and partial
definitions are accessible via a right mouse button context menu. As an alterna-
tive short-cut we plan to add click-and-drop quantifier and cardinality symbols
for specifying properties statements between classes as shown in figure 4 in the
near future.

2.3 Inference Feedback

OntoTrack is equipped with an interface to an DL reasoner called RACER
[HM01]. All changes after each editing step (e. g. list selection, subclass state-
ment) are send to the RACER system via the TCP-based client interface JRacer.
RACER will then make all modeling consequences explicitly available for Onto-
Track. Of special interest within our ontology layout is the subsumption relation-
ship which may implicitly be influenced by an editing step. As soon as RACER
recognizes a change in the class hierarchy OntoTrack updates the correspond-
ing graphical representation (showing only direct subsumers/subsumees of each
class). Those updates are also animated in order not to confuse the user with a
new hierarchy layout in one step. Other graphical inference services (which are
special cases of the subsumption relationship in fact) cover unsatisfiable class
definitions or equivalence between different classes. In OntoTrack an unsatisfi-
able class will be drawn in red and equivalent classes are outlined with a colored
background.

2.4 Searching

OntoTrack also adapts SpaceTree’s search features. When looking for a specific
class name, even in the selection phase during editing, one can use a string
based ontology search. When start typing a search string all matching classes or
sub-branch icons are highlighted. Each additional character or deletion in the
search string directly results in an updated highlighting of matching parts of
the ontology. OntoTrack currently supports three matching mode: exact match,
substring match from string beginning, and full substring match. As an option,



the user can then fan out the ontology by expansion of all currently matching
classes via one button click.

3 Implementation Status and Current Work

Our ontology authoring tool OntoTrack is still under development. The features
described in section 2 are those of the first implementation phase. Some may
change in future versions if they don’t prove to be useful. It is our considered
opinion that performance and scalability are very important properties of user
friendly tools and a key for user acceptance. We therefore have chosen Piccolo
as our graphical library. Piccolo is an optimized subset of Jazz [BMG00], a fast
zoomable interface toolkit based on Java2D.

A first prototype of OntoTrack has been implemented by extending Space-
Tree’s layout algorithm, which itself uses the Piccolo libraries. Within this ver-
sion all mentioned browsing features of subsection 2.1 are implemented in full
detail. Some of the editing features of subsection 2.2 however are still under
development (click-and-drop qualifiers and cardinality statements).

Current work is focused on refining and optimizing the layout algorithms
for ancestor thumbnails. Miniature tree layouts for ancestors with multiple in-
heritance turned out to be difficult in general. Imagine the problem of thumb
placing for a short expanded inheritance path together with a long alternative
path via a thumbnail miniature tree (or vice versa). Inheritance links between
thumbnail classes and already expanded classes are another factor of complexity
for placing and cross minimizing layout algorithms. As an additional constraint
we want to re-arrange the layout of expanded classes in each possible expansion
step as less as possible. Therefore, OntoTrack implements a local optimization
layout algorithm triggered by the class the user currently wants to expand.

OntoTrack’s file import as well as export uses the RDF parser Jena2[McB01].
Jena2’s internal ontology model for classes and properties also serves as Onto-
Track’s central representation model. Currently, OntoTrack is able to read in
and write out OWL Lite ontologies. However, properties as well as global prop-
erty constraints (domain and range statements) are not editable in OntoTrack
at the moment.

Conceptually, we plan to cover a notable fragment of OWL Lite’s language
constructs while adopting UML’s class diagram representation. In a first step
we concentrated on OWL Lite’s class axioms and restriction statements (see
section 2.3.1.1. and 2.3.1.2. of OWL Abstract Syntax and Semantics document
[PSHH03]). Next, we want to extend the editor with a parallel representation
of properties and property hierarchies. Our goal is an mixed graphical repre-
sentation based on the hierarchical class layout described above together with
editable property edges in combination or as alternative to the list representation
of OntoTrack’s detailed view mode.2

2 The ezOWL plugin [OC03] for Protégé is an example of a likewise mixed class and
property representation to some extend.



4 Preliminary Evaluation

It was not the goal of our preliminary evaluation tests to determine an overall
ranking of different ontology editors. Other tools like Protégé [GMF+03], On-
toEdit [SSA01] or OilEd [BHGS01] are obviously in a more sophisticated state
of development and in some cases tailored to different tasks or users. Our aim
was to evaluate our graphical browsing and editing interface against other user
interfaces with respect to certain navigation criteria.

First we compared the maximum number of classes to display for a given
screen size. Using a screen size of 1280×1024 we counted a number of 50 to
60 displayable classes in expand and contract style ontology browsers using full
screen hight (here, the screen width has no effect on the maximum of displayable
classes). Using a comparable font size in OntoTrack we were able to expand more
than 100 classes using full screen mode.

In contrast, the length for an inheritance path for a branch with classes
having a name with an average length of 12 characters has a depth of 13 levels
in OntoTrack. In an expand and contract style interface the same number of
level expansions approximately take up 30 % of the screen width.

