
On the use of Clocks to Enforce Consistency in the Cloud

Manuel Bravo*†, Nuno Diegues*, Jingna Zeng*‡, Paolo Romano*, Luı́s Rodrigues*

*Instituto Superior Técnico, Universidade de Lisboa, Portugal
†Université Catholic de Louvain, Belgium

‡KTH/Royal Institute of Technology, Sweden

Abstract

It is well known that the ability to timestamp events, to keep track of the order in which they occur,
or to make sure they are processed in a way that is meaningful to the application, is of paramount
importance in a distributed system. The seminal work by Leslie Lamport[30] has laid the foundations
to understand the trade-offs associated with the use of physically and logically synchronized clocks
for establishing the order of events. Lamport’s original work considered scalar clocks and has later
been extended to consider richer forms of logical clocks such as vector clocks and matrix clocks. The
purpose of this paper is to revisit these concepts in the concrete setting of developing distributed data
store systems for the cloud. We look at how different clock mechanisms have been applied in practice to
build different cloud data stores, with different consistency/performance trade-offs. Our goal is to gain
a better understating of what are the concrete consequences of using different techniques to capture the
passage of time, and timestamp events, and how these choices impact not only the performance of cloud
data stores but also the consistency guarantees that these systems are able to provide. In this process
we make a number of observations that may offer opportunities to enhance the next generations of cloud
data stores.

1 Introduction

With the maturing of cloud computing, cloud data stores have become an indispensable building block of exist-
ing cloud services. The ideal cloud data store would offer low latency to clients operations (effectively hiding
distribution), consistency (hiding concurrency), and high availability (masking node failures and network parti-
tions). Unfortunately, it is today well understood that such an idealized data store is impossible to implement; a
fact that has been captured by the following observation: in a distributed system subject to faults it is impossible
to ensure simultaneously, and at all times, Consistency, Availability, and Partition tolerance, a fact that became
known as the CAP theorem[22, 9]. In face of this impossibility, several different cloud data stores have been de-
signed, targeting different regions of the design space in an attempt to find the sweetest spot among consistency,
availability, and performance.

On one extreme, some systems have favoured concurrency and availability over consistency. For instance,
Dynamo[12] allows for concurrent, possibly conflicting, operations to be executed in parallel on different nodes.

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

18



It then provides the tools to help the application developers to eventually merge in a coherent manner the updates
performed independently, which is known as eventual consistency. Practice has shown that reconciling conflict-
ing updates can be extremely hard, and that it poses a heavy burden on programmers, favouring ad hoc solutions
that are hard to compose and maintain[6]. For this reason, some people claim that eventually consistency is, in
practice, no consistency[33].

On the other extreme, there are also examples of systems that favour strong consistency, at the cost of lower
availability and performance[11, 38]. Although, as stated by the CAP theorem, strong consistency prevents
unconditioned availability, in practice, if enough replicas are used, such that it is unlikely that a majority be-
comes failed or disconnected, the availability concerns can be mitigated. On the other hand, the coordination
required to ensure the consistent processing of concurrently submitted operations introduces delays that are hard
to overcome and that become visible to the user experience.

Between these two extremes of the spectrum, other systems have proposed to use weaker forms of consis-
tency, such as causal consistency, to allow for a reasonable degree of concurrency while still providing clear
and meaningful semantics to the application[33]. In fact, causal consistency is often regarded as the strongest
consistency level that a system can provide without compromising availability and incurring high latencies [34].

Not surprisingly, regardless of the type of consistency guarantees that all these systems provide, they still
need to track the relative order of different read and write requests in order to ensure that the state of the data
store remains consistent with the user intents and that users observe updates in an expectable order. Key to
correctly tracking such ordering relations is to use some form of clock in order to timestamp events of interest.
These clocks can be either logical (i.e., just based on the number of events observed by the nodes) or physical
(i.e, synchronized with some external source of universal time). In a seminal paper[30], Leslie Lamport has
laid the foundations to understand the trade-offs among the use of physically synchronized clocks and the use
of logically synchronized clocks for establishing the order of events. Lamport’s original work considered scalar
clocks and has later been extended to consider richer forms of logical clocks such as vector clocks[21, 35] and
matrix clocks[42, 49]. As their name implies, vector and matrix clocks do not use a single scalar value; instead,
they use multiple scalar values to capture more precisely the causal dependencies among events. Therefore,
vector and matrix clocks require to maintain, and exchange, more metadata. A non-informed outsider may
assume that systems providing stronger consistency are required to maintain more sophisticated forms of clocks
and that systems providing weak consistency can be implemented with cheaper scalar clocks. Interestingly, this
is not the case and the trade-offs involved are subtler than may appear at first sight.

In this paper, we compare recent cloud data store implementations, focusing on this crucial aspect that is at
the core of their design, i.e., the choice of the mechanisms used to capture the passage of time and track cause-
effect relations among data manipulations. In particular, we analyze a set of recent cloud data store systems
supporting both strong and weak consistency, and which use a variety of approaches based on physical clocks
(either loosely [17] or tightly synchronized [5]), various forms of logical clocks (scalar [40], vector [38] and
matrix [18]), as well as hybrid solutions combining physical and logical clocks [1]. Our study encompasses a
variety of cloud data stores, ranging from academic solutions, such as COPS [33] and ClockSI [17], to indus-
try systems, such as Spanner [5] and Cockroach [1]. We provide a comparative analysis of alternative clock
implementations, and identify a set of trade-offs that emerge when using them to enforce different consistency
criteria in large-scale cloud data stores. Our aim is to derive insights on the implications associated with the
design choices of existing solutions that may help cloud service builders to choose which types of stores are
more suitable for their customers and services.

