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Abstract 
In this paper we examine the operationalityigenerality 

trade-off and how it affects performance of explanation-based 
learning systems. Experience with the ARMS learning appren­
tice system, presented in the form of an empirical performance 
analysis, illustrates both sides of the trade-off. 

1. Introduction 
Recent work in explanation-based learning (EBL) has 

attracted much attention from the machine learning community 
[DeJong86,Mitchell86]. A number of systems have been and are 
still being developed in a spectrum of domains from natural 
language processing [Mooney85], to circuit design [Mitchell85a] 

This paper discusses the operationality/generality trade-off 
and how it arises in EBL in general and the implementation of 
the ARMS (for Acquiring Robotic Manufacturing Schemata) sys­
tem in particular [Segre85,Segre87a,Segre87b]. ARMS is a 
learning apprentice system [Mitchell85b] that learns to assemble 
simple mechanical devices using an idealized robot arm. By 
observing, analyzing, and generalizing a human planner's solu­
tion to an assembly episode, ARMS builds a new schema which 
can be used to synthesize assembly plans for future episodes. 

We begin with an intuitive discussion of the operationality 
versus generality problem. We then proceed to give a short 
description of the ARMS system [Segre87b] with emphasis on the 
generalization process. Finally, we describe a simple ARMS 
example to illustrate this important trade-off. 

2. Operationality versua Generality 
Explanation-based learning (EBL) systems are capable of 

acquiring knowledge from a single example. Using a domain 
theory, a sample problem solution is analyzed in order to account 
for how the goal is accomplished. This analysis, or explanation, is 
generalized to create a new knowledge structure. 

If the newly acquired knowledge structure is available to 
the system, it is said to be operational. If the new structure does 
not improve the performance of the system in some fashion, it is 
not worth learning. However, not all operational knowledge is 
created equal: the cost of using the new knowledge structure is 
called its operationality. The more operational the structure, the 
easier (e.g., less expensive) it is for the system to apply it. 

The ARMS system was designed and implemented by the author as part of 
hit Ph.D. research at the University of Illinois at Urbana-Champaign. The au­
thor is indebted to Professor Q. DeJong and the rest of the Coordinated Science 
Laboratory Artificial Intelligence Research Group for their comments and sugges­
tions. 
Support for this research was provided by a Caterpillar Corporation Graduate 
Fellowship, the Air Force Office of Scientific Research under grant P49620-82-K 
0009, and the National Science Foundation under grants NSF-I8T-83-17889 and 
NSF-IST-86-11542 

Note that we have yet to address the issue of exactly how 
the new structure is used. The only important point is that the 
knowledge should increase some aspect of the system's capability 
or performance. The new knowledge structure might be used in 
order to construct explanations of more complex examples, 
thereby increasing a system's comprehension ability. On the 
other hand, it might be used by a system's performance element 
(e.g., a planner) in similar problem-solving situations. 

But just how similar is similar? The diversity of examples 
covered by the new structure is directly related to its generality: 
the more general the knowledge, the more situations where it is 
likely to be useful. Unfortunately, the more general the struc­
ture the more expensive its application tends to be. We term 
this dichotomy the operationality/generality trade-off: a more gen­
eral structure is less operational and vice versa. 

Consider an example form the game of chess. Having 
observed the successful capture of the opponent's rook using the 
technique called a knight fork, a system could produce a very 
operational new structure describing exactly this board situa­
tion.1 For the system to use this new structure in a future game, 
every piece on the chess board would have to occupy exactly the 
same position as in the first example. 

Clearly this new structure, while operational to an 
extreme, is hardly general. The position of a pawn on the other 
side of the board can hardly affect the success of the knight fork. 
On the other hand, it is quite simple and inexpensive to use: in 
the same board situation, application of the structure is immedi­
ate and practically without cost. 

If, however, the rook capture is analyzed and generalized, 
the resulting knight fork knowledge structure might well take 
into account the relative positions of the knight, the decoy, and 
the victim (a rook in the observed example). It should not rely on 
the actual positions of these pieces, since the knight fork is appli­
cable anyplace on the chess board. In addition, the piece type is 
only important for the knight: the captured piece need not 
always be a rook. 

Such a new structure is more general, since it can be 
applied to many other board situations. Naturally, the cost of 
applying this new structure is greater than the trivial case 
described above. First, we must decide whether the structure is 
applicable to the current situation. This involves more than a 
simple matching, since our structure does not fully specify the 
chess board. Second, we must identify which pieces on the board 
play which roles in the structure. 

