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3 ISAE Supaero, 10 avenue Édouard-Belin, 31055 Toulouse, France
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Abstract—It is well-known that mobility increases the through-
put of wireless networks, and the main objective of this paper is
to show that, depending on the system’s parameters, delay can
actually be negatively impacted. To do so, we study a Markovian
model where users arrive to the network according to a Poisson
process with rate λ and then move at speed α ∈ [0,∞) between
nodes while in service.

Given the complexity of the model, we resort to approximation
techniques in order to get insight into the influence of the speed
α on the mean delay. Our main findings are the following:
• in the case where the network consists of two nodes, delay

is monotone in α for small values of λ. We furthermore
explicit a constant C such that delay is increasing if and
only if C < 0;

• in the general case, we provide numerical results showing
that delay is not necessarily monotone in α. However, we
compare the two extreme cases with 0 and infinite speed,
and find that for small values of λ, delay is worse with
infinite speed than with 0 speed if and only if C < 0.

Finally, an intuitive interpretation of this constant C is provided.
Index Terms—wireless network, mobility, impact, performance

I. INTRODUCTION

The impact of mobility in the performance of communica-
tions systems has attracted considerable attention from the
research community. In a seminal paper, Grossglauser and
Tse [1] showed that in an ad-hoc network, the capacity of
the network increases in the case nodes move. Since then, the
impact of mobility has been studied in many other papers, see
for instance [1]–[5]. Among the different examples, Bonald
et al. [2], consider a wireless system carrying elastic traffic
from different classes. Service is provided according to a set
of feasible service rate vectors that depends on the active
user population in a fairly intricate fashion due to channel-
scheduling. Mobility is modulated by introducing a speed
parameter in this set of feasible service rate vectors. It is
proven that the mean response time is lower (upper) bounded
by the system with speed infinity (zero), which implies that
mobility always improves the performance of the system. In
spite of the differences across the models studied, all previous
analysis led to the conclusion that mobility improves the
performance of the system.

In this paper we aim at assessing the impact of mobility on
the performance as perceived by users. In order to do so, we
consider the same open queueing network that was recently
studied by Ganesh et al. in [6]. They consider a K parallel

server system where new jobs arrive to node i according to
a Poisson process of rate λpi, where λ is the total arrival
rate to the system and pi is the fraction of jobs that start in
node i, service time requirements are exponentially distributed
with unit mean, jobs complete service at node i with an
exponential rate µi, and jobs from node i move to node j
with an exponential rate αrij . The case α = 0 corresponds
to the case in which there is no mobility, and as α increases,
the rate of mobility of every job increases.

For this model, the impact of mobility on stability from
a queueing perspective is easy to understand and quantify,
i.e., mobility connects otherwise disconnected nodes, the
load distributes across the network, and the stability region
increases. Thus, with α = 0, there is no mobility, and all
nodes need to be stable separately, the stability condition of
the system is maxi{λpi − µi} < 0. However, for any α > 0,
the network becomes interconnected, and in [6] it was shown
that the stability condition upgrades up to

∑
i λpi <

∑
i µi.

The above results imply that mobility improves the through-
put, but it does not provide insights regarding whether mobil-
ity improves the quality of service as perceived by users. We
answer this question negatively, and we provide, to the best
of our knowledge, the first rigorous evidence that mobility
may negatively impact delay performance. In contrast to prior
works such as [2], we prove that under certain conditions,
mobility might induce an increase in the service time. To
achieve this goal, we analyze the mean number of jobs in
the system, which by Little’s law, is proportional to the
mean delay as perceived by users. Given the complexity of
the model, exact analysis of steady state performance is not
possible. We thus study the light traffic regime, i.e., when
λ ≈ 0, and consider two metrics to assess the performance:
(i) for any given α < ∞, the mean number of jobs in the
system, and (ii) the difference in the number of jobs between
the extreme cases in which α is either 0 or ∞. For both
measures, we obtain a sufficient set of conditions depending
on the model parameters, such that for sufficiently low λ (i)
the mean number of jobs decrease in, and (ii) the difference in
the mean number of jobs for the extreme values of is negative.

To analyze the model when α → ∞ we prove that the
sequence of stationary distributions converge to an explicit
limit which can be decomposed into a one-dimensional birth-
and-death process describing the total number of users in
system, and a multinomial distribution describing how these



users are distributed among the servers.
The rest of the paper is organized as follows. In Section III

we analyse the light traffic approximation of the mean number
of jobs with respect to the mobility parameter. In Section IV
we consider the system outside the light traffic regime; we
define the system as α→∞ and analyse the difference in the
mean number of jobs for the systems with α = 0 and α =∞.
Section V presents numerical results.