The remainder of this paper is structured as follows. We start by providing a generic reference architecture
of a cloud service, that we will use to illustrate some of our points. Then, we review some fundamental notions
and techniques for tracking time and establishing the order of events in a distributed system. These techniques
represent crucial building blocks of the mechanisms that are used to enforce consistency in existing cloud data
stores. In the following two sections, we focus on analyzing the design of recent distributed data stores providing
weak (i.e., some form of causality) and strong (i.e., general purpose transactions) consistency. Subsequently, we

19



client

data-center

request

inter-data-center
replication

intra-data-center
replication

1

2

3

response

10s msec
Latencies

<1 msec 100s msec

Figure 1: Generic Cloud Data Store Architecture.

draw a number of observations regarding the use of clocks for both weakly and strongly consistent systems. The
last section offers some concluding remarks.

2 Architecture of a Cloud Data Store

We start by presenting a high level architecture of a cloud data store service, which we shall use as a generic
framework for our subsequent discussion. An illustration of the architecture is presented in Figure 1. Typically,
for fault-tolerance and locality, a data item is replicated in multiple nodes of the cloud data store. It is possible to
replicate data just in a single data center, but this makes the service vulnerable to unavailability and data loss due
to power outages, network problems, or natural catastrophes. Therefore, data is usually replicated in multiple,
geographically replicated, data centers, which can also potentially reduce latencies.

In this setting, a client request is redirected to some data center, where it is served by some proxy node that
abstracts the entire set of replicas. The role of the proxy is to initiate the required coordination to ensure that
enough local and remote replicas are involved to provide the desired quality of service to the client. In theory, it
is possible to implement a flat coordination scheme that treats all replicas alike, regardless of their location; for
instance, one could use an algorithm that would apply an update by storing the data in a majority of all replicas
(including replicas at local and remote data centers). However, the delays involved in contacting replicas within
the same data center are several orders of magnitude smaller than the delays involved in the communication
among different data centers. As a result, many geo-replicated data stores use some form of hierarchical coor-
dination mechanism, where the algorithms used to maintain intra-data center replica consistency are different
from the algorithms used to maintain inter-data center replica consistency.

Needless to say, it is cheaper to enforce strong consistency within a single data center than across multiple
data centers. Therefore, a common pattern in many implementations (but not all) is that, when a client contacts a
given data center, some local protocol is immediately executed to ensure strong consistency among the replicas
within that data center. This means that, as long as the client keeps contacting the same data center, it can observe
consistent results without incurring significant delays. On the other hand, synchronizations among data centers
is often performed asynchronously. This means that updates performed in one data center may be observed with
noticeable staleness in remote data centers. This also means that if a client is redirected to another data center
it may either observe inconsistent results or be forced to wait for pending updates to be propagated. In the later
case, clocks play a fundamental role to understand when consistency can be ensured.

Finally, different clients may try to update shared data concurrently at different data centers. To coordinate
such updates is hard. In the general case, to avoid conflicting updates, coordination among data servers must
be performed synchronously, i.e., finalized before replying to the client. However, as previously stated, many

20



systems avoid this approach due to the potentially long delays involved in the process. This choice is supported
by studies that have demonstrated the sensitiveness of users to even very small latency increases [44, 26, 32]. The
consequence is that, in many systems, conflicting concurrent updates are accepted, and the resulting conflicts
need to be resolved in background. In any case, either to perform eager coordination (for instance to run
consensus among the data centers[37, 31, 5]), or just to order conflicting updates in a meaningful way, clocks
play a role of paramount importance.

In this paper, we discuss the role of clocks in both the intra and inter data center coordination and also for
both strong and weak consistency protocols.

3 Tracking the Ordering of Events in Distributed Systems

For self-containment, we provide a brief summary of different techniques that have been proposed to keep track
of the ordering of events in distributed systems.

We assume that the nodes of the system are fully connected and that each node keeps one or more values
to track the passage of time and to assign timestamps to events; these timestamps can be later used to order the
corresponding events. We call this set of values a clock. If the clock maintains a single value we say that the
system uses a scalar clock. If the clock maintains one value per node in the system we say that the system uses
a vector clock[21, 35]. Finally, a clock that maintains a value for each link between pairs of nodes in the system
is denoted a matrix clock[42, 49].

Orthogonal to the number of values in the clock is whether the values are supposed to capture the real time
instant at which the events occurred or if the values are just logical values that count how many relevant events
have been observed. In the first case we say the system uses physical values and in the second case logical
values. More recently, some works have proposed to consider values that are actually a tuple, containing both a
physical clock and a logical clock[28]. In this later case, we say that the system uses hybrid values[27].

When the two dimensions above are combined, we obtain data structures that have been used in different
systems. For instance, if a system uses a scalar clock with physical values we say that it uses (scalar) physical
clocks. Conversely, if it uses a scalar clock with logical values we say that it uses (scalar) logical clocks, also
known as Lamport’s clocks [30]. Finally, a system that uses a scalar clock with hybrid values is said to use a
(scalar) hybrid clock. Similar combinations can be obtained for vector and matrix clocks.

In abstract, clocks based on physical values can be considered as potentially superior to logical clocks in the
sense that, in addition to tracking potential cause-effect relations, they can allow to correlate the timestamp of
events with the actual (real-time) instant at which a given event occurred. Unfortunately, in practice, physical
clocks are subject to unavoidable drifts and are, as such, never perfectly synchronized. One way to address this
issue is to rely on distributed clock synchronization algorithms, such as the Network Time Protocol (NTP) [36]:
nonetheless, the quality of the synchronization achievable via these algorithms may vary significantly (e.g.,
depending on the network load), creating uncertainty intervals that can vary from only a few to hundreds of
milliseconds. An alternative to address the synchronization problems is to rely on specialized hardware devices
(such as GPS and atomic clocks)[5]: these mechanisms do allow for ensuring small and bounded uncertainty
intervals (typically less than 10 msec), but these devices have a non-negligible cost and are not commonly
available in public cloud infrastructures.

