skip to main content
research-article

On the matrix berlekamp-massey algorithm

Published: 03 October 2013 Publication History

Abstract

We analyze the Matrix Berlekamp/Massey algorithm, which generalizes the Berlekamp/Massey algorithm [Massey 1969] for computing linear generators of scalar sequences. The Matrix Berlekamp/Massey algorithm computes a minimal matrix generator of a linearly generated matrix sequence and has been first introduced by Rissanen [1972a], Dickinson et al. [1974], and Coppersmith [1994]. Our version of the algorithm makes no restrictions on the rank and dimensions of the matrix sequence. We also give new proofs of correctness and complexity for the algorithm, which is based on self-contained loop invariants and includes an explicit termination criterion for a given determinantal degree bound of the minimal matrix generator.

References

[1]
Beckermann, B. and Labahn, G. 1994. A uniform approach for fast computation of matrix-type Padé approximants. SIAM J. Matrix Anal. Applic. 15, 3, 804--823.
[2]
Berlekamp, E. R. 1968. Algebraic Coding Theory. McGraw-Hill, New York.
[3]
Brent, R. P., Gustavson, F. G., and Yun, D. Y. Y. 1980. Fast solution of Toeplitz systems of equations and computation of Padé approximants. J. Algorithms 1, 259--295.
[4]
Cabay, S., Choi, D. K., and Labahn, G. 1990. Inverses of block Hankel and block Toeplitz matrices. SIAM Journal of Computing 19, 98--123.
[5]
Coppersmith, D. 1994. Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm. Math. Comput. 62, 205, 333--350.
[6]
Dickinson, B. W., Morf, M., and Kailath, T. 1974. A minimal realization algorithm for matrix sequences. IEEE Trans. Automatic Control shape AC-19, 1, 31--38.
[7]
Dornstetter, J. L. 1987. On the equivalence between Berlekamp's and Euclid's algorithms. IEEE Trans. Inf. Theory it-33, 3, 428--431.
[8]
Dummit, D. S. and Foote, R. M. 1991. Abstract Algebra. Prentice Hall, Inc., Englewood Cliffs, NJ 07632.
[9]
Durbin, J. 1959. The fitting of time-series models. Rev. Int. Stat. Inst. 28, 229--249.
[10]
Giesbrecht, M., Kaltofen, E., and Lee, W.-S. 2003. Algorithms for computing sparsest shifts of polynomials in power, chebychev, and pochhammer bases. J. Symbolic Comput. 36, 3--4, (Special issue (ISSAC 2002). Guest editors: M. Giusti & L. M. Pardo. URL://EKbib/03/GKL03.pdf.) 401--424.
[11]
Giesbrecht, M., Kaltofen, E., and Lee, W.-S. 2002. Algorithms for computing the sparsest shifts for polynomials via the Berlekamp/Massey algorithm. In Proceedings of the 2002 International Symposium on Symbolic Algebraic Comput. (ISSAC'02), T. Mora (Ed.). ACM, New York, 101--108.
[12]
Giorgi, P., Jeannerod, C.-P., and Villard, G. 2003. On the complexity of polynomial matrix computations. In Proceedings of the 2003 International Symposium on Symbolic Algebraic Comput. (ISSAC'03), J. R. Sendra Ed., ACM, New York, 135--142.
[13]
Kailath, T. 1980. Linear systems. Prentice-Hall.
[14]
Kaltofen, E. 1992. On computing determinants of matrices without divisions. In Proceedings of the 1992 International Symposium on Symbolic Algebraic Computing (ISSAC'92), P. S. Wang (Ed.). ACM Press, New York, 342--349.
[15]
Kaltofen, E. 1995. Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems. Math. Comput. 64, 210, 777--806.
[16]
Kaltofen, E. and Lee, W.-S. 2003. Early termination in sparse interpolation algorithms. J. Symbolic Comput. 36, 3--4, Special issue (ISSAC 2002). 365--400.
[17]
Kaltofen, E. and Saunders, B. D. 1991. On Wiedemann's method of solving sparse linear systems. In Proceedings of the (AAECC-9). H. F. Mattson, T. Mora, and T. R. N. Rao Eds., Lecture Notes in Computer Science, vol. 539. Springer-Verlag, Berlin, Germany, 29--38.
[18]
Kaltofen, E. and Villard, G. 2004. On the complexity of computing determinants. Comput. Complex. 13, 3--4, 91--130.
[19]
Levinson, N. 1947. The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction. J. Math. Phys. 25, 261--278.
[20]
Lobo, A. A. 1995. Matrix-Free Linear System Solving and Applications to Symbolic Computation. Ph.D. dissertation. Rensselaer Polytechnic Instit., Troy, NY.
[21]
Massey, J. L. 1969. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory it- 15, 122--127.
[22]
Popov, V. M. 1970. Some properties of control systems with irreducible matrix transfer functions. In Lecture Notes in Mathematics. Vol. 144, Springer-Verlag, Berlin, 169--180.
[23]
Rissanen, J. 1972a. Realizations of Matrix Sequences. Technical rep. RJ-1032. IBM T. J. Watson Research Center, Yorktown Heights, New York.
[24]
Rissanen, J. 1972b. Realizations of Matrix Sequences. Technical rep. RJ-1032. IBM T. J. Watson Research Center, Yorktown Heights, New York.
[25]
Sugiyama, Y., Kasahara, M., Hirasawa, S., and Namekawa, T. 1975. A method for solving key equation for decoding Goppa codes. Inf. Cont. 27, 87--99.
[26]
Thomé, E. 2002. Subquadratic Computation of Vector Generating Polynomials and Improvements of the Block Wiedemann Method. J. Symbolic Comput. 33, 5, 757--775.
[27]
Turner, W. J. 2002. Black box linear algebra with the LINBOX library. Ph.D. dissertation. North Carolina State University, Raleigh, North Carolina.
[28]
Van Barel, M. and Bultheel, A. 1991. The computation of non-perfect Padé-Hermite approximants. Numer. Algo. 1, 285--304.
[29]
Van Barel, M. and Bultheel, A. 1992. A general module theoretic framework for vector M-Padé and matrix rational interpolation. Numer. Algo. 3, 451--462.
[30]
Villard, G. 1997a. Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems. In ISSAC 97: Proceedings of the 1997 International Symposium on Symbolic Algebraic Computation, W. Küchlin Ed., ACM, New York, 32--39.
[31]
Villard, G. 1997b. A study of Coppersmith's block Wiedemann algorithm using matrix polynomials. Rapport de Recherche 975 IM. Institut d'Informatique et de Mathématiques Appliquées de Grenoble.
[32]
Wiedemann, D. 1986. Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory it-32, 54--62.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 9, Issue 4
September 2013
131 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/2533288
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 October 2013
Accepted: 01 March 2013
Revised: 01 February 2013
Received: 01 December 2011
Published in TALG Volume 9, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Linear generated sequences
  2. matrix polynomials
  3. minimal generators
  4. multivariable linear control
  5. vector Berlekamp/Massey algorithm

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)19
  • Downloads (Last 6 weeks)3
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media