II. MODEL DESCRIPTION

Our basic model is a K parallel server open queueing
network in which a job might move among the servers while
receiving service. As already mentioned in the introduction,
jobs have an exponentially distributed service requirement
with unit mean and arrive to the network according to a
Poisson process of rate λ. For any server i, i = 1, . . . ,K,
let pi, µi, λi := λpi denote the fraction of jobs that start in
node i, its speed, and its arrival rate respectively. We note
that

∑K
i=1 pi = 1. We let µ̄ =

∑
i µi denote the sum of the

capacities of each server.
A job in server i, i = 1, . . . ,K, moves to server j with an

exponential rate αrij , where α is the parameter that controls
the moving speed. Thus, while in the network users move
according to the Q-matrix αR = (αrij)i,j We assume that
the corresponding irreducible Markov chain is independent
across jobs and we denote by ~π = (π1, . . . , πK) its unique
stationary distribution. We note that ~π does not depend on α.

The state of the system at time t ≥ 0 is given by the number
of jobs present at each server, ~Nα(t) = (Nα

1 (t), . . . , Nα
K(t)).

The non-zero components in the transition matrix of the
process ~Nα(t) are given by:

Qα(~n, ~m) =



λpi, if ~m = ~n+ ~ei,
for i = 1, . . . ,K

µi, if ~m = ~n− ~ei and nαi > 0,
for i = 1, . . . ,K

αnirij , if ~m = ~n+ ~ej − ~ei
for i, j = 1, . . . ,K, i 6= j

where ~n, ~m ∈ NK and ~ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ RK , with
a 1 in the i−th position. Note that λpi (µi) corresponds to an
arrival to (a departure from) server i. Each job in server i
moves into server j at rate αrij , hence, the total moving rate
from server i to sever j is αnirij .

From the stability viewpoint, with α = 0, there is no
mobility, and all nodes need to be stable separately, and the
stability condition of the system is maxi{λpi − µi} < 0.
On the other hand for any α > 0, the network becomes
interconnected, and in [6] it was shown that the stability
condition becomes λ < µ̄. Thus, the stability region with
mobility is always larger than in the case without mobility.
We will denote by ρ = λ/µ̄ the load in the system.

Whenever the stability condition for given α ≥ 0 holds, we
let ~Πα = (Πα(n))n∈ZK+ denote the steady-state distribution of

~Nα(t). From theory, we know that ~Πα is the unique solution
of the balance equations given by:

λΠα(~0) =

K∑
i=1

µiΠ
α(~ei), (1)

and for states ~n 6= ~0 K∑
i=1

λpi +

K∑
i,j=1

i 6=j

αnirij +

K∑
i=1

µi1(ni > 0)

Πα(~n)

=

K∑
i=1

(λpiΠ
α(~n− ~ei)1(ni > 0) + µiΠ

α(~n+ ~ei))

+

K∑
i,j=1

i 6=j

(nj + 1)αrjiΠα(~n+ ~ej − ~ei)1(ni > 0) (2)

where 1(·) denotes the indicator function.
Our main performance measure is the mean number of

jobs in steady state, which by Little’s law is proportional to
the mean delay. We denote by ~Nα(∞) a random variable
distributed as ~Πα.

III. MONOTONICITY IN THE LIGHT TRAFFIC REGIME FOR
K = 2

The light-traffic approximation corresponds to the first-
order asymptotic expansion of the system as λ → 0, see [7]
for more details. More precisely, as λ → 0 we seek to write
E(| ~Nα(∞)|) = λmLT (α) + o(λ) for some mLT (α) > 0.
To find this expansion, the idea is to neglect states with two
or more users, as these states will become negligible in the
limit λ→ 0. Indeed, when λ� 1, starting empty the system
evolves as follows: for a long duration, of the order of 1/λ,
nothing happens. Then, an arrival occurs. The user typically
stays in the system for a O(1) duration during which no new
arrival occurred, since it typically occurs after a duration of
the order of 1/λ. Thus, states with two or more users are
exceptional and can be neglected.