It is also obvious that scalar clocks are more space efficient than vector or matrix clocks. For instance, a
system that uses vector clocks has to maintain metadata whose size is linear with the number of entities (namely,
nodes across all the data centers) while a system that maintains scalar clocks maintains metadata whose size is
constant with the number of entities. On the other hand, with a scalar clock it is, in general, impossible to assess
if two events are concurrent or causally related. For instance consider events e and e′ with timespamps t and t′

respectively, where value(t) < value(t′). With scalar clocks we know that e′ can causally depend on e or that e
and e′ are concurrent (but that, for sure, e does not causally depend on e′). With a vector (and hence a matrix)

21



clock it is always possible to be sure if e and e′ are causally dependent or concurrent.

4 Clocks for Weak Consistency

We now discuss the use of clocks in systems that trade consistency for availability; we mainly focus on sys-
tems that provide causal consistency. The common features of these systems are: (i) no support for general
purpose update transactions (i.e., update operations address a single object) and sometimes the availability of
read-only transactions (i.e., transaction that read multiple objects observe a consistent snapshot of the system)
(ii) geo-replication across multiple data centers, (iii) asynchronous propagation of updates, (iv) causal consis-
tency for operations that may access different objects, and (v) client support for ensuring causality by tracking
dependences via dedicated metadata.

Dynamo Probably one of the most representative systems which rests on the extreme of the spectrum is
Dynamo[12]. This system borrows multiple ideas and techniques previously proposed in the literature to build
a cloud data store designed to be highly available in the presence of both temporary and permanent failures.
This is achieved by relying on a weak form of quorums, namely sloppy quorums and a hinted hand-off proto-
col. Sloppy quorums allow the system to make progress on write operations even in the presence of failures in
the replication group. Thus, if a client issues a write operation but there are not sufficient available replicas to
complete the operation, nodes that do not replicate the data being updated are used to complete the operation.
Eventually, Dynamo will move the data from the non-responsible nodes to the actual replicas using a hinted
hand-off protocol. The Dynamo replication scheme is flat. Dynamo uses vector clocks to track causal depen-
dencies within the replication group of each key. A vector clock contains one entry for each replica (thus the
size of clocks grows linearly with the number of replicas). This metadata is kept in the data store, close to the
data object, but is never transmitted to the clients. Therefore, when a client contacts a replica it has no way
to assess if the replica has a state that is consistent with its past observations. Thus, it is possible for a client
to issue a read operation and obtain a version that does not include the client’s previous write operations (thus
lacking session guarantees [48]). The purpose of the metadata is to detect conflicting updates and to be used
by programmers in coding the reconciliation function, using some ad-hoc, application specific, approach. This
very weak form of consistency, known as eventual consistency, makes it difficult to reason about and can lead to
some known anomalies, such as the Amazon’s shopping cart anomalies[12]. Nevertheless, its usability has been
widely proven for some applications, namely through several commercial systems, such as Riak[2], which have
successfully created a business around Dynamo’s ideas.

COPS Due to the difficulty of building applications on top of eventually consistent data stores, the community
has tried to achieve stronger consistency guarantees, such as session guarantees [48] or causal consistency[41],
without hindering availability. More recently, in the context of geo-replicated cloud data stores, there has been a
noticeable effort on providing causal consistency, which is widely regarded as the strongest consistency level that
a system can provide without compromising availability and incurring high latencies[34]. COPS[33], a scalable
causally consistent geo-replicated data store, revived the interest of the community for causally consistent cloud
data stores (in fact, COPS offers a slightly stronger consistency criteria, dubbed causal+ consistency but this
difference is not critical to our discussion; the reader may refer to [33] for a rigorous definition). COPS uses a
hierarchical approach to manage replication: it assumes that some intra data center replication scheme ensures
linearizability, such that replication within the data center can be completely masked from the inter data center
protocol; COPS addresses the latter. To avoid the inconsistency issues of Dynamo, COPS requires clients to
keep metadata and to exchange this metadata every time they access the cloud store. For this purpose, COPS
assigns a scalar clock to each object. Clients are required to maintain in their metadata the last clock value of
all objects read in the causal past. This metadata, representing their causal history, is purged after every update

22



operation, due to the transitivity property of the happens-before relationship [30]. Thus, the dependencies of an
update operation are those immediately previous to the update operation just issued, and the subsequent reads up
to the newly issued update operation. This set of dependencies is known as nearest dependencies. As long as the
client sticks to the same data center, its causal dependencies are automatically satisfied. Nevertheless, updates
piggyback their dependencies when being propagated to other data centers, similarly to lazy replication[29].
When a data center receives an update propagated by another data center, it only makes it visible when its
dependencies are satisfied. In addition, COPS provides a partial form of transactions called causally consistent
read-only transactions. As its name clearly suggests, these are transactions with only read accesses that return
versions of the read objects that belong to a causally consistent snapshot. To implement this construct, the
authors propose a two-round protocol. In the first round, the client issues a concurrent read operation per key
in the read set. Each retrieved object version has a list of dependencies associated. In case any conflicting
version is returned (whose dependencies are not satisfied consistently), a second round of read operations is
used to retrieve non-conflicting versions. Two object versions are free of conflicts if the objects do not depend
on one another, or, if they do so, the version retrieved is equal or greater than the one in the dependencies list.
Notice that the conflicting versions may appear only due to concurrent updates to the read-only transaction. The
authors argue that in order to correctly identify conflicting versions, the nearest dependencies are not sufficient.
Therefore, the system needs to store the full list of dependencies and piggyback them when clients issue reads
within transactions. This clearly slows down the system and may even make the system unusable due to high
latencies in processing and sending large chunks of dependencies over the network.

Chain Reaction In COPS, the fact that causal consistency is provided to the clients is not exploited to increase
concurrency within a data center, given that the protocols assume linearizability. ChainReaction [4] exploits this
opportunity by proposing a modified chain replication technique that allows for concurrent causally consistent
reads within a data center. For this purpose ChainReaction slightly augments the metadata maintained by clients,
with two logical clock values per data object: the first value is a global Lamport’s clock and the second value is
a hint on which local replicas can provide consistent reads. ChainReaction also explores an interesting trade-off
when offering causally consistent read-only transactions: it introduces a logical serialization point in each data
center (slightly reducing the concurrency of updates) to make it easier to identify consistent snapshots and avoid
the need for multiple read-phases when implementing read-transactions.