Designers of EBL systems must decide where the new 
structure produced by their system's generalizer lies in this 
operationality/generality spectrum. Mitchell et al [Mitchell86J 

1 This trivial case of learning is normally called memorization or rote learn­
ing. The careful reader will notice that rote learning does not really qualify as 
EBL since there is no generalization step It does, however, serve to illustrate 
operationality taken to the limit. 

242 KNOWLEDGE ACQUISITION 



posit a fixed operationally criterion to specify the level of 
representation used for the new knowledge structure. They sug­
gest that a fixed vocabulary be established a prion, so that any 
new structure described using this limited vocabulary is by 
definition considered operational. 

As pointed out by Mooney and DeJong [DeJong86], there 
are obvious difficulties involved in finding such a fixed opera­
tional vocabulary for any given domain. Even if a fixed opera­
tionally vocabulary could be specified, there is no guarantee 
that structures expressed with this vocabulary are easy to apply. 
As an example, Mooney and Dejong give the following two propo­
sitions: 

PROVABLE("2 + 2 = 4'') 
PROVABLECFERMAT'S LAST THEOREM") 

The first is clearly operational, while the second is not. Yet both 
are described using the same vocabulary. 

In any case, the fixed vocabulary approach seems needlessly 
limiting, especially if one departs from the static classification 
type tasks of Mitchell et al and considers acquiring problem-
solving skills. When learning problem-solving skills, the system 
is acquiring the ability to plan solutions (sequences of operators) 
to other problems by analyzing a trace of a successful solution. 

Mooney and DeJong present an alternative, more dynamic, 
definition of operationality based on the problem-solving capabil­
ities of a system. In their view, an EBL system makes previ­
ously known static concepts operational by learning how to 
achieve these concepts. For example, the concept of checkmate in 
the game of chess is easy to describe (a situation where one 
player's king cannot escape capture) but difficult to operational-
ize (planning a series of operators to achieve checkmate). A con­
cept therefore becomes operational only when the system 
acquires and can index a plan to achieve it. 

Making a plan operational makes no statement about the 
quality of the plan. From our earlier discussion, it is clear that 
there are many different levels of operationality, levels that will 
affect system performance. In the next section, we describe an 
example from the ARMS system which compares two different 
levels of operationality. 

3. The ARMS System 
We now turn our attention to an example taken from the 

ARMS learning-apprentice system [Segre85,Segre87a,Segre87b]. 
ARMS is an EBL system that acquires the ability to plan 
sequences of robot motions to accomplish assembly of simple 
mechanisms. A complete description of the system is far beyond 
the scope of this paper, however, a short overview describing the 
general structure of the system will be helpful when describing 
the example. 

ARMS learns by unobtrusively observing an expert guide 
the robot through an assembly task via the robot arm's teach 
pendant. To the user, this method is indistinguishable from the 
teach-by-guiding robot retraining method used in most current 
robot arm installations. In contrast to teach-by-guiding systems 
which provide for rote memorization of the input sequence, 
ARMS acquires, from a single episode, the power to plan the 
assembly of an entire class of functionally similar mechanisms. 

The ARMS architecture is that shown in Figure 1. It 
divides into two elements, the learning element and the perfor­
mance element, which do not operate concurrently. The two ele­
ments share domain knowledge which is stored in the form of 
schemata in the schema library. 

The user specifies an assembly by giving a functional goal 
specification. The goal specification describes the mechanical 
behavior of the desired assembly, without specifying a physical 
description. If the performance element can derive a physical 
goal description from the functional goal specification (the design 

problem), it then attempts to derive a plan to transform the ini­
tial world state into a state containing an instance of the 
design-problem solution (the assembly problem). 

If the performance element fails to find solutions to the 
design and assembly problems, control is transferred back to the 
user, who now guides the learning element through the assembly 
process. As the user moves the arm about the workspace, the 
system observes the user's solution and produces a new schema 
to use in future problem-solving situations. 

3.1. World Model 
The ARMS system relies on an emulation of the robot 

world in order to reason about how pieces fit and move together. 
This emulator is much like the modeling systems used for com­
puter graphics and CAD/CAM applications. It is a simple con­
structive solid geometry (CSG) modeler which represents pieces as 
the sum and/or difference of primitive volumes. 

The modeler is used to model the ARMS gripper and its 
interactions with the world.2 It must realize when the gTipper is 
manipulating a piece, what effects these manipulations have on 
the position of that piece and any piece interactions. The 
modeler maintains a copy of the world at each time tick by using 
a storage-efficient mechanism similar to those used for copying 
sparse matrices. 

