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Abstract 
Context-specific independence (CSI) refers to 
conditional independencies that are true only 
in specific contexts. It has been found useful in 
various inference algorithms for Bayesian net­
works. This paper studies the role of CSI in 
general. We provide a characterization of the 
computational leverages offered by CSI without 
referring to particular inference algorithms. We 
identify the issues that need to be addressed in 
order to exploit the leverages and show how 
those issues can be addressed. We also provide 
empirical evidence that demonstrates the use­
fulness of CSI. 

1 Introduction 
The theory of probabilistic inference begins with a joint 
probability over all variables of interest. The amount of 
numbers it takes to specify a joint probability is expo­
nential in the number of variables. For this reason, prob­
abilistic inference was thought to be infeasible until the 
introduction of Bayesian networks (BNs) [Pearl, 1988; 
Howard and Matheson, 1984]. Making use of condi­
tional independence, a BN factorizes a joint a probability 
into a list of conditional probabilities. The factorization 
renders inference computationally feasible in many ap-
plications because each of the conditional probabilities 
involves only a fraction of the variables. 

In practice, there are often conditional independence 
relationships that are true only in specific contexts. The 
concept of context-specific independence (CSI) was in­
troduced specifically for such relationships. CSI has its 
roots in the influence diagram literature [Olmsted, 1983; 
Fung and Shachter, 1990; Smith et al., 1993) and was 
first formalized by [Boutilier et al., 1996]. Researchers 
have shown that CSI can be exploited to speed up vari­
ous Bayesian network inference algorithms such as sym­
bolic probabilistic inference [D'Ambrosio, 1994], search 
Santos Jr. and Shimony, 1996], cutset conditioning 
Boutilier et al., 1996; Geiger and Heckerman, 1996, 

clique tree propagation (CTP) [Boutilier et al., 1996], 
arc reversal [Cheuk and Boutilier , 1997], and variable 
elimination (VE) [Poole, 1997]. 

This paper results from efforts to identify the common 
principle underlying those works. We attempt to answer 
the following questions: Why in general CSI leads to 
faster inference? In other words, how do we characterize 
the computational leverages offered by CSI without re­
ferring to particular inference algorithms? What issues 
do we need to address in order to exploit the leverages? 
How do we address those issues? Finally, how much can 
we gain? 

It is well known that the computational leverages af-
forded by conditional independence can be characterized 
in terms of factorization: conditional independence al­
lows one to factorizes a joint probability into a list of 
conditional probabilities. As it turns out, the computa­
tional leverages offered by CSI can also be characterized 
in terms of factorization. More specifically, CSI allows 
one to further decompose some of the conditional prob­
abilities, giving rise to a finer-grain factorization of the 
joint probability. This is precisely why CSI can speed 
up inference. 

In order to take advantage of the finer-grain factoriza­
tion, the main technical issue that one needs to address 
is that some of the factors in the factorization are partial 
functions. Fortunately, this issue can easily be addressed 
using an operation called union-product. 

In addition to providing a clear picture about the 
role of CSI in probabilistic inference, this paper also 
gives a general method for exploiting CSI. The method 
can be easily grounded with popular inference algo-
rithms such as CTP [Lauritzen and Spiegelhalter, 1988; 
Jensen et al., 1990; Shafer and Shenoy, 1990] and VE 
[Zhang and Poole, 1996; Dechter, 1996]. All one has 
to do is change one basic operation, namely replacing 
product of full functions with union-product of partial 
functions. 

Experiments have been performed to empirically 
demonstrate the effectiveness of CSI. The results con­
firmed that CSI can significantly speed up inference. 

2 Bayesian Networks and Probabilistic 
Inference 

To start with, this section briefly reviews the concepts 
of Bayesian networks and factorization. We also explain 
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Figure 1: A Bayesian network. 

why factorization is the key to efficient inference. 

2.1 Bayesian Networks 
A Bayesian network 1 (BN) is an annotated directed 
acyclic graph, where each node represents a random vari­
able and is associated with the conditional probability 
of the node given its parents. In addition to the explic-
itly represented conditional probabilities, a BN also im­
plicitly represents conditional independence assertions. 
Let be an enumeration of all the nodes 
in a BN such that each node appears before its chil­
dren and let be the set of parents of a node xi. 
The following assertions are implicitly represented: Each 
variable xi is conditionally independent of variables in 

given variables in 
The conditional independence assertions and the con­

ditional probabilities attached to the nodes to-
gether entail a joint probability over all variables. As a 
matter of fact, we have 

(1) 

where the first equality follows from chain rule and the 
second follows from the conditional independence asser­
tions. 