GentleRain A recently proposed system that uses physical clocks in its design is GentleRain [19]. The main
contributions of GentleRain are to reduce the metadata piggybacked on updates propagation to almost zero and
to eliminate dependency checking procedures. The idea is to only allow a data center to make a remote update
visible once all partitions (whithin the data center) have seen all updates up to the remote update time stamp.
Thus, a client that reads a version is automatically ensured to read causally consistent versions in subsequent
reads without the need of explicitly checking dependencies or being forced to wait until a causally consistent
version is ready.

GentleRain uses physical clocks in its implementation for several purposes: (i) timestamp updates, (ii)
detect conflicting versions, (iii) generate read snapshot time for read-only transactions, and (iv) compute the
global stable clock. Clients only need to keep track of the latest global stable clock seen in order to ensure
across-objects causality. The global stable clock is the minimum physical clock known among all the partitions
and data centers, and it is local to each partition. Since, two partitions may have different global stable clocks,
GentleRain relies on the clients to convey sufficient information to avoid causality violations. GentleRain is
able to achieve performance results similar to eventually consistent systems. Notice that physical clocks could
be substituted by simple scalar logical clocks without compromising correctness. Nevertheless, this could cause
clocks to advance at very different rates in different partitions, causing the global stable clock to move slowly.
This would increase the latency for the visibility of updates to data. Furthermore, it would generate staler read

23



snapshot times for read-only transactions

ORBE ORBE [18] is a partitioned geo-replicated data store that proposes a solution based on the joint use of
physical and logical clocks. ORBE uses vector clocks, organized as a matrix, to represent dependencies. The
vector clock has an entry per partition and data center. Thus, multiple dependencies on data items of the same
partition and data center are represented by only one scalar, which allows for reducing the size of the metadata
piggybacked to messages. In addition, similarly to ChainReaction, ORBE is able to optimize the read-only
transactional protocol to complete in only one round by relying on physical clocks. Physical clocks are used to
generate read snapshot times. Thus, upon receiving a transaction request, the coordinator of the transaction sets
the transaction’s snapshot time to its physical clock. In consequence, the reads of the transaction have a version
upper bound, the snapshot time, which is used to avoid retrieving versions that would violate causality due to
concurrent update operations, as in COPS.

5 Clocks for Strong Consistency

In this section, we address systems that provide strong semantics with general purpose transactions, supporting
read and write operations to arbitrary objects in the data store, with the guarantee that they will be accessed
atomically and isolated from concurrent accesses.

GMU and SCORe The ability of scaling out data stores in large cloud deployments is highly affected by the
cost of synchronizing data among the different replicas. This is particularly true for the case of strongly con-
sistent data stores, which require synchronous interactions among all the replicas maintaining data manipulated
by a transaction. In order to reduce this cost, a widely adopted strategy is to use partial replication techniques,
i.e., to limit the nodes r that replicate each data item to a subset of all the nodes m (with r ≪ m). One ad-
ditional characteristic that is particularly desirable in large-scale systems is that of Genuine Partial Replication
(GPR) [43], i.e., ensuring that a transaction involves coordination of only the nodes s that replicate the data items
accessed (where typically s ≪ m). We note that the GPR property rules out non-scalable designs that rely on a
centralized time source[7], or that force the synchronous advancement of clocks on all nodes of the system upon
the commit of any (update) transaction [46]. Two recent examples of GPR data stores that rely on logical clocks
to ensure strong consistency are GMU [38] and SCORe [40]. Both systems implement a fully-decentralized
multiversion concurrency control algorithms, which spares read-only transactions from the cost of remote vali-
dations and from the possibility of aborting. As for update transactions, GMU and SCORe can be characterized
as Deferred Update Replication [45] protocols, since writes are buffered at the transaction’s coordinator and sent
out during the commit operation to be applied and made visible to other transactions in an atomic step.

The two systems differ, however, in the way they reify time. GMU uses a vector clock of size m (one entry
per node) whereas SCORe uses a single scalar clock. These clocks are used to assign the read and commit
timestamps to transactions, as well as to tag the various versions of each data item. In both systems, the read
timestamp of a transaction is used to establish a consistent snapshot (i.e., the set of visible data item versions)
over the partially replicated data set. In SCORe, the start timestamp is assigned to a transaction upon its first read
operation in some node. From that moment on, any subsequent read operation is allowed to observe the most
recent committed version of the requested datum having timestamp less than or equal to the start timestamp (as
in classical multiversion concurrency control algorithms). In contrast, for GMU, whenever a transaction T reads
for the first time on a node, it tries to advance the start timestamp (a vector clock) to extend the visible snapshot
for the transaction. This can allow, for instance, to include in T ’s snapshot the versions created by a transaction
T ′ that have involved a node n not contacted so far by T , and whose commit events would not be visible using
T ’s initial read-timestamp (as the n-th entry of the commit timestamp of T ′ is higher than the corresponding
entry of T ’s read-timestamp).

24



Another relevant difference between these two systems lies in the consistency guarantees that they provide:
SCORe provides 1-Copy Serializability (1CS), whereas GMU only Update Serializability (US) [3], a consistency
criterion that allows read-only transactions to serialize the commit events of non-conflicting update transactions
in different orders — an anomaly only noticeable by users of the systems if they communicate using some
external channel, which still makes US strictly weaker than classic 1CS. In fact, both protocols guarantee also
the serializability of the snapshot observed by transactions that have to be aborted (because their updates are not
reconcilable with those of already committed transactions). This additional property is deemed as important in
scenarios in which applications process the data retrieved by the store in an non-sandboxed environment (e.g.,
in a Transactional Memory [15]), in which exposing data anomalies to applications may lead to unpredictable
behaviors or faults.

