
On the Role of Context-Specific Independence
in Probabilistic Inference

Nevin L. Zhang David Poole
Department of Computer Science Department of Computer Science

Hong Kong University of Science & Technology University of British Columbia
Clear Water Bay Road, Kowloon, Hong Kong Vancouver, BC V6T 1Z4, Canada

lzhangccs.ust.hk pooleocs.ubc.ca

Abstract
Context-specific independence (CSI) refers to
conditional independencies that are true only
in specific contexts. It has been found useful in
various inference algorithms for Bayesian net­
works. This paper studies the role of CSI in
general. We provide a characterization of the
computational leverages offered by CSI without
referring to particular inference algorithms. We
identify the issues that need to be addressed in
order to exploit the leverages and show how
those issues can be addressed. We also provide
empirical evidence that demonstrates the use­
fulness of CSI.

1 Introduction
The theory of probabilistic inference begins with a joint
probability over all variables of interest. The amount of
numbers it takes to specify a joint probability is expo­
nential in the number of variables. For this reason, prob­
abilistic inference was thought to be infeasible until the
introduction of Bayesian networks (BNs) [Pearl, 1988;
Howard and Matheson, 1984]. Making use of condi­
tional independence, a BN factorizes a joint a probability
into a list of conditional probabilities. The factorization
renders inference computationally feasible in many ap-
plications because each of the conditional probabilities
involves only a fraction of the variables.

In practice, there are often conditional independence
relationships that are true only in specific contexts. The
concept of context-specific independence (CSI) was in­
troduced specifically for such relationships. CSI has its
roots in the influence diagram literature [Olmsted, 1983;
Fung and Shachter, 1990; Smith et al., 1993) and was
first formalized by [Boutilier et al., 1996]. Researchers
have shown that CSI can be exploited to speed up vari­
ous Bayesian network inference algorithms such as sym­
bolic probabilistic inference [D'Ambrosio, 1994], search
Santos Jr. and Shimony, 1996], cutset conditioning
Boutilier et al., 1996; Geiger and Heckerman, 1996,

clique tree propagation (CTP) [Boutilier et al., 1996],
arc reversal [Cheuk and Boutilier , 1997], and variable
elimination (VE) [Poole, 1997].

This paper results from efforts to identify the common
principle underlying those works. We attempt to answer
the following questions: Why in general CSI leads to
faster inference? In other words, how do we characterize
the computational leverages offered by CSI without re­
ferring to particular inference algorithms? What issues
do we need to address in order to exploit the leverages?
How do we address those issues? Finally, how much can
we gain?

It is well known that the computational leverages af-
forded by conditional independence can be characterized
in terms of factorization: conditional independence al­
lows one to factorizes a joint probability into a list of
conditional probabilities. As it turns out, the computa­
tional leverages offered by CSI can also be characterized
in terms of factorization. More specifically, CSI allows
one to further decompose some of the conditional prob­
abilities, giving rise to a finer-grain factorization of the
joint probability. This is precisely why CSI can speed
up inference.

In order to take advantage of the finer-grain factoriza­
tion, the main technical issue that one needs to address
is that some of the factors in the factorization are partial
functions. Fortunately, this issue can easily be addressed
using an operation called union-product.

In addition to providing a clear picture about the
role of CSI in probabilistic inference, this paper also
gives a general method for exploiting CSI. The method
can be easily grounded with popular inference algo-
rithms such as CTP [Lauritzen and Spiegelhalter, 1988;
Jensen et al., 1990; Shafer and Shenoy, 1990] and VE
[Zhang and Poole, 1996; Dechter, 1996]. All one has
to do is change one basic operation, namely replacing
product of full functions with union-product of partial
functions.

Experiments have been performed to empirically
demonstrate the effectiveness of CSI. The results con­
firmed that CSI can significantly speed up inference.

2 Bayesian Networks and Probabilistic
Inference

To start with, this section briefly reviews the concepts
of Bayesian networks and factorization. We also explain

1288 UNCERTAINTY AND PROBABILISTIC REASONING

Figure 1: A Bayesian network.

why factorization is the key to efficient inference.