The rest of the ARMS system does not have direct access to 
the emulation afforded by the CSG world modeler: rather it only 
has access to descriptions of this world which are maintained by 
the database. Any request for world information is shuttled 
through the database, which manipulates tokens representing 
relations between elements of the world model. This collection of 
tokens corresponds to the state of the problem-solving domain. 
Note that it is the responsibility of the database to uniquify 
requests so that there is only one copy of a symbolic state to 
describe a particular partial world state. 

3.2. Knowledge Representation 
All domain knowledge in ARMS is represented as sche­

mata. A schema [Chafe75,Charniak78,Minsky75,Schank77] is a 
general structure which, via the use of slots which can be filled 
with a variety of different values, can be used to represent a 
class of similar concepts. A schema is said to be instantiated 
when all of its slots are bound to constants or other instantiated 
schemata, in which case it represents a unique concept. 

ARMS schemata fall into five different categories. 
(1) Physical object schemata represent the CSG models of the 

pieces in the domain. While certain limitations are 
2 While ARMS has been lined to drive a real robot arm (Guatafoon86j,' its 

normal mode of operation involves driving the simulated robot arm in this simu­
lated environment. 
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imposed by the simplicity of the modeler, ARMS can model 
an infinite set of different pieces. 

(2) State schemata represent the vocabulary with which ARMS 
reasons about the real world. These are maintained by the 
database in an on-demand fashion: no state schema is ever 
generated or otherwise manipulated except as a result of an 
explicit request by the system. Each state contains tem­
poral information indicating start and end times for the 
state.3 

(3) Constraint schemata are just like state schemata, except 
that they are time-invariant. Certain aspects of the world 
are not mutable by applying system operators (e.g., rela­
tions between sizes of pieces): thus the constraint schemata 
are maintained more efficiently by the database. Constraint 
schemata are attached to state schemata to impose restric­
tions on the values the state schema slots may take. 

(4) Joint schemata are also like state schemata in that they are 
maintained by the database and have temporal scope. They 
come in two flavors: abstract joint schemata describing the 
mechanical behavior of two related pieces, and physical 
joint schemata describing the implementation of the 
mechanism in terms of interacting surfaces. Together, these 
joint schemata form the building blocks of the ARMS 
domain theory.4 

(5) Operator schemata (which include the five primitive opera­
tor schemata) represent the plans the system can apply. The 
primitive operator schemata correspond to the idealized 
ARMS robot arm command set. They provide the lowest 
level of description for robot motion. Operator schemata 
describe the context in which they can be applied, as well 
as what goals they achieve. The composite (e.g., non-
primitive) operators are recursively defined in terms of 
other schemata. The system learns this kind of schema, 
and it is this case we will examine a bit more closely later 
in our operationality/generality discussion. 

3.3. The Performance Element 
Inputs to the performance element are: 

1. The initial state of the world; 
2. A goal specification given as an abstract joint schema. 

The performance element produces a sequence of fully instan­
tiated primitive operator schemata. 

The ARMS performance element begins with a design 
phase, where a physical joint schema consistent with the func­
tional goal specification (an abstract joint schema) is derived. 
This physical joint schema is then used to index into the schema 
library and select a top-level plan. The planning phase recur­
sively expands the top-level plan to produce a robot arm com­
mand sequence which achieves the final state from the specified 
initial state. 

The planning process is a depth-first search through the 
plan space defined by the operator schemata (both built-in and 
acquired) stored in the schema library. This schema planner 
(similar to the skeletal planner of [Friedland79]) is a simple 
design which selects an abstract plan (in the form of an operator 

3 Even though state schemes are checked against the emulator only at a 
reeult of a request, the amount of time spent by the database in satisfying re­
quests for symbolic information about the world accounts for a large portion (in 
some examples as much as 96% of the total) of the computational resources ex­
pended by the ARMS system. While ARMS runs on a serial machine, this kind of 
database mechanism is a prime example of those algorithms which seem best 
suited to large grain size parallel machines 

4 The system is capable of learning physical joint schemata, but the finite 
set of abstract joint schemata is built in (the reader is referred to [Segre87] for a 
diacussion). 

schema) to achieve the specified goal state, and repeatedly 
expands it until the process bottoms out with a robot arm com­
mand sequence.5 

3.4. The Learning Element 
The learning element is responsible for first understanding 

how the user solved the problem, and then generalizing the 
observed solution into something that can be used again later by 
the performance element. We divide this task into three distinct 
sub tasks: understanding, verifying, and generalizing. 