Clock-SI Clock-SI[17] assumes loosely synchronized clocks that only move forward, but that can be subject
to possibly arbitrary skews. Clock-SI[17] provides the so-called Snapshot Isolation[8] consistency criterion,
in which read-only transactions read from a consistent (possibly versioned) snapshot, and other transactions
commit if no object written by them was also written concurrently. Each transaction identifies its read timestamp
simply by using its local physical clock. In order to ensure safety in spite of clocks skews, Clock-SI resorts to
delaying read operations in two scenarios: i) the read operation is originated by a remote node whose clock is
in the future with respect to the physical clock of the node that processes the read request; ii) the read operation
targets a data item for which a pending pre-committed version exists and whose commit timestamp may be
smaller than the timestamp of the read operation.

Spanner Spanner [5] provides a stronger consistency guarantee than the data stores discussed so far, namely
external consistency (also known as strict serializability). The key enabler behind Spanner is the TrueTime API.
Briefly, clock skew is exposed explicitly in TrueTime API by representing the current time as an interval. This
interval is guaranteed to contain the absolute time at which the clock request was invoked. In fact, multiple clock
references (GPS and atomic clocks) are used to ensure strict, and generally small, bounds on clock uncertainty
(less than 10 ms).

Spanner assigns a timestamp s to (possibly read-only) transactions by reading the local physical clock.
Similarly, it also assigns a commit timestamp c to update transactions once that they acquire all the locks over
the write-set w, which is then used to version the new data items. Spanner blocks read operations associated
with a physical timestamp t in case it cannot yet be guaranteed that no new update transaction will be able to
commit with a timestamp t′ < t. This is achieved by determining a, so called, safe time tsafe that is lower
bounded by the physical timestamp of the earliest prepared transaction at that node. Unlike Clock-SI, though,
Spanner also introduces delays in commit operations: the write-set w of a transaction with commit timestamp
c is made visible only after having waited out the uncertainty window associated with c. This is sufficient to
ensure that the side-effects of a transaction are visible solely in case timestamp c is definitely in the past, and
that any transaction that reads or over-writes data in w is guaranteed to be assigned a timestamp greater than c.

CockroachDB The waiting phases needed by the data stores based on physical clocks can have a detrimental
effect on performance, especially in the presence of large skews/uncertainties in the clock synchronization. This
has motivated the investigation of techniques that use in conjunction both logical and physical clocks, with
the aim to allow the correct ordering of causally related transactions without the need of injecting delays for
compensating possible clock skews. Augmented-Time (AT) [13], for instance, uses a vector clock that tracks
the latest known physical clock values of any node with which communication took place (even transitively)
in the current uncertainty window. The assumption on the existence of a bounded skew among physical clocks
allows to trim down the size of the vector clocks stored and disseminated by nodes. Also, by relying on vector
clocks to track causality relations within the uncertainty interval, AT ensures external consistency for causally

25



related transactions (e.g,. if a transaction T2 reads data updated by transaction T1, T2’s commit timestamp will
be greater than T1’s) without the need for incurring Spanner’s commit wait phases.

Real-time order (or external consistency) cannot however be reliably enforced between transactions whose
uncertainty intervals overlap and which do not develop any (possibly transitive) causal dependency. In such
cases, waiting out the uncertainty interval (provided that reasonable bounds can be assumed for it) remains
necessary to preserve external consistency. Hybrid Logical Clocks (HLC) [28] represent a recent evolution
of the same idea, in which physical clocks are coupled with a scalar logical clock with the similar goal of
efficiently ordering causally related transactions whose uncertainty intervals overlap. Roughly speaking1, with
HLC, whenever a node n receives a message timestamped with a physical clock value, say pt′, greater than the
maximum currently heard of among the nodes, say pt, n sets pt = pt′ and uses the updated value of pt as if it
were a classic scalar logical clock in order to propagate causality information among transactions.

HLC is being integrated in CockroachDB[1], an open-source cloud data store (still under development at
the time of writing) that, similarly to Spanner, relies on physical clocks to serialize transactions (ensuring either
Snapshot Isolation or Serializable Snapshot Isolation[20]). Unlike Spanner, however, CockroachDB does not
assume the availability of specialized hardware to ensure narrow bounds on clock synchronization, but relies
on conventional NTP-based clock synchronization that frequently imposes clock skews of several tens of mil-
liseconds. HLC is hence particularly beneficial in this case, at it allows for ensuring external consistency across
causally related transactions while sparing from the costs of commit waits.

6 Discussion

We now draw some observations, based on the systems analyzed in the previous sections.

6.1 It is Unclear How Well External Consistency May Scale

Ensuring external consistency in a distributed data store without sacrificing scalability (e.g., using a centralized
time source, or tracking the advancement of logical time at all nodes whenever a transaction commits) is a
challenging problem. GPR systems based on logical clocks, like SCORe or GMU, can accurately track real-
time order relations only between causally related transactions — a property that goes also under the name of
witnessable real-time order [39]). Analogous considerations apply to system, like Clock-SI, that rely on physical
clocks and assume unbounded clock-skews (and monotonic clock updates). The only GPR system we know of
that guarantees external consistency is Spanner, but this ability comes with two non-negligible costs: 1) the
reliance on specialized hardware to ensure tight bounds on clock uncertainty; and 2) the introduction of delays
upon the critical path of execution of transactions, which can have a detrimental impact on performance. As
already mentioned, the usage of hybrid clocks, like HLC or AT, can be beneficial to reduce the likelihood of
blocking due to clock uncertainty. However, we are not aware of any GPR data store that uses hybrid clocks and
loosely-synchronized physical clocks (i.e., subject to unbounded skew), which can consistently capture real-time
order among non-causally related transactions, e.g., two transactions that execute sequentially on different nodes
and update disjoint data items. In the light of these considerations, there appears to exist a trade-off between the
strictness of the real-time ordering guarantees that can be ensured by a scalable transactional data store and the
necessity of introducing strong assumptions on clock synchronization.