However, in order to have some qualitative results concerning average navi-
gation or editing performance a controlled experiment has to be conducted. A
set of experiments comparing three tree-based browsing tools (MS Explorer, a
Hyperbolic tree browser, and SpaceTree) showed some performance advantages
for the SpaceTree approach concerning tasks like first-time node finding, listing
all ancestors of a node, or differentiate between branches with varying numbers
of nodes [PGB02]. These results may serve as an indicator with respect to nav-
igation and editing performance of OntoTrack in comparison with expand and
contract style interfaces.

5 Summary and Outlook

Expand and contract style interfaces for ontologies inherently have substantial
drawbacks concerning search and navigation speed, user orientation, and editing
flexibility in our opinion. Our new authoring tool for ontologies combines an ani-
mated graphical layout with mouse enabled editing features within one view. We
are still in an early development phase, but first experiences with our SpaceTree
[PGB02] based prototype are encouraging. We therefore see OntoTrack as an
easy-to-use interactive ontology editor especially for non-experienced users and
even for large ontologies.

Current work focuses on finalizing the layout algorithm, and further editing
features. We also plan to extend OntoTrack’s search facility for regular expres-
sion matching as well as for restriction expressions. The link-up to the RACER
reasoner is also a subject of optimization. Currently, OntoTrack needs to query
the reasoner for all possible consequences of each user change in order to update
its internal representation model. Here, an event triggered notification model
on reasoner side would significantly speed up this process. In addition, an ad-
equate explanation module is needed in order to distinguish between ‘direct’



consequences (e. g. an unsatisfiable class because of an user manipulation) and
follow-up consequences (e. g. the consequences of an unsatisfiable class with re-
spect to other classes). In order to become a competitive application basic fea-
tures like undo, print, or various exports into other ontology languages have to
be implemented in future versions of OntoTrack.

We plan to cover ontology languages with an expressivity at least compara-
ble to that of OWL Lite. Complex class descriptions like nested restrictions or
general inclusion axioms may need additional graphical features in a next evo-
lution step. A graphical representation as well as editing interfaces for disjoint
classes, coverings and instances are also on our working agenda. An graphical
UML representation for some of those have already been discussed in [BKK+01]
and may serve as starting point for our application.

References

[AS02] Jürgen Angele and York Sure. Whitepaper: Evaluation of Ontology-based
Tools. Technical report, OntoWeb Deliverable 1.3, 2002.

[Baa03] Franz Baader. The Description Logic Handbook, chapter Appendix 1: De-
scription Logic Terminology. Cambridge University Press, 2003.

[BHGS01] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd:
a Reason-able Ontology Editor for the Semantic Web. In Proc. of the
German conference on Artificial Intelligence, KI2001, pages 396 – 408.
Springer Verlag, LNAI Vol. 2174, September 2001.

[BKK+01] Kenneth Baclawski, Mieczyslaw K. Kokar, Paul A. Kogut, Lewis Hart,
Jeffrey Smith, William S. Holmes, Jerzy Letkowski, and Michael L Aron-
son. Extending ULM to Support Ontology Engineering for the Seman-
tic Web. In Proceedings of the Fourth International Conference on UML
(UML 2001), number 2185 in LNCS, pages 342 – 360, Toronto, Canada,
October 2001. Springer Verlag.

[BMG00] Ben Bederson, Jon Meyer, and Lance Good. Jazz: An Extensible Zoomable
User Interface Graphics Toolkit in Java. UIST 2000, ACM Symposium on
User Interface Software and Technology, CHI Letters, 2(2):171 – 180, 2000.

[GMF+03] John Gennari, Mark Musen, Ray Fergerson, William Grosso, Monica
Crubézy, Henrik Eriksson, Natalya Fridman Noy, and Samson Tu. The
Evolution of Protégé: An Environment for Knowledge-Based Systems De-
velopment. International Journal of Human Computer Studies, 58(6):737
– 758, June 2003.

[HM01] Volker Haarslev and Ralf Möller. RACER System Description. In Proc. of
the International Joint Conference on Automated Reasoning, IJCAR’2001,
Siena, Italy, June 2001.

[McB01] Brian McBride. Jena: Implementing the RDF Model and Syntax Speci-
fication. In Proc. of the Second International Workshop on the Semantic
Web, SemWeb’2001, Hong Kong, China, 2001.

[OC03] Sooyoung Oh and Moonyoung Chung. ezOWL plugin for Protégé. http:

//iweb.etri.re.kr/ezowl/, 2003.
[PGB02] Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. SpaceTree:

Supporting Exploration in Large Node Link Tree, Design Evolution and
Empirical Evaluation. In Proc. of the IEEE Symposium on Information
Visualization, INFOVIS 2002, pages 57 – 64, Boston, USA, October 2002.



[PSHH03] Peter Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web On-
tology Language Semantics and Abstract Syntax. W3C Working Draft,
March 2003.

[SSA01] York Sure, Steffen Stab, and Jürgen Angele. OntoEdit: Guiding Ontology
Development by Methodology and Inferencing. In Proc. of the Confeder-
ated International Conferences CoopIS, DOA and ODBASE 2002, pages
1205 – 1222. Springer Verlag, LNCS Vol. 2519, October 2001.