Inputs to the learning element are: 
1. The initial state of the world; 
2. A goal specification given as an abstract joint schema; 
3. A sequence of instantiated primitive operator schemata. 

The primitive operator schemata are echoed from the teach pen­
dant of the robot arm being led through the assembly episode by 
the user. The understander builds a causal model of the exter­
nal agent's problem solving behavior. 

When the user is finished, the system verifies that the func­
tion of the physical mechanism constructed by the user 
corresponds to the initial functional goal specification. The 
verification process relies on a naive kinematic domain theory to 
analyze the function of a mechanism. This process may result in 
the acquisition of a new schema via explanation-based specializa­
tion that operationalizes the functional goal specification and 
provides a solution to future design problems, (see [Segre87b] 
for a more thorough description of the verifier). 

Next the generalizer produces another schema via 
explanation-based generalization. This newly acquired schema 
can then be used to solve an entire class of assembly problems 
which share the same functional goal specification. 

In this paper, we give a quick description of the generalizer 
only: the reader is again referred to [Segre87b] for a more 
thorough discussion. 

3.4.1. The Generalization Process 
The generalizer takes as its input the verified goal 

specification given by the user and the causal model produced by 
the understander. The generalizer produces a new composite 
operator schema which can be used both in understanding and 
planning (see Figure 2). 

As a result of the verification process, an instantiated ver­
sion of the user-specified abstract joint schema is tied to a set of 
physical joint schema tokens in the causal model. These tokens 
constitute the top-level sub goal set. 

We begin by ordering the top-level subgoal set on the basis 
of a causal dependency analysis. This causal analysis relies on 
the ARMS domain theory to determine if there are any ordering 
dependencies between elements. In short, the limits of travel in 
the individual subjoints of the mechanism are examined to see if 
their boundary conditions rely on other subjoints. 

5 The ARM8 planner stops at the level of primitive robot arm commands. 
When driving the robot arm, the primitive operator schemata are expanded into 
arm-dependent control statements: this is done with an arm-specific algorithm 
which takes robot level statements down to the kinematic level. Note that 
ARMS does not deal with collision avoidance, an active research topic which goes 
well beyond the scope of this implementation. For now, ARMS assumes an un­
cluttered workspace so that collision avoidance is not a problem 

' Apologies to McDermott: 
Wa should avoid, for axample, labeling any part of our programs an "under-
staadsr " It is the job of the text accompanying the program to axamins carefully 
how much understanding is prssent, how it got there, and what ita limits are 
[McDermott76] 

While we often use the alternate, but less illustrative, term justification analyzer, 
which is perhaps more acceptable from McDermott's point of view, this practice 
conflicts with our goal of descriptive simplicity 
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To extract the explanation from the causal model, it is 
sufficient to follow the pointers established during the under­
standing process from the (now causally ordered) top-level 
sub goal set down to the primitive operator inputs. The relevant 
pointers are those connecting operators to their recursive expan­
sions. Note that an explanation should also contain pointers to 
all of the constraint schemata supporting states in the explana­
tion. 

At this point, the generalizer must pick a level of represen­
tation for the new operator schema. The higher the level of 
representation, the more generally applicable the new schema 
will be: however, a price will be paid in the amount of work done 
by the planner in applying the new schema. The extra work 
comes from the added levels necessary in the recursive expansion 
of the plan. Conversely, a more operational new schema will be 
easier to apply, but less generally applicable. 

Depending on the value given by the user to the 
operationality/generality parameter, the ARMS generalizer 
expresses a new schema as follows: 
(1) as the abstraction of the top-level subgoal set, producing a 

more general new schema (see Figure 3). 
(2) by descending the explanation structure to a level where all 

of the state schemata are roots of independent subtrees in 
the explanation (a more operational new schema). The 
state schemata at this lower level become the subgoal set of 
the new composite operator schema. This produces a new 
subgoal set which preserves any causal dependency order-
ings established during the joint analysis (see Figure 4). 
Having in this fashion collected a set of subgoals, we now 

complete the construction of the new operator schema and 
integrate it into the schema library. 

Level with No Shared Substructures in Explanation 
The two elements of the top-level subgoal set are represented 
as white nodes at the root position of two overlapping explana­
tion subtrees. When producing the more operational new sche­
ma, the generalizer descends into the explanation structure 
until it can produce a subgoal set (represented here as black 
nodes) with no shared substructure. This set then becomes the 
subgoal set model for the new schema. 