More in general, the analysis of these systems raises interesting theoretical questions such as: which forms
of real-time order can be guaranteed by scalable (i.e., GPR) cloud data store implementations that use exclu-
sively logical clocks? Does the use of loosely synchronized physical clocks, possibly complemented by logical

1A more sophisticated algorithm using two scalar logical clocks is also proposed in order to guarantee the boundedness of the
information stored in the logical timestamps and that the divergence between physical and logical clocks is bounded — which allows for
using logical clocks as a surrogate of physical clocks, e.g., to use logical clocks to obtain consistent snapshots at “close” physical times.

26



clocks, allow for providing stronger real-time guarantees? Would relaxing the progress guarantees for read-only
transactions (e.g., lock-freedom in systems like Spanner or GMU) allow for strengthening the real-time ordering
guarantees that a GPR system can guarantee? One may argue that the above questions appear related to some
of the theoretical problems studied by the parallel/concurrent computing literature, which investigated the pos-
sibility of building scalable Transactional Memory implementations [23, 47, 14, 24] that guarantee a property
akin to GPR, namely Disjoint Access Parallelism (DAP) [25, 5, 10, 39]: roughly speaking, in a DAP system two
transactions that access disjoint data items cannot contend for any shared object (like logical clocks). However
these works considered a different system model (shared-memory systems) and neglected the usage of phys-
ical and hybrid clocks. Understanding whether those results apply to the case of distributed data stores (i.e.,
message-passing model) using different clock types remains an interesting open research problem.

6.2 The Trade-offs Between Logical and Physical Clocks Are Not Completely Understood

A key trade-off that emerges when using logical clocks in a strongly consistent GPR cloud data store is that the
advancement of clocks across the various nodes of the system is dependent on the communication patterns that
are induced by the data accesses issued by the user-level applications. As such, systems based on logical clocks
may be subject to pathological scenarios in which the logical clocks of a subset s of the platform’s nodes can lag
significantly behind with respect to the clocks of other nodes that commit update transactions without accessing
data maintained on s. In this case, the transactions originated on the nodes in s are likely to observe stale data and
incur higher abort rates. The mechanism typically suggested to tackle this issue is to rely on some asynchronous,
epidemic dissemination of updates to the logical clocks. Such techniques can at least partially address the issue,
but they introduce additional complexity (as the optimal frequency of dissemination is a non-trivial function of
the platform’s scale and workload) and consume additional network bandwidth.

Clearly, physical clocks — which advance spontaneously — avoid this issue. On the other hand, in order
to compensate for clock skews, data stores that rely on physical clocks have to inject delays proportional to the
uncertainty intervals in critical phases of the transactions’ execution. As already discussed in various works[5,
1, 28, 13], these delays can severely hamper performance unless specialized, expensive hardware is used to
ensure tight bounds on the uncertainty intervals (as in Spanner). In this sense, the idea at the basis of hybrid
clocks, and in particular of approaches like HLC [28], appears quite interesting, since it attempts to combine
the best of both worlds. On the other hand, research in this area is still at its infancy and the only cloud data
store we are aware of that is using hybrid clocks is CockroachDB, which is still in its early development stages.
It is hence unclear to what extent hybrid clocks can alleviate the need for injecting artificial delays in solutions
based on physical clocks. Indeed, we advocate the need for conducting a rigorous and systematic experimental
analysis aimed at identifying under which conditions (e.g., platform’s scale, maximum clock synchronization
skew, workloads) each of the various approaches provides optimal efficiency. The results of such a study would
be valuable to guide practitioners in the selection of the data store best suited to their application needs. They
may also provide motivations to foster research in the design of autonomic systems aimed at adapting the type
of clock implementation to pursue optimal efficiency in face of dynamic workload conditions and/or platform’s
scale (e.g., following an elastic re-scaling of the platform).

6.3 Time is a Resource That Can be Traded for Other Resources

As we have noted earlier, the end-user experience can be negatively affected by the latency of the cloud service.
Therefore, solutions that require waiting, as some of the previously described protocols based on the use of
physical clocks, have to be used carefully. On the other hand, time is just one of the many resources that can be
a source of bottlenecks in the operation of a cloud data store. Large metadata structures consume disk space and
increase network bandwidth utilization, within the data center, across data centers, and between the data center
and the client. In turn, heavy disk and network utilization are also a major source of delays and instability.

27



Since solutions based on physical clock often allow for significant metadata savings, the overall performance of
a given algorithm is hard to predict, and strongly depends on which resources the system is more constrained.

For instance, although GentleRain is able to reduce dependencies metadata to almost zero, it also has a
disadvantage: clients are likely to read stale data. Since remote updates visibility is delayed, we may end up
with latencies of up to seconds (depending on the geo-replicated deployment and network conditions) before
an update is visible to other clients. On the other hand, the system will have performance almost similar to an
eventually consistent data store since the metadata is almost negligible and no dependence checking mechanism
is required. Thus, depending on application requirements, one could give preference to freshness of data or
performance.

Another example is how ORBE uses time to avoid multiple rounds of messages to implement read-only
transactions. In this case, loosely synchronized physical clocks are used as a decentralized solution for imple-
menting one round causally consistent read-only transactions. However, this may affect negatively the latency
of operations. A partition that receives a read operation with snapshot time st has to first wait until its physi-
cal clock catches up with st, and also to make sure that updates up to that time from other replicas have been
received.