The light traffic analysis of general K is cumbersome, we
thus focus on the K = 2 case. However, as we will see later,
this provides interesting insights on the performance of the
system. Neglecting states with two or more users, the balance
equations (1) and (2), simplify into the following system of
equations:

λΠα,LT (0, 0) = µ1Πα,LT (1, 0) + µ2Πα,LT (0, 1)

(µ1 + αr12)Πα,LT (1, 0) = λp1Πα,LT (0, 0) + αr21Πα,LT (0, 1)

(µ2 + αr12)Πα,LT (0, 1) = λp2Πα,LT (0, 0) + αr12Πα,LT (1, 0)
(3)

By solving these balance equations we obtain the following
results:

Πα,LT (0, 0) = α(µ1r21+µ2r12)+µ1µ2

λ(α(r12+r21)+p1µ2+p2µ1)+α(µ1r21+µ2r12)+µ1µ2

Πα,LT (1, 0) = λ(αr21+p1µ2)
λ(α(r12+r21)+p1µ2+p2µ1)+α(µ1r21+µ2r12)+µ1µ2

Πα,LT (0, 1) = λ(αr12+p2µ1)
λ(α(r12+r21)+p1µ2+p2µ1)+α(µ1r21+µ2r12)+µ1µ2



which gives, as λ→ 0, (here ≈ has an informal sense, while
∼ is the usual leading asymptotic term)

E(| ~Nα(∞)|) ≈ Πα,LT (1, 0) + Πα,LT (1, 0) ∼ λmLT (α)

with

mLT (α) =
α+ p1µ2+p2µ1

(r12+r21)

α(µ1π1 + µ2π2) + µ1µ2

(r12+r21)

(4)

where in this simple 2-node case we have π1 = r21

r12+r21
and

π2 = r12

r12+r21
.

As announced in the introduction and discussed in more de-
tails below, one of our main finding is that delay performance
is not necessarily monotone, let it increasing, with the speed
of users. However, at least in the case K = 2, the previous
result actually shows that delay is monotone in the light
traffic regime. Moreover, it can be increasing or decreasing
depending on the precise parameters as shown below.

Proposition 3.1: If µ1 = µ2 or p1π2µ2 = p2π1µ1,
then mLT is constant. If µ1 > µ2, then mLT is strictly
increasing if p1π2µ2 > p2π1µ1 and strictly decreasing if
p1π2µ2 < p2π1µ1.

Proof: This result comes from the expression of the
derivative of mLT in α, namely

d

dα
mLT (α) =

(µ1 − µ2)(p1π2µ2 − p2π1µ1)

(r12 + r21)
(
α(µ1π1 + µ2π2) + µ1µ2

(r12+r21)

)2

These conditions can be put in a more concise form as
follows. Let in the sequel

C :=

(
K∑
i=1

pi
µi

)
− 1∑K

i=1 µiπi
(5)

Then, in the case K = 2 and µ1 > µ2, the above result
can be restated by saying that mLT is strictly increasing if
C < 0 and strictly decreasing if C > 0. This result has a
nice interpretation. The first term in C is the mean sojourn
time of a user arriving to the network if it were not to move,
while the second term is the mean sojourn time of a user
moving at infinite speed. Thus C < 0 means that a user would
depart sooner by not moving because it is more likely to have
arrived to a favorable node, and so in this case mobility should
worsen the system’s performance, which is indeed the content
of Proposition 3.1 since in this case mLT is increasing with
α. It is interesting that, in the light traffic regime, only the
two extreme cases with zero and infinite speeds matter. The
comparison between these two extreme cases is the purpose
of the next section.

In Section V we show some examples to illustrate the
behaviour of E(| ~Nα(∞)|) outside the light traffic regime.

IV. GENERAL CASE: COMPARISON OF THE α = 0 AND
α =∞ CASES

The constant C introduced above suggests to compare the
case without mobility to the case with infinity mobility outside
the light traffic regime, which is what we do here. The main

difference with the preceding section is that we do not restrict
ourselves to the case K = 2. To do so, we assume that λi < µi
for every i, so that the systems with and without mobility are
stable, and we compare the two extreme cases α = 0 and
α =∞ through the metric

∆ := E(| ~N0(∞)|)− E(| ~N∞(∞)|).

In order to give sense to this metric, we first explain what
we mean by the case α = ∞ and we intuitively define
what should be the process, which we denote by ~N∞, in this
regime. We then show convergence as α→∞ of ~Nα to ~N∞

in a suitable sense, namely in the sense of finite-dimensional
distributions and also the stationary distributions.

A. The system with infinite speed

Here we define the limiting process ~N∞ corresponding
to infinite speed. As the speed of mobility increases, the
dynamics within the system can be decomposed into two
types. On a relatively slow time scale, the total number of
jobs changes due to an arrival or a departure, whereas on
a relatively fast time scale, jobs move across servers. As
α → ∞, one can expect a complete decomposition between
these two dynamics which is indeed what happens.