2.2 P r o b a b i l i s t i c I n fe rence 
Inference refers to the process of computing the posterior 
probability of a list X of query variables 
after obtaining some observations Here Y is a 
list of observed variables and Y0 is the corresponding list 
of observed values. 

The posterior probability can be ob­
tained from the marginal probability which 
in turn can be computed from the joint probability 

by marginalizing out variables outside 
one by one. Since a BN implicitly represents a 

joint probability, one can in theory perform arbitrary in­
ference. In practice, this is not viable because marginal­
izing out a variable from a joint probability requires an 
exponential number of additions. 

1 Also known as probabilistic influence diagrams and belief 
networks. 

The key to efficient inference lies in the concept of 
factorization. A factorization of a joint probability is a 
list of factors (functions) from which one can reconstruct 
the joint probability. 

Because of (1), we say that a BN factorizes a joint 
probability into conditional probabil­
ities and and that 
the conditional probabilities constitute a multiplicative 
factorization of the joint probability. The BN in Fig­
ure 1, for instance, gives us the following multiplicative 
factorization of  

(2) 
We will use this network as a running example through 
out the paper. 

To see why factorization is of fundamental im­
portance to inference, consider a joint probabil­
ity over n binary variables. To 
marginalize out a variable means to compute 

This computation is global since 
all variables are involved. It takes numerical addi­
tions and hence is infeasible except when n is very small. 

Now suppose we have a multiplicative factorization of 
the joint probability and only the first 
k factors involve By distributivity, we have 

Consequently, we can marginalize out from the fac­
torization as follows: 

1. Remove from the factorization all functions that in­
volve  

2. Compute the product of the functions; 
3. Marginalize out from the product; and 
4. Put the resulting function back to the factorization. 

This is the principle underlying inference algorithms 
such as CTP and VE. Here one needs to compute 

This computation is local in the sense that 
it involves only some of the variables. It is usually much 
cheaper than the global computation mentioned above. 

In our running example, marginalizing out means to 
compute without factorization. 
This takes 16 additions. With factorization, on the other 
hand, one needs to compute 
which takes only 4 additions. 

3 CSI and Decomposit ion of 
Condit ional Probabil i t ies 

We next review the concept of CSI and shows how it 
leads to decomposition of conditional probabilities. 

3.1 Con tex t -Spec i f i c I n d e p e n d e n c e 
Let C be a set of variables. A context on C is an assign­
ment of one value to each variable in C. We denote a 
context by where is a set of values of variables 
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Figure 2: and its decomposition. 

in C. Two contexts are incompatible if there exists a 
variable that is assigned different values in the contexts. 
They are compatible otherwise. 

This following definition of CSI is due to [Boutilier et 
al., 1996]. Let X, Y, Z, and C be four disjoint sets of 
variables. X and Y are independent given Z in context 

if 

whenever When Z is empty, one sim­
ply says that X and Y are independent in context  

As an example, consider four variables: income, pro-
fession, weather, and qualification. A farmer's in­
come depends on weather and typically does not de­
pend on his qualification. On the other hand, a office 
clerk's income depends on his qualification and typically 
does not depend on weather. In other words, income 
is independent of qualification in the context "profes-
sionsfarmer" and it is independent of weather in the 
context "profession=office-clerk". 

3.2 Decompos i t i on o f Cond i t i ona l 
P robab i l i t i es 

To illustrate how CSI leads to decomposition of con­
ditional probabilities, we use as an exam­
ple. Consider and sepa­
rately. Assume is independent of in context 
Then Consequently, we 
can decompose which requires 8 numbers 
to specify, into two smaller components and 

which require only 6 numbers to specify. 
To make the example more concrete, suppose 

is given by the tree shown in Figure 2 
(1). The tree states that , for in­
stance, is 0.3. Because is independent of x2 in context 

the tree can be decomposed into the two smaller 
trees shown in Figure 2 (2) and (3), which represent 

and respectively. 
Next assume is independent of given in con­

text and is independent of given in con­
text Then  
and Consequently, 
we can decompose which requires 
16 numbers to specify, into two smaller components 

and which take only 8 
numbers to specify. For concreteness, assume the two 
smaller components are given by the trees in Figure 3. 

Figure 3: Decomposition of  

After the decompositions, the decomposition given in 
(2) becomes 

(3) 
This decomposition is of finer-grain because the condi­
tional probabilities of and have be broken up into 
smaller pieces. 