GMU and SCORe also exemplify this trade-off. By using vector clocks, GMU can advance the transaction’s
read snapshot more frequently than SCORe, which relies on a scalar clock. The intuition is that, since SCORe
needs to capture causal dependencies among transactions via a single scalar clock, it is sometimes forced to
over-approximate such relations, which leads to observing obsolete snapshots. This impacts the freshness of the
data snapshots observed by transactions, an issue that is particularly relevant for update transactions, which can
be subject to spurious aborts as a consequence of unnecessarily reading obsolete data versions. On the other side
of the coin, in both systems, logical timestamps are piggybacked to every message, both for read operations (to
identify the read timestamp), as well as during the distributed commit phase (to obtain the final commit times-
tamp). As such, SCORe naturally incurs less overheads by sending a single scalar clock with each message, in
contrast with GMU’s vector clocks that grow linearly with the number of nodes in the deployment. Experiments
comparing both systems in a similar infra-structure (both in terms of software as well as in hardware) confirmed
that, at least in low conflict workloads, SCORe tends to perform even slightly better than GMU [40], despite
providing a stronger consistency criterion — we note that their scalability trends are similar, as expected in
workloads with low contention to data. Other workloads may be found on another work relying on SCORe [16].

6.4 Total Order is Expensive but Concurrency Also Comes with a Cost

Most strong consistency models, such as serializability, require concurrent requests to be serialized and this,
in practice, means that some form of total order/consensus protocol needs to be implemented in the system.
By definition, such protocols materialize a logic serialization point for the system, which can easily turn into
a bottleneck. The use of weaker consistency models, which allow for more concurrency, has therefore great
appeal. We have already discussed that weak consistency imposes a burden on the programmer of applications
that use the cloud data store. Maybe not so obvious is the fact that weak consistency also imposes a metadata
burden on the protocols that support the additional level of concurrency. For instance, consider an idealized
system where all operations, for all objects, are executed by a single “primary” node, replicated using Paxos [31].
The entire state of the system at a given point can be referred to by a single scalar, the number of the last operation
executed by the primary node. On the one hand, the use of a single primary node to serialize all operations is
inherently non-scalable, and hence undesirable in a large-scale system. On the other hand, an idealized fully
concurrent system supporting partial replication, with no constraints on how updates are propagated among
replicas, requires to maintain a matrix clock of size m2 where m is the total number of nodes in the entire
system. Such timestamps would be impossible to maintain and exchange in large scale.

The discussion above shows that fully decentralized (and inherently fully concurrent) systems may be as
little scalable as fully centralized (and inherently fully sequential) systems. It is therefore no surprise that, as

28



with the use of different clock implementations, the right trade-offs may heavily depend on concrete factors such
as the workload characteristics, the hardware deployment, etc. In consequence, it is hard to define, in general,
when one approach outperforms the other.

Consider for instance the different approaches taken by COPS and ChainReaction for different aspects of
the system. ChainReaction is geared towards efficient read operations while COPS aims at more balanced
workloads. For instance, ChainReaction is willing to slightly increase the metadata size to allow for additional
concurrency while reading objects within a data center, contrary to COPS that enforces linearizabilty at each data
center. Also ChainReaction serializes updates within the data center to optimize read-only transactions while
COPS does not serialize updates to distinct objects but may pay the cost of multi-phase read-only transactions.
Similarly, ORBE implements a number of metadata reduction techniques, that may create false dependencies
among operations, thus, achieving metadata savings at the cost of concurrency loss.

7 Summary

In this work we focused on one common aspect that is crucial to any distributed cloud data store, i.e., the
mechanisms employed to capture the passage of time and to keep track of the cause-effect relations among
different data manipulations.

We analyzed existing literature in the area of cloud data stores from two antagonistic perspectives, those of
low latency intra data center communication and geo-replicated systems. These two complementary deploy-
ments of machines create the opportunity to explore both strongly consistent and weakly consistent systems.
This is, in part, a consequence of the design of modern data centers that allow strong consistent systems to per-
form fast, whereas for inter data center replication we can effectively use weak consistent systems (in particular
with causal consistency) while still providing meaningful semantics and guarantees to the programmer.

Our analysis allowed us to derive some observations on the implications of various design choices at the
basis of existing cloud data stores. These insights may not only help system architects to select the solutions that
best fit their needs, but also identify open research questions that may offer opportunities to enhance the next
generations of cloud data stores.

References
[1] Cockroach. https://github.com/cockroachdb/cockroach.
[2] Riak. http://basho.com/riak/.
[3] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions.

PhD thesis, 1999. AAI0800775.
[4] Sérgio Almeida, João Leitão, and Luı́s Rodrigues. Chainreaction: A causal+ consistent datastore based on chain

replication. In Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys ’13, pages 85–98,
New York, NY, USA, 2013. ACM.

[5] Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-access parallel implementations of
transactional memory. Theory of Computing Systems, 49(4):698–719, 2011.

[6] Peter Bailis and Ali Ghodsi. Eventual consistency today: Limitations, extensions, and beyond. Queue, 11(3):20:20–
20:32, March 2013.

[7] Roberto Baldoni, Carlo Marchetti, and Sara Tucci Piergiovanni. A fault-tolerant sequencer for timed asynchronous
systems. In Euro-Par 2002 Parallel Processing, pages 578–588. Springer, 2002.

[8] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[9] Eric A Brewer. Towards robust distributed systems. In PODC, page 7, 2000.

29



[10] Victor Bushkov, Dmytro Dziuma, Panagiota Fatourou, and Rachid Guerraoui. Snapshot isolation does not scale
either. Technical report, Technical Report TR-437, Foundation of Research and Technology–Hellas (FORTH), 2013.

[11] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat,
Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally
distributed database. ACM Trans. Comput. Syst., 31(3):8:1–8:22, August 2013.

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. SIGOPS Oper. Syst. Rev., 41(6):205–220, October 2007.

[13] Murat Demirbas and Sandeep Kulkarni. Beyond truetime: Using augmented time for improving Google Spanner,
2013.

[14] Nuno Diegues and Paolo Romano. Time-warp: lightweight abort minimization in transactional memory. In Proceed-
ings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel programming,167–178. 2014.

[15] Nuno Diegues, Paolo Romano, and Luı́s Rodrigues. Virtues and limitations of commodity hardware transactional
memory. In International Conference on Parallel Architectures and Compilation, PACT ’14, Edmonton, AB, Canada,
August 24-27, 2014, pages 3–14, 2014.