This separation of time scales induces the following beha-
viour in the limit. Conditioned on the total number of users in
the system, since users move at infinite speed and thus forget
instantaneously their initial location, at each point in time they
are spread in the network according to ~π and their locations
at different time instants are independent. Moreover, the total
number of users evolves according to an M/M/1 queue with
arrival rate λ but whose departure rate depends on the current
queue length because some of the queues may be empty. More
precisely, if there are x customers in the system, then queue i
will be nonempty with probability 1− (1− πi)x which gives
an instantaneous service rate

∑
i µi(1− (1− πi)x). Thus, the

limiting process is the process ( ~N∞(t), t ≥ 0) defined as
follows:
• | ~N∞| is the Z+-valued birth-and-death process with non-

zero transition rates q(x, x + 1) = λ and q(x, x − 1) =∑
i µi (1− (1− πi)x);

• let T ⊂ R+ a finite set: conditioned on | ~N∞|,
( ~N∞(t), t ∈ T ) are independent random variables such
that ~N∞(t) follows a multinomial distribution with pa-
rameter (| ~N∞(t)|, ~π), i.e., for ~n = (n1, . . . , nK) with
n1 + · · ·+ nK = | ~N∞(t)|, we have

P ( ~N∞(t) = ~n | | ~N∞|) =
| ~N∞(t)|!
n1! · · ·nK !

πn1
1 · · ·π

nK
K . (6)

We emphasize that because users move at infinite speed,
in-between two times s < t an infinite number of users move.
In particular, the multi-dimensional process ~N∞ is not càdlàg
since its trajectory rather resembles a white noise process. This
rough behavior prevents ~N∞ from being a Markov process,
although the sequence embedded at arrival and departure
epochs is a Markov chain. Another related Markov process is
the one-dimensional process | ~N∞| counting the total number



of users: this process does not “see” the wild oscillations
caused by users moving infinitely fast: it behaves smoothly
and is a Markov process. In the following, by stationary
distribution we mean a distribution such that if ~N∞(0) starts
according to this distribution, the law of ~N∞(t) does not
change over time. The following result describes the stationary
behaviour of ~N∞.

Proposition 4.1: ~N∞ has a unique stationary distribution
~Π∞ given for ~n ∈ ZK+ by

Π∞(~n) =
(n1 + · · ·+ nK)!

n1! · · ·nK !
πn1

1 · · ·π
nK
K ×

λ|~n|∏|~n|
x=1 µ(x)

Π∞(~0)

(7)
where

µ(x) =

K∑
i=1

µi(1− (1− πi)x)

and Π∞(~0) is the normalization constant.
Proof: Let X be a random variable distributed according

to (7). Then we immediately get

P (|X| = k) =
∑

~n:|~n|=k

Π∞(~n) ∝ λk∏k
x=1 µ(x)

.

According to standard results for birth-and-death process,
we recognize the stationary distribution of | ~N∞|. Thus, |X|
is the stationary distribution of | ~N∞|. According to (7),
conditionally on |X| the coordinates X1, . . . , XK follow the
multinomial distribution with parameter |X|. Since ~N∞(t)
is obtained similarly from | ~N∞|, this implies that X is the
stationary distribution for ~N∞.

B. Convergence of ~Nα toward ~N∞

We now establish the convergence of ~Nα toward ~N∞ as
α → ∞. Since ~N∞ is not càdlàg, this convergence cannot
hold at the functional level. Rather, we show that the conver-
gence holds in the sense of finite-dimensional distributions,
and also for the stationary distributions. The proof relies on
the following technical result which is proved in the appendix.

Proposition 4.2: Let θ > 0 be such that λ(eθ − 1) <
λ+µ̄

2 (1 − e−θ) and Φ(~n) = eθ|~n| for ~n ∈ ZK+ . Then Φ is
a geometric Lyapounov function of ~Nα, moreover uniform in
α. More precisely, there exist η ∈ (0, 1), α0 > 0, t0 > 0 and
n ∈ Z+ such that for every α ≥ α0 and every ~n ∈ ZK+ with
|~n| ≥ n,

E~n

(
eθ|

~Nα(t0)|
)
≤ (1− η)eθ|~n|.

where E~n(·) = E(·| ~Nα(0) = ~n).
Proposition 4.3: As α→∞, we have:
• ( ~Nα(t), t ∈ T ) ⇒ ( ~N∞(t), t ∈ T ) for any finite T ⊂

R+, i.e., ~Nα converges to ~N∞ in the sense of finite-
dimensional distributions;

• | ~Nα| ⇒ | ~N∞|, i.e., | ~Nα| converges to | ~N∞| uniformly
on compact sets;

• ~Πα ⇒ ~Π∞, i.e., ~Πα converges weakly to ~Π∞.
Proof: We first explain how to derive the last con-

vergence ~Πα ⇒ ~Π∞ from the first item (convergence of

finite-dimensional distributions). We then explain the two first
convergences, which are based on a coupling argument.