2.1 Bayesian Networks
A Bayesian network 1 (BN) is an annotated directed
acyclic graph, where each node represents a random vari­
able and is associated with the conditional probability
of the node given its parents. In addition to the explic-
itly represented conditional probabilities, a BN also im­
plicitly represents conditional independence assertions.
Let be an enumeration of all the nodes
in a BN such that each node appears before its chil­
dren and let be the set of parents of a node xi.
The following assertions are implicitly represented: Each
variable xi is conditionally independent of variables in

given variables in
The conditional independence assertions and the con­

ditional probabilities attached to the nodes to-
gether entail a joint probability over all variables. As a
matter of fact, we have

(1)

where the first equality follows from chain rule and the
second follows from the conditional independence asser­
tions.

2.2 P r o b a b i l i s t i c I n fe rence
Inference refers to the process of computing the posterior
probability of a list X of query variables
after obtaining some observations Here Y is a
list of observed variables and Y0 is the corresponding list
of observed values.

The posterior probability can be ob­
tained from the marginal probability which
in turn can be computed from the joint probability

by marginalizing out variables outside
one by one. Since a BN implicitly represents a

joint probability, one can in theory perform arbitrary in­
ference. In practice, this is not viable because marginal­
izing out a variable from a joint probability requires an
exponential number of additions.

1 Also known as probabilistic influence diagrams and belief
networks.

The key to efficient inference lies in the concept of
factorization. A factorization of a joint probability is a
list of factors (functions) from which one can reconstruct
the joint probability.

Because of (1), we say that a BN factorizes a joint
probability into conditional probabil­
ities and and that
the conditional probabilities constitute a multiplicative
factorization of the joint probability. The BN in Fig­
ure 1, for instance, gives us the following multiplicative
factorization of

(2)
We will use this network as a running example through
out the paper.

To see why factorization is of fundamental im­
portance to inference, consider a joint probabil­
ity over n binary variables. To
marginalize out a variable means to compute

This computation is global since
all variables are involved. It takes numerical addi­
tions and hence is infeasible except when n is very small.

Now suppose we have a multiplicative factorization of
the joint probability and only the first
k factors involve By distributivity, we have

Consequently, we can marginalize out from the fac­
torization as follows:

1. Remove from the factorization all functions that in­
volve

2. Compute the product of the functions;
3. Marginalize out from the product; and
4. Put the resulting function back to the factorization.

This is the principle underlying inference algorithms
such as CTP and VE. Here one needs to compute

This computation is local in the sense that
it involves only some of the variables. It is usually much
cheaper than the global computation mentioned above.

In our running example, marginalizing out means to
compute without factorization.
This takes 16 additions. With factorization, on the other
hand, one needs to compute
which takes only 4 additions.

3 CSI and Decomposit ion of
Condit ional Probabil i t ies

We next review the concept of CSI and shows how it
leads to decomposition of conditional probabilities.

3.1 Con tex t -Spec i f i c I n d e p e n d e n c e
Let C be a set of variables. A context on C is an assign­
ment of one value to each variable in C. We denote a
context by where is a set of values of variables

ZHANG AND POOLE 1289

Figure 2: and its decomposition.

in C. Two contexts are incompatible if there exists a
variable that is assigned different values in the contexts.
They are compatible otherwise.

This following definition of CSI is due to [Boutilier et
al., 1996]. Let X, Y, Z, and C be four disjoint sets of
variables. X and Y are independent given Z in context

if

whenever When Z is empty, one sim­
ply says that X and Y are independent in context

As an example, consider four variables: income, pro-
fession, weather, and qualification. A farmer's in­
come depends on weather and typically does not de­
pend on his qualification. On the other hand, a office
clerk's income depends on his qualification and typically
does not depend on weather. In other words, income
is independent of qualification in the context "profes-
sionsfarmer" and it is independent of weather in the
context "profession=office-clerk".

3.2 Decompos i t i on o f Cond i t i ona l
P robab i l i t i es

To illustrate how CSI leads to decomposition of con­
ditional probabilities, we use as an exam­
ple. Consider and sepa­
rately. Assume is independent of in context
Then Consequently, we
can decompose which requires 8 numbers
to specify, into two smaller components and

which require only 6 numbers to specify.
To make the example more concrete, suppose

is given by the tree shown in Figure 2
(1). The tree states that , for in­
stance, is 0.3. Because is independent of x2 in context

the tree can be decomposed into the two smaller
trees shown in Figure 2 (2) and (3), which represent

and respectively.
Next assume is independent of given in con­

text and is independent of given in con­
text Then
and Consequently,
we can decompose which requires
16 numbers to specify, into two smaller components

and which take only 8
numbers to specify. For concreteness, assume the two
smaller components are given by the trees in Figure 3.