4 Making Inference w i th Refined 
Factorizations 

This section shows how to make inference with factor­
izations such as the one given by (3). A technical issue 
that we need to address is that some of the factors are 
partial functions. For example, is a partial 
function of and in the sense that it is not defined 
for the case when  

In general, a partial function of a set X of variables is a 
mapping from a proper subset of possible values of X to 
the real line. In other words, it is defined only for some 
but not all possible values of X. The set of possible 
values of X for which a partial function is defined is 
called the domain of the partial function. A full function 
of X is a mapping from the set of all possible values of 
X to the real line. In other words, it is defined for all 
possible values of X. In the rest of a paper, we will 
use the term "function" when we are not sure whether a 
function is a partial function or a full function. 

4.1 U n i o n - P r o d u c t 
To manipulate partial functions, we need the operation 
of union-product. Suppose X, Y, and Z are three dis­
joint sets of variables and suppose and 
are two functions. The union-product of  
is the function of variables in given by 

undef i n e d i f b o t h &  
undefined 

if defined, 
undefined 

if undefined, 
defined 

if both & 
defined 

The operation is illustrated in Figure 4. We sometimes 
write as to make explicit the ar­
guments of / and g. When the domains of and are 

2The notation is produced in using macro 
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Figure 4: Union-product: The two circles in the left 
figure represent the domains of two functions g and h. 
The domain of the union-product is the union of 
those of g and h. The union-product equals the product 
of g and h in the area where both g and h are defined; 
it equals g in the area where only g is defined; and it 
equals h in the area where only h is defined. 

disjoint, we call the union of g and h and write it 
as  

Here are some of the properties of the union-product 
operation. First, the union-product of two full functions 
is simply their product. Together with the concept of 
union, this explains the term "union-product". Second, 
the union-product of a full function with another func­
tion, full or partial, is a full function. Third, the union-
product operation is associative and commutative. We 
can hence talk about the union-product of a list of func­
tions. The union-production of a list of functions will 
be denoted as  

4.2 D e c o m p o s i t i o n s 
The concept of union allows us to rigorously defined de­
composition. A list of functions with disjoint domains 
is decomposition of a function if A decompo­
sition is proper if no two functions in the decomposition 
share the same set of arguments. A decomposition of a 
function is nontrivial if at least one function in the de­
composition has fewer arguments than itself. A func­
tion is decomposable if it has a nontrivial decomposition. 

The function shown in Figure 2 (1) is decomposable. It 
can be nontrivially decomposed into the the two partial 
functions shown in Figure 2 (2) and (3). 

4.3 U n i o n - P r o d u c t Fac to r i za t i ons 
Wi th union-product, we can now make explicit the sense 
in which the list of functions given in (3) is a factorization 
of the joint probability  

A list of functions is a union-product factorization, 
or simply a UP-factorization, of a function if 
Note that functions in a decomposition must have dis­
joint domains whereas domains of functions in a UP-
factorization might intersect. A decomposition is a UP-
factorization but not vice versa. 

For any variable let be the set of functions in 
that contain as an argument. A UP-factorization is 
normal if is a full function whenever  

The list of function given in (3) is a factorization of 
the joint probability because 

where the first equality is true because the union-
product operation is associative, the second equality fol­
lows from the assumptions made in Section 3, and the 
third equality follows from the first property of union-
product. The factorization is also normal. For example, 

Since is a full 
function, so must be by the second property of 
union-product. 

In general, let be the set that consists of, for each 
variable in a BN, the conditional probability of the vari­
able or, when the conditional probability is decomposed, 
its components. Then is a normal UP-factorization of 
the joint probability of all variables. It is of finer-grain 
than the multiplicative factorization given by the BN if 
at least one conditional probability is decomposed. 

4.4 In fe rence w i t h U P - F a c t o r i z a t i o n s 
The following theorem, which we state without proof, 
lays the foundation for making inference with normal 
UP-factorizations. 

Theorem 1 Suppose T is a normal UP-factorization 
of a full function f and is an argument of Then 

is a normal UP-factorization of 

According to the theorem, a variable can be 
marginalized out from a normal UP-factorization as fol­
lows: 

1. Remove from the factorization all functions that in­
volve  

2. Compute the union-product of the functions; 
3. Marginalize out from the union-product; and 
4. Put the resulting function back to the factorization. 

Comparing this procedure with the one outlined in Sec­
tion 2, we see that existing inference algorithms such as 
CTP and VE can be adapted to work with normal UP-
factorizations by simply replacing product of full func­
tions with union-product of partial or full functions. 

The above descriptions are rather abstract. For ex­
ample, implementations of union-product and marginal-
ization are not given. Those and other details can be 
found in a longer version of the paper [Zhang, 1998]. 
In that paper, the method is also compared to previous 
methods. 