Invoking Theorem 5 in [8], we obtain from Proposition 4.2

E(eθ|N
α(∞)|) ≤ c

for any α ≥ α0 and for some constant c independent of α.
In particular, this bound shows that the family of probability
distributions (~Πα, α ≥ α0) is tight. Let κ be any accumulation
point, and assume without loss of generality by working along
an appropriate subsequence that ~Πα ⇒ κ. Then the finite-
dimensional convergence implies that

P~Πα( ~Nα(t) = n(t), t ∈ T )→ Pκ( ~N∞(t) = n(t), t ∈ T )

for any finite subset T ⊂ RK+ and any vector (n(t), t ∈ T )

with n(t) ∈ NK for each t ∈ T . As ~Πα is the stationary
distribution of ~Πα, the above convergence implies that κ
is also invariant for ~N∞ and so κ = ~Π∞ according to
Proposition 4.1.

Let us now prove the first two convergences. They rely on
a coupling argument which we explain. However, we omit
the technical details which are cumbersome but do not add
significant understanding of the proof. Let (tk, k ≥ 1) be the
sequence of arrivals and potential departures from the original
system with finite α. Consider another system ~M obtained in
the following way: for each k ≥ 1, | ~M(tk+)| = | ~Nα(tk+)|
but for ~M , these particles are spread according to π in the
system. Note that this is not the case for ~Nα because in
this system, users are not spread according to π which is
the stationary distribution while users only move at finite
speed. So, in-between times tk and tk+1, there are the
same number of particles but potentially starting at different
positions. Moreover, we couple these trajectories so that if
they meet, then they stay merged until time tk+1. As α
increases, particles move and therefore also merge faster and
faster so that in the limit α→∞, all particles merge almost
instantaneously with probability going to one. In particular,
for every ε > 0 we have

P ( ~Nα(t) = ~M(t), t ∈ [0, T ] \ [tk, tk + ε])→ 1.

In ~M , particles are by construction distributed according to π
in the network at all times and so the previous relation implies
that as α → ∞, this is also the case for ~Nα. From this we
readily derive the first two convergence results.

C. Comparison of the α = 0 and α =∞ cases

Since for α = 0 the system is a collection of K independent
M/M/1 queues, we have according to (7)

∆(λ) =

K∑
i=1

µi
µi − λpi

− 1

Z

∑
n≥1

nλn∏n
x=1 µ(x)



with Z = 1 +
∑
n≥1

λn∏n
x=1 µ(x)

∆′(λ) =

K∑
i=1

µipi
(µi − λpi)2

− 1

Z

∞∑
n=1

n2λn−1∏n
x=1 µ(x)

+
Z ′

Z2

∞∑
n=1

nλn∏n
x=1 µ(x)

and so ∆′(0) = C since Z(0) = 1 and µ(1) =
∑
i µiπi. We

thus obtain the following result.
Proposition 4.4: If C > 0 then ∆(λ) > 0 for λ small

enough, i.e., the system with mobility performs better than
the system without. In contrast, if C < 0 then ∆(λ) < 0 for
λ small enough, i.e., the system without mobility performs
better than the system with mobility.

V. NUMERICAL ANALYSIS

In this section we investigate the performance of the system
by numerical means. In order to do so, we solve numerically
the balance equations of the system described in equations (1)
and (2).

A. Mean response time depending on α

In Figure 1 we plot the mean response time with respect to
α for different values of loads. We consider K = 2 servers,
fix parameters p1 = 0.6, µ1 = 1.5, µ2 = 1, r12 = 0.5 and
analyse two systems; when r21 = 0.2 and when r21 = 0.7.

For the system with r21 = 0.2, (for which (π1, π2) =
(0.2857, 0.7143)), the following inequality holds: p1

µ1π1
>

p2

µ2π2
. From Proposition 3.1, we know that under sufficiently

low loads, the system with no mobility has the best perfor-
mance. From Figure 1 we observe that this remains true until
the load is ρ = 0.25. We also observe that for ρ = 0.5, 0.75
the system with α =∞ has the best performance.