Figure 3: Decomposition of

After the decompositions, the decomposition given in
(2) becomes

(3)
This decomposition is of finer-grain because the condi­
tional probabilities of and have be broken up into
smaller pieces.

4 Making Inference w i th Refined
Factorizations

This section shows how to make inference with factor­
izations such as the one given by (3). A technical issue
that we need to address is that some of the factors are
partial functions. For example, is a partial
function of and in the sense that it is not defined
for the case when

In general, a partial function of a set X of variables is a
mapping from a proper subset of possible values of X to
the real line. In other words, it is defined only for some
but not all possible values of X. The set of possible
values of X for which a partial function is defined is
called the domain of the partial function. A full function
of X is a mapping from the set of all possible values of
X to the real line. In other words, it is defined for all
possible values of X. In the rest of a paper, we will
use the term "function" when we are not sure whether a
function is a partial function or a full function.

4.1 U n i o n - P r o d u c t
To manipulate partial functions, we need the operation
of union-product. Suppose X, Y, and Z are three dis­
joint sets of variables and suppose and
are two functions. The union-product of
is the function of variables in given by

undef i n e d i f b o t h &
undefined

if defined,
undefined

if undefined,
defined

if both &
defined

The operation is illustrated in Figure 4. We sometimes
write as to make explicit the ar­
guments of / and g. When the domains of and are

2The notation is produced in using macro

1290 UNCERTAINTY AND PROBABILISTIC REASONING

Figure 4: Union-product: The two circles in the left
figure represent the domains of two functions g and h.
The domain of the union-product is the union of
those of g and h. The union-product equals the product
of g and h in the area where both g and h are defined;
it equals g in the area where only g is defined; and it
equals h in the area where only h is defined.

disjoint, we call the union of g and h and write it
as

Here are some of the properties of the union-product
operation. First, the union-product of two full functions
is simply their product. Together with the concept of
union, this explains the term "union-product". Second,
the union-product of a full function with another func­
tion, full or partial, is a full function. Third, the union-
product operation is associative and commutative. We
can hence talk about the union-product of a list of func­
tions. The union-production of a list of functions will
be denoted as

4.2 D e c o m p o s i t i o n s
The concept of union allows us to rigorously defined de­
composition. A list of functions with disjoint domains
is decomposition of a function if A decompo­
sition is proper if no two functions in the decomposition
share the same set of arguments. A decomposition of a
function is nontrivial if at least one function in the de­
composition has fewer arguments than itself. A func­
tion is decomposable if it has a nontrivial decomposition.

The function shown in Figure 2 (1) is decomposable. It
can be nontrivially decomposed into the the two partial
functions shown in Figure 2 (2) and (3).

4.3 U n i o n - P r o d u c t Fac to r i za t i ons
Wi th union-product, we can now make explicit the sense
in which the list of functions given in (3) is a factorization
of the joint probability

A list of functions is a union-product factorization,
or simply a UP-factorization, of a function if
Note that functions in a decomposition must have dis­
joint domains whereas domains of functions in a UP-
factorization might intersect. A decomposition is a UP-
factorization but not vice versa.

For any variable let be the set of functions in
that contain as an argument. A UP-factorization is
normal if is a full function whenever

The list of function given in (3) is a factorization of
the joint probability because

where the first equality is true because the union-
product operation is associative, the second equality fol­
lows from the assumptions made in Section 3, and the
third equality follows from the first property of union-
product. The factorization is also normal. For example,

Since is a full
function, so must be by the second property of
union-product.

In general, let be the set that consists of, for each
variable in a BN, the conditional probability of the vari­
able or, when the conditional probability is decomposed,
its components. Then is a normal UP-factorization of
the joint probability of all variables. It is of finer-grain
than the multiplicative factorization given by the BN if
at least one conditional probability is decomposed.

4.4 In fe rence w i t h U P - F a c t o r i z a t i o n s
The following theorem, which we state without proof,
lays the foundation for making inference with normal
UP-factorizations.

Theorem 1 Suppose T is a normal UP-factorization
of a full function f and is an argument of Then

is a normal UP-factorization of

According to the theorem, a variable can be
marginalized out from a normal UP-factorization as fol­
lows:

1. Remove from the factorization all functions that in­
volve

2. Compute the union-product of the functions;
3. Marginalize out from the union-product; and
4. Put the resulting function back to the factorization.

Comparing this procedure with the one outlined in Sec­
tion 2, we see that existing inference algorithms such as
CTP and VE can be adapted to work with normal UP-
factorizations by simply replacing product of full func­
tions with union-product of partial or full functions.