Figure 4 

At first glance, the two schemata do not seem terribly 
different. In fact, both new schemata are equally capable of solv­
ing a set of similar problems, yielding identical solutions. While 
their operationality difference is obvious in the levels of recur­
sive expansion required in planning, their generality difference 
is not immediately evident. 

Closer examination shows that the more general new 
schema is better able to integrate subsequently acquired sche­
mata in its planning behavior. In other words, as the system 
learns how to do things in other ways, the more general new 
schema, unlike the more operational new schema, is immediately 
able to take advantage of this new knowledge. 

4. An Example 
Consider as an example a mechanism (see Figure 5) assem­

bled from three pieces: a washer, a bored block, and a peg. The 
shaft of the peg is inserted first through the hole in the washer 
and then into the hole in the block. The washer spins freely 
about the peg, while the peg fits snugly into the bored block. We 
call this simple mechanism a widget. 

We can describe the widget physically by describing the 
pieces (call them $Pegl, $Washerl, and $BoredBlockl) and the 
mating conditions between them (this is the approach taken by 
most task level programming systems such as RAPT 
[Popplestone80]). We could also describe this mechanism at a 
functional level as a revolute joint, e.g., a single rotational degree 
of freedom, between $ Washerl and $BoredBlockl. Unlike the 
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physical description, the functional description need not expli­
citly mention $Pegl. In fact, the same functional description 
would hold for any assembly having the requisite one rotational 
degree of freedom, regardless of the physical mechanism used to 
achieve this function. 

The system is first given the piece descriptions and their 
initial placements in the workspace 'see Figure 6 for an exam­
ple). When asked to achieve a revolute joint between the washer 
and the bored block, the system should automatically generate a 
sequence of fully instantiated (i.e., with all parameters bound) 
primitive operators which, when applied by the robot arm, 
transform the initial state into the assembly described above. 
The sequence should take into account factors such as the proper 
grasping strategy for each piece, whether pieces are cleared off 
before attempting to move them, and so on. 

Since the system currently has no plan to achieve this con­
cept (in fact, the system does not yet possess a concept 
corresponding to this function's physical realization), the system 
admits defeat, and the user proceeds to show it how to build a 
mechanism which has the desired functionality. The user guides 
the system through an assembly episode which results in a phy­
sical assembly that fits the specified goal. Note that the assembly 
sequence given by the user (input to the system as fully instan­
tiated primitive operators) need not be an optimal sequence, but 
simply effective in accomplishing a physical instantiation of the 
functionally specified goal. 

The system verifies, using its domain theory, how the phy­
sical assembly realized instantiates the desired functional goal. 
During the verification process, a new concept corresponding to 
this physical realization of the functionally specified goal is 
acquired. 

If the verifier terminates successfully, the generalizer pro­
duces either a more general or a more operational new schema 
which can be used to solve similar problems. 

5. Results 
In this section, we present some empirical results collected 

from the ARMS system. ARMS is implemented using the object-
oriented language LOOPS, which is in turn constructed in 
INTERLISP-D. These results were collected on a Xerox 1109 
Lisp Machine running the Koto release of INTERLISP-D and the 
Buttress version of LOOPS. The 1109 has 3.5 megabytes of main 
memory, a 43 megabyte hard disk drive, and a hardware floating 
point coprocessor. 

Performance of the system is adversely affected during 
these tests by the information-collecting mechanism. The system 
suffers a factor of eight slowdown while collecting these statis­
tics. However, since our only interest here is in comparing one 
example with the other, the slowdown effects are not relevant. 

Initial State 1 
The robot gripper is located in the center of the picture with 
fingers closed and pointed down. $BoredBlockl is to the right, 
$Pegl is to the left, and $Washerl IS in the foreground just left 
of center. The functional goal specification is given as an 
abstract joint schema $RevoluteJointr$BoredBlockl, $Wash-
erll. 

Figure 6 

5.1. Learning Episode 1 
Given the initial configuration shown in Figure 6, the sys­

tem is presented with a sequence of 12 primitive operator sche­
mata which complete the assembly of the widget shown in Fig­
ure 3. The system constructs a new, more operational, schema 
which can plan the assembly of this and other functionally simi­
lar mechanisms. 

The size of the causal model and the explanation are given 
in terms of tokens, where each token represents a schema 
instance. This is a pretty good measure of the difficulty of the 
example: the larger the number, the more complex the analysis