For the system with r21 = 0.7 (for which (π1, π2) =
(0.5833, 0.4167)) the inequality holds in the opposite direc-
tion: p1

µ1π1
< p2

µ2π2
. We observe that the system with α = ∞

has the best performance for any load.
To assess the performance of the system with K > 2,

we consider the case K = 3 and compute numerically the
performance for a large number of parameter settings. The
main objective is to determine to what extend the sign of
the parameter C permits to predict the monotonicity of the
performance. Our analysis consisted in fixing K = 3 servers
and different parameters pi and µi, for i = 1, 2, 3. We then
select randomly the values of rij , and we calculate numeri-
cally E(| ~Nα|) as a function of α. By numerical inspection, we
deduce whether E(| ~Nα|) is monotone or not. Then, among the
monotone ones we classify them as increasing or decreasing
versus the sing of the value C in that system. The main results
we obtain are (i) when the mean number of jobs is monotone,
the slope of the function coincides with that fixed by the sign
of value C and (ii) the fraction of set of parameters that yield
non monotone performance is relatively smaller, see Table I.

To be specific, we explain in detail one of the experiments
we considered for the system with p1 = p2 = p3 = 1/3 and

µ1 = 1, µ2 = 1.2 and µ3 = 1.5. In Table I we show first the
proportion of monotone and non monotone functions. Then,
for the system that are monotone on α, the slope of each
system versus the sign of the C value. We note that the 90%
of the cases the mean number of jobs is monotone and is well
classified by its value C. For the remaining 10%, the function
is non monotone on α. In Figure 2 we plot three examples of
the mean number of jobs with respect to α for these particular
systems. In the system Rα1 and Rα3 , we note that there is
a finite positive α with the minimum number of jobs. In
summary, we conclude that even though C fully characterizes
the monotonicity for the K = 2 case, this is no longer the
case for K > 2. However, as we saw in Proposition 4.4, C
does suffice to characterize the sing of ∆, for any value of
K.

monotone 0.8985
C > 0 C < 0

decreasing 0.6369 0
increasing 0 0.2616

non monotone 0.1015
Total 1

TABLE I
CLASSIFICATION OF EVENTS

B. Comparison of the extreme cases α = 0 and α =∞
In Figure 3 we plot function ∆ with respect to ρ for K = 2

servers and several values of π1, and π2. From Equation (5),
we obtain that ∆ < 0 iff π1 < 0.5. We note that mobility has a
bad impact for the case π1 = 0.1 until loads ρ < 0.9. Here π1

is such that the delay of a job in the system with no mobility
reminds smaller than that of the system with mobility α =∞.
We also observe that as π1 → 0.5, ∆ becomes positive at
smaller load values. Additionally, for any π1, as ρ→ 1, ∆ is
positive. This event can be argued in the following way: as
ρ→ 1 , we expect that | ~N∞| approaches a single server queue
with capacity µ̄, which is more efficient than a K parallel
M/M/1 system with capacities µ.

Another particular event holds when π1 = 0.9. We observe
that for intermediate values of ρ, the system with no mobility
has better performance. This shows that under arbitrary loads,
mobility might also have a negative impact on the performance
of the system.

VI. CONCLUSIONS

The main takeaway message of this paper is that mobility
might not always have a positive impact on the performance
of the system even if it improves its throughput. This result
was not evident at first, since there are several recent papers
where the opposite conclusion had been reached. Due to the
complexity of analysis, we have restricted the performance
analysis to low loads, i.e., the so-called light traffic regime.
Our analysis shows that mobility need not always improve
the performance, and we have characterized a condition such
that, if satisfied, the performance might improve or deteriorate
as mobility increases. Numerical solutions of the stationary
distribution show that under moderate loads, mobility might



Mean number of jobs with respect to α for different loads ρ

0 10 20 30
1.9

2

2.1

2.2
10

-3  = 0.001

0 10 20 30
0.0195

0.02

0.0205

0.021

0.0215

0.022
 = 0.01

0 10 20 30
0.2

0.21

0.22

0.23

0.24
 = 0.1

0 10 20 30
0.55

0.6

0.65

0.7
 = 0.25

0 10 20 30
1.5

1.6

1.7

1.8

1.9

2
 = 0.5

0 10 20 30
4

4.5

5

5.5

6
 = 0.75
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p1 = 0.6, p2 = 0.4, r12 = 0.5. The black filled line corresponds to the system with r21 = 0.2 and the dashed line to the one with r21 = 0.7.
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have a negative effect on the performance of the system.
However, under high loads we observe that mobility does
improve the performance and the system with α = ∞ has
the minimum delay.