5 CSI and Inference Efficiency 
Using the running example, this section illustrates why 
inference with finer-grain UP-factorizations is more effi-
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Figure 5: Elimination of variable 

dent than with the corresponding multiplicative factor­
izations. 

Consider marginalizing out Without CSI, we need 
to compute 

(4) 

With CSI, we need to compute 

(5) 

The second computation is cheaper than the first one 
for a number of reasons. The conditional probability 

is decomposed into two components that 
takes fewer numbers to specify. The conditional proba-
bility is also decomposed into two com­
ponents that take fewer numbers to specify. Moreover, 
only one of those two components is involved in the sec­
ond computation. As a consequence, the second com­
putation has fewer variables not involved) and fewer 
numbers to deal with. 

In general, marginalizing out a variables from a finer-
grain UP-factorization involves fewer variables and fewer 
numbers than with the corresponding multiplicative fac­
torization. It is therefore cheaper. 

There is another reason why finer-grain UP-
factorizations leads to faster inference. The result of 
expression (5) is a full function of and The full 
function happens to be decomposable and can be de-
composed into the two partial functions shown in Figure 
5. In such a case, we can compute the decomposition 
directly. This is less expensive than computing the full 
function itself because the decomposition requires fewer 
numbers to specify. 

When we compute decompositions of functions instead 
of functions themselves, we are preserving structures. 
Preserving structures not only benefits the current step 
of inference but also simplifies future steps. It is there­
fore an important issue. In [Zhang, 1998], this issue is 
addressed in detail. 

6 Empir ical Results 
Experiments have been conducted to demonstrate the 
computational benefits of CSI. A BN named Water was 
used in the experiments 3. Water is a model for the bio-
logical processes of a water purification plant. It consists 

3Obtained from a Bayesian network repository at 
Berkeley. 

Figure 6: Representation complesdties of conditional 
probabilities with and without CSI. 

Figure 7: Performances of VE with and without CSI. 

of 32 variables. Strictly speaking, conditional probabil­
ities of the variables are not decomposable. To make 
them decomposable, some of the probability values were 
modified. The induced errors are upper bounded by 0.05. 
Using a decision-tree-like algorithm [Quintan, 1986], we 
were be able to decompose some of the modified condi­
tional probabilities and thereby reduce their representa­
tion complexities drastically 4. See Figure 6. 

The experiments were based on the VE algorithm and 
were performed on a SUN ULTRA 1 machine. The task 
was to eliminate all variables according to a predeter­
mined elimination ordering. In the first experiment, an 
ordering by Kjaerullf was used 5. The the amounts of 
times in CPU seconds that VE took, with and without 
CSI, to eliminate the first n variables for n running from 
0 to 31 are shown in left chart of Figure 7. We see 
that VE ran much faster with CSI. In particular, the en-
tire elimination process took about 7 seconds with CSI. 
Without CSI, however, it took about 70 seconds. 

In the second experiment, we generated 14 new elim­
ination orderings by randomly permuting pairs of vari­
ables in Kjaerullf's ordering. A trial was conducted with 
each ordering. The performances of VE, with and with­
out CSI, across all the trials are summarized in the right 
chart of Figure 7. We see that VE was significantly more 
efficient with CSI than without CSI. The speedup was 
more than one magnitude on average. Moreover, there 
are four trials where VE was not able to complete without 
CSI due to large memory requirements. Wi th CSI, on 

4 Modifications of probability values actually take place 
during the decomposition process. We choose to describe 
them as two separate steps here for presentation clarity. 

5The ordering was also obtained from the Berkeley 
repository. 
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the other hand, VE completed each of those four trials 
in less than 30 seconds. 

7 Conclusions 
This paper studies the role of CSI in Bayesian network 
inference. It differs from earlier work in that we do not 
attempt to demonstrate the usefulness of CSI in partic­
ular inference algorithms. Rather, we provide a general 
characterization of the computational leverages offered 
by CSI. This characterization fits well with the char­
acterization of the computational leverages afforded by 
conditional independence. They both are in terms of 
factorization. While conditional independence provides 
one with a factorization of a joint probability, CSI allows 
one to refine the factorization. 

We clearly identify the issues that one needs to ad­
dress in order to takes advantage of the computational 
leverages offered by CSI. There are two issues: partial 
functions and preservation of structures. The first issue 
in addressed in detail and the second issue is addressed 
in [Zhang, 1998]. We also give a general method for ex­
ploiting CSI. The method can be easily grounded with 
popular inference algorithms such as CTP and VE. All 
one has to do is to replace product of full functions with 
union-product of partial and full functions. Finally, we 
provide empirical evidence that demonstrates the useful­
ness of CSI. 
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