[16] Nuno Lourenço Diegues and Paolo Romano. Bumper: Sheltering transactions from conflicts. In Proceedings of the
2013 IEEE 32Nd International Symposium on Reliable Distributed Systems, SRDS ’13, pages 185–194, Washington,
DC, USA, 2013. IEEE Computer Society.

[17] Jiaqing Du, S. Elnikety, and W. Zwaenepoel. Clock-si: Snapshot isolation for partitioned data stores using loosely
synchronized clocks. In Reliable Distributed Systems (SRDS), 2013 IEEE 32nd International Symposium on, pages
173–184, Sept 2013.

[18] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe: Scalable causal consistency using depen-
dency matrices and physical clocks. In Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13,
pages 11:1–11:14, New York, NY, USA, 2013. ACM.

[19] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. Gentlerain: Cheap and scalable causal consis-
tency with physical clocks. In Proceedings of the ACM Symposium on Cloud Computing, SOCC ’14, pages 4:1–4:13,
New York, NY, USA, 2014. ACM.

[20] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha. Making snapshot isolation
serializable. ACM Trans. Database Syst., 30(2):492–528, June 2005.

[21] Colin J Fidge. Timestamps in message-passing systems that preserve the partial ordering. Australian National
University. Department of Computer Science, 1987.

[22] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51–59, June 2002.

[23] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N Scherer III. Software transactional memory for
dynamic-sized data structures. In Proceedings of the twenty-second annual symposium on Principles of distributed
computing, pages 92–101. ACM, 2003.

[24] Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support for lock-free data structures,
volume 21. ACM, 1993.

[25] Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of strong shared memory primitives. In
Proceedings of the thirteenth annual ACM symposium on Principles of distributed computing, 151–160. ACM, 1994.

[26] Caroline Jay, Mashhuda Glencross, and Roger Hubbold. Modeling the effects of delayed haptic and visual feedback
in a collaborative virtual environment. ACM Trans. Comput.-Hum. Interact., 14(2), August 2007.

[27] Sandeep S Kulkarni et al. Stabilizing causal deterministic merge. In Self-Stabilizing Systems, pages 183–199.
Springer, 2001.

[28] SandeepS. Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and Marcelo Leone. Logical physical
clocks. In MarcosK. Aguilera, Leonardo Querzoni, and Marc Shapiro, editors, Principles of Distributed Systems,
volume 8878 of Lecture Notes in Computer Science, pages 17–32. Springer International Publishing, 2014.

30



[29] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high availability using lazy replication.
ACM Trans. Comput. Syst., 10(4):360–391, November 1992.

[30] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565,
July 1978.

[31] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
[32] Greg Linden. Make data useful. Presentation, Amazon, November, 2006.
[33] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle for eventual: Scal-

able causal consistency for wide-area storage with cops. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 401–416, New York, NY, USA, 2011. ACM.

[34] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability, and convergence. University of Texas
at Austin Tech Report, 11, 2011.

[35] Friedemann Mattern. Virtual time and global states of distributed systems. Parallel and Distributed Algorithms,
1(23):215–226, 1989.

[36] David L Mills. A brief history of ntp time: Memoirs of an internet timekeeper. ACM SIGCOMM Computer Commu-
nication Review, 33(2):9–21, 2003.

[37] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14, pages 305–320, Berkeley, CA,
USA, 2014. USENIX Association.

[38] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues. When scalability meets consistency: Genuine mul-
tiversion update-serializable partial data replication. In Distributed Computing Systems (ICDCS), 2012 IEEE 32nd
International Conference on, pages 455–465, June 2012.

[39] Sebastiano Peluso, Roberto Palmieri, Paolo Romano, Binoy Ravindran, and Francesco Quaglia. Brief announcement:
Breaching the wall of impossibility results on disjoint-access parallel tm. Distributed, page 548.

[40] Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. Score: A scalable one-copy serializable partial replication
protocol. In Proceedings of the 13th International Middleware Conference, Middleware ’12, pages 456–475, New
York, NY, USA, 2012. Springer-Verlag New York, Inc.

[41] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J. Demers. Flexible update
propagation for weakly consistent replication. In Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles, SOSP ’97, pages 288–301, New York, NY, USA, 1997. ACM.

[42] Sunil K. Sarin and Nancy A. Lynch. Discarding obsolete information in a replicated database system. Software
Engineering, IEEE Transactions on, (1):39–47, 1987.

[43] Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-store: Genuine partial replication in wide area networks.
In Proceedings of the 2010 29th IEEE Symposium on Reliable Distributed Systems, SRDS ’10, pages 214–224,
Washington, DC, USA, 2010. IEEE Computer Society.

[44] Eric Schurman and Jake Brutlag. The user and business impact of server delays, additional bytes, and http chunking
in web search. In Velocity Web Performance and Operations Conference, June 2009.

[45] Daniele Sciascia, Fernando Pedone, and Flavio Junqueira. Scalable deferred update replication. In Proceedings of
the 2012 42Nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), DSN ’12,
pages 1–12, Washington, DC, USA, 2012. IEEE Computer Society.

[46] Damián Serrano, Marta Patiño-Martı́nez, Ricardo Jiménez-Peris, and Bettina Kemme. Boosting database replication
scalability through partial replication and 1-copy-snapshot-isolation. In Dependable Computing, 2007. PRDC 2007.
13th Pacific Rim International Symposium on, pages 290–297. IEEE, 2007.

[47] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing, 10(2):99–116, 1997.
[48] Douglas B Terry, Alan J Demers, Karin Petersen, Mike J Spreitzer, Marvin M Theimer, and Brent B Welch. Session

guarantees for weakly consistent replicated data. In Parallel and Distributed Information Systems, 1994., Proceedings
of the Third International Conference on, pages 140–149. IEEE, 1994.

[49] Gene TJ Wuu and Arthur J Bernstein. Efficient solutions to the replicated log and dictionary problems. In Proceedings
of the third annual ACM symposium on Principles of distributed computing, pages 233–242. ACM, 1984.

31