0 0.2 0.4 0.6 0.8 1

-5

-1

0

1

1
=0.1

1
=0.15

1
=0.2

1
=0.25

1
=0.55

1
=0.9

Fig. 3. ∆(λ) = E(| ~N0|) − E(| ~N∞|) for K = 2 servers. For fixed
parameters µ1 = 1.5 > µ2 = 1, p1 = 0.6, p2 = 0.4 and π1, π2 ∈ (0, 1)
such that π1 + π2 = 1.
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APPENDIX

A. Proof of Proposition 4.2

By definition of geometric Lyapunov functions, see [8], we
need to fix mobility speed α∗, initial state ~n∗ and parameters
t∗, η such that

Eα~n

[
e(θ|

~Nα(t∗)|)
]

eθ| ~Nα(0)|
< 1− η (8)

∀| ~Nα(0)| = |~nα| ≥ |~n∗| and α ≥ α∗. We develop
Equation (8) in order to obtain the bound:

Eα~n

[
e(θ|

~Nα(t)|)
]

eθ| ~Nα(0)|

=
Eα~n

[
e(θ(|

~Nα(0)|+A(t)−
∑K
i=1

∫ t
0
Di(du)1(Nαi (u−)>0)))

]
eθ| ~Nα(0)|

= Eα~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nαi (u−)>0)))

]
(9)

where A(t) denotes the total number of arrivals to the sys-
tem at time t and Di(t) is the number of potential departures
at server i at time t for i = 1, . . . ,K.

We denote by ~Nα
c (t) the closed system where only the

~Nα(0) initial jobs are present and has mobility speed α. Thus,
for all t > 0, | ~Nα(t)− ~Nα

c (t)| ≤ A(t)+
∑K
i=1Di(t) = ξ and

(9) is bounded by the following,

Eα~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nαi (u−)>0)))

]
≤ Eα~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nαc,i(u)>ξ)))

]
(10)

We divide the value space of ξ in two disjoint subsets: (ξ ≥√
n∗) and (ξ <

√
n∗). Therefore, (10) equals

Eα~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nαc,i(u)>ξ)))

]
= Eα~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nαc,i(u)>ξ))); ξ ≥

√
n∗
]

(11)

+Eα~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nαc,i(u)>ξ))); ξ <

√
n∗
]

(12)

In the following we analyse each expressions on its own.
For Equation (11), notice that ξ = A(t) +

∑K
i=1Di(t) is

distributed by a Poisson process of rate (λ+ µ̄)t.

Eα~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nαc,i(u)>ξ))); ξ ≥

√
n∗
]

≤ Eα~n

[
eθA(t); ξ = A(t) +

K∑
i=1

Di(t) ≥
√
n∗

]
≤ Eα~n

[
eθξ; ξ ≥

√
n∗
]

= fθ,t(
√
n∗) <

η

2
(13)

Then, as
√
n∗ → ∞, fθ,t(

√
n∗) → 0. Therefore, there

exists a constant value, say η
2 that bounds Equation (11).

On the other hand, turn back attention to Equation (12).
Now we develop the second term of the sum,

Eα~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nαc,i(u)>ξ))); ξ <

√
n∗
]

= E1
~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nc,i(αu)>ξ))); ξ <

√
n∗
]

(14)

≤ E1
~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nc,i(αu)>

√
n∗)))

]
(15)

For equality (14), we rescale the system in the following
way: (Nα

c (t), t ≥ 0) with mobility transition rate matrix αR
is equivalent to (N1

c (αt), t ≥ 0) with transition rate matrix
R. We remove superscript 1 from now on.

Now, we focus on the initial state ~n and fix it as the one with
maximum expected value, ~nm. This further implies that the
maximum is obtained for some initial state such that |~nm| ≥
|~n∗|. However, the maximum is obtained at |~nm| = |~n∗| by
applying the following argument consecutively. Denoted by
~N~nm
c a closed system with |~nm| particles that starts at position

~nm. Thus, 1(N~nm
c,i (t) >

√
n∗) ≤ 1(N~nm+ei

c,i (t) >
√
n∗) for

any t. This happens until the least number of particles given
by |~nm| = |~n∗|. Therefore, take

~nm ∈ arg max
~n:|~nm|=|~n∗|{

E~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nc,i(αu)>

√
n∗)))