The above descriptions are rather abstract. For ex­
ample, implementations of union-product and marginal-
ization are not given. Those and other details can be
found in a longer version of the paper [Zhang, 1998].
In that paper, the method is also compared to previous
methods.

5 CSI and Inference Efficiency
Using the running example, this section illustrates why
inference with finer-grain UP-factorizations is more effi-

ZHANG AND POOLE 1291

Figure 5: Elimination of variable

dent than with the corresponding multiplicative factor­
izations.

Consider marginalizing out Without CSI, we need
to compute

(4)

With CSI, we need to compute

(5)

The second computation is cheaper than the first one
for a number of reasons. The conditional probability

is decomposed into two components that
takes fewer numbers to specify. The conditional proba-
bility is also decomposed into two com­
ponents that take fewer numbers to specify. Moreover,
only one of those two components is involved in the sec­
ond computation. As a consequence, the second com­
putation has fewer variables not involved) and fewer
numbers to deal with.

In general, marginalizing out a variables from a finer-
grain UP-factorization involves fewer variables and fewer
numbers than with the corresponding multiplicative fac­
torization. It is therefore cheaper.

There is another reason why finer-grain UP-
factorizations leads to faster inference. The result of
expression (5) is a full function of and The full
function happens to be decomposable and can be de-
composed into the two partial functions shown in Figure
5. In such a case, we can compute the decomposition
directly. This is less expensive than computing the full
function itself because the decomposition requires fewer
numbers to specify.

When we compute decompositions of functions instead
of functions themselves, we are preserving structures.
Preserving structures not only benefits the current step
of inference but also simplifies future steps. It is there­
fore an important issue. In [Zhang, 1998], this issue is
addressed in detail.

6 Empir ical Results
Experiments have been conducted to demonstrate the
computational benefits of CSI. A BN named Water was
used in the experiments 3. Water is a model for the bio-
logical processes of a water purification plant. It consists

3Obtained from a Bayesian network repository at
Berkeley.

Figure 6: Representation complesdties of conditional
probabilities with and without CSI.

Figure 7: Performances of VE with and without CSI.

of 32 variables. Strictly speaking, conditional probabil­
ities of the variables are not decomposable. To make
them decomposable, some of the probability values were
modified. The induced errors are upper bounded by 0.05.
Using a decision-tree-like algorithm [Quintan, 1986], we
were be able to decompose some of the modified condi­
tional probabilities and thereby reduce their representa­
tion complexities drastically 4. See Figure 6.

The experiments were based on the VE algorithm and
were performed on a SUN ULTRA 1 machine. The task
was to eliminate all variables according to a predeter­
mined elimination ordering. In the first experiment, an
ordering by Kjaerullf was used 5. The the amounts of
times in CPU seconds that VE took, with and without
CSI, to eliminate the first n variables for n running from
0 to 31 are shown in left chart of Figure 7. We see
that VE ran much faster with CSI. In particular, the en-
tire elimination process took about 7 seconds with CSI.
Without CSI, however, it took about 70 seconds.

In the second experiment, we generated 14 new elim­
ination orderings by randomly permuting pairs of vari­
ables in Kjaerullf's ordering. A trial was conducted with
each ordering. The performances of VE, with and with­
out CSI, across all the trials are summarized in the right
chart of Figure 7. We see that VE was significantly more
efficient with CSI than without CSI. The speedup was
more than one magnitude on average. Moreover, there
are four trials where VE was not able to complete without
CSI due to large memory requirements. Wi th CSI, on

4 Modifications of probability values actually take place
during the decomposition process. We choose to describe
them as two separate steps here for presentation clarity.

5The ordering was also obtained from the Berkeley
repository.

1292 UNCERTAINTY AND PROBABILISTIC REASONING

the other hand, VE completed each of those four trials
in less than 30 seconds.

7 Conclusions
This paper studies the role of CSI in Bayesian network
inference. It differs from earlier work in that we do not
attempt to demonstrate the usefulness of CSI in partic­
ular inference algorithms. Rather, we provide a general
characterization of the computational leverages offered
by CSI. This characterization fits well with the char­
acterization of the computational leverages afforded by
conditional independence. They both are in terms of
factorization. While conditional independence provides
one with a factorization of a joint probability, CSI allows
one to refine the factorization.