]}
Remark that ~nm depends on variables α and t, which will

be lately fixed. Thus, ~nm = ~nm(α, t). Once ~nm is fixed, we
look at closed system ~Nm(t), which starts at position ~nm and
has |~nm| = |~n∗| particles. Therefore, (15) is upper bounded
by the followings:

E~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nc,i(αu)>

√
n∗)))

]
≤ E~nm

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nmc,i(αu)>

√
n∗)))

]
= eλt(e

θ−1)E~nm

[
K∏
i=1

e(−θ
∫ t
0
Di(du)1(Nmc,i(αu)>

√
n∗))

]
= E~nm

[
e(λt(e

θ−1)−
∑K
i=1 µi(1−e

−θ)
∫ t
0

1(Nmc,i(αu)>
√
n∗)du)

]
(16)



By applying the Laplace transform of a Poisson process and
then verifying that 1 − e−θ1(Nmc,i(αu)>

√
n∗) = 1(Nm

c,i(αu) >√
n∗)(1− e−θ), equality (16) holds.
Denote by Z(α) =

∑K
i=1 µi

1
t

∫ t
0

1(Nm
c,i(αu) >√

n∗)du. First, by a change of variables, Z(α) =∑K
i=1 µi

1
αt

∫ αt
0

1(Nm
c,i(u) >

√
n∗)du. Take Z∗ =

infα≥α∗ Z(α). Then, (16) is bounded by the following:

E~nm

[
e(λt(e

θ−1)−
∑K
i=1 µi(1−e

−θ)
∫ t
0

1(Nmc,i(αu)>
√
n∗)du)

]
≤ E~nm

[
e(λt(e

θ−1)−t(1−e−θ)Z∗)
]

(17)

From the ergodic theorem, see [9], when α∗ → ∞,
Z∗ converges almost surely into

∑K
i=1 µiE~nm(1(Nm

c,i(t) >√
n∗)) =

∑K
i=1 µiP~nm(Nm

c,i(t) >
√
n∗) in steady-state. Last

distribution expression has the shape of a multinomial distribu-
tion. Denote

∑K
i=1 µiP~nm(Nm

c,i(t) >
√
n∗) = z∗(n∗,

√
n∗).

Additionally, Px∗(Nm
c,i(0) >

√
n∗) → 1 as n∗ → ∞, for all

i = 1, . . . ,K. Hence, z∗(n∗,
√
n∗)→ µ̄. From the hypothesis:

θ is such that λ(eθ − 1) − λ+µ̄
2 (1 − e−θ) < 0. Therefore,

eλ(eθ−1)−(1−e−θ)µ̄ < e(1−eθ)λ−µ̄2 .

E~nm

[
e(λt(e

θ−1)−t(1−e−θ)Z∗)
]

= E~nm

[
e(λt(e

θ−1)−t(1−e−θ)(Z∗±z∗(n∗,
√
n∗))

]
= eλt(e

θ−1)−t(1−e−θ)z∗(n∗,
√
n∗)

×E~nm
[
e(−t(1−e

−θ)(Z∗−z∗(n∗,
√
n∗))

]
< et(1−e

−θ)λ−µ̄2 E~nm

[
e(−t(1−e

−θ)(Z∗−z∗(n∗,
√
n∗))

]
(18)

Therefore, initial expression (10) is bounded by (13) and
(18):

Eα~n

[
e(θ(A(t)−

∑K
i=1

∫ t
0
Di(du)1(Nαc,i(u)>ξ)))

]
≤ η

2
+ et(1−e

−θ)λ−µ̄2 E~nm

[
e(−t(1−e

−θ)(Z∗−z∗(n∗,
√
n∗))

]
(19)

Fix t = 1. From stability, e(1−e−θ)λ−µ̄2 is positive and
strictly smaller than 1. Say it is bounded by 1− η, for some
small η > 0. Lastly, since stated before, Z∗ → z∗(n∗,

√
n∗)

when α∗ → ∞. Then, we fix α∗ for which the previous
expectation is bounded by (1 + η

10 ), Hence, (19) is bounded
as follows:

η

2
+ e(1−e−θ)λ−µ̄2 E~nm

[
e(−(1−e−θ)(Z∗−z∗(n∗,

√
n∗))

]
<
η

2
+ (1− η)(1 +

η

10
) < 1− 4η

10

Turn attention back to ~nm = ~nm(α, t). For this just fixed
α∗ and for t = 1, ~nm = ~nm(α∗, 1) must be fixed and the
later steps done again for that particular ~nm.Therefore, we
have shown that Φ is a geometric Liapunov function of ~Nα

uniformly for α.