We clearly identify the issues that one needs to ad­
dress in order to takes advantage of the computational
leverages offered by CSI. There are two issues: partial
functions and preservation of structures. The first issue
in addressed in detail and the second issue is addressed
in [Zhang, 1998]. We also give a general method for ex­
ploiting CSI. The method can be easily grounded with
popular inference algorithms such as CTP and VE. All
one has to do is to replace product of full functions with
union-product of partial and full functions. Finally, we
provide empirical evidence that demonstrates the useful­
ness of CSI.

A c k n o w l e d g e m e n t s

The authors thank the anonymous reviewers for use­
ful comments and suggestions. Research is sup­
ported by Hong Kong Research Grants Council Grant
HKUST6125/98E and Natural Sciences and Engineer­
ing Research Council of Canada Research Grant OG-
P0044121.

References
[Boutilier et al, 1996] C. Boutilier, N. Friedman, M.

Goldszmidt, and D. Koller, Context-specific inde­
pendence in Bayesian networks, Proc.of 12th Con-
ference on Uncertainty in AI, 115-123.

[Cheuk and Boutilier , 1997] A. Y. W. Cheuk and C.
Boutilier, Structured arc reversal and simulation of
dynamic probabilistic networks, Proc. of 13th Con-
ference on Uncertainty in AI, 72-79.

[D'Ambrosio, 1994] B. D'Ambrosio, Local expression
languages for probabilistic dependence, Int. J. of
Approximate Reasoning, 11 (1), 1-16.

[Dechter, 1996] R. Dechter, Bucket elimination: A uni­
fying framework for probabilistic inference, Proc. of
12th Conference on Uncertainty in AI, 211-219.

[Fung and Shachter, 1990] R. M. Fung and R. D.
Shachter, Contingent Influence Diagrams, Ad­
vanced Decision Systems, 1500 Plymouth St.,
Mountain View, CA 94043, USA.

[Geiger and Heckerman, 1996] D. Geiger and D. Heck-
erman, Knowledge representation and inference in
similarity networks and Bayesian multimets, Artifi­
cial Intelligence, 92, 45~74.

[Howard and Matheson, 1984] R. A. Howard, and J. E.
Matheson, Influence Diagrams, The principles and
Applications of Decision Analysis, Vol. I I , R. A.
Howard and J. E. Matheson (eds.). Strategic De­
cisions Group, Menlo Park, California, USA.

[Jensen et al., 1990] F. V. Jensen, K. G. Olesen, and K.
Anderson, An algebra of Bayesian belief universes
for knowledge-based systems, Networks, 20, 637 -
659.

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and
D. J. Spiegelhalter, Local computations with prob-
abilities on graphical structures and their applica­
tions to expert systems, Journal of Royal Statistical
Society B, 50: 2, 157 - 224.

[Olmsted, 1983] S. M. Olmsted, Representing and solv­
ing decision problems, Ph.D. Dissertation, Depart­
ment of Engineering-Economic Systems, Stanford
University.

[Pearl, 1988] J. Pearl, Probabilistic Reasoning in Intel-
ligence Systems: Networks of Plausible Inference,
Morgan Kaufmann Publishers, Los Altos, CA.

[Poole, 1997] D. Poole, Probabilistic partial evaluation:
exploiting rule structure in probabilistic inference,
Proc. of 15th Int. Joint Conference on AI, 1284-
1291.

[Quinlan, 1986] J. R. Quinlan , Induction of decision
trees, Machine Learning, 1, pp. 81-106.

[Santos Jr. and Shimony, 1996] E. Santos Jr. and S. E.
Shimony, Exploiting case-based independence for
approximating marginal probabilities, Int. J. of Ap-
proximate Reasoning, 14, 25-54.

[Shafer and Shenoy, 1990] G. Shafer and P. Shenoy,
Probability propagation, Annals of Mathematics
and AI, 2, 327-352.

[Smith et al., 1993] J. E. Smith, S. Holtzman, and J. E.
Matheson, Structuring conditional relationships in
influence diagrams, Operations Research, 41, No. 2,
280-297.

[Zhang and Poole, 1996] N. L. Zhang and D. Poole, Ex­
ploiting causal independence in Bayesian network
inference, J. of AI Research, 5, 301-328.

[Zhang, 1998] N. L. Zhang, Inference in Bayesian net­
works: The role of context-specific indepen­
dence, Technical Report, HKUST-CS98-09, De­
partment of Computer Science, University of Sci­
ence and Technology, Hong Kong. Available at
http://www.cs.ust.hk/lzhang/paper/csitr.html.

ZHANG AND POOLE 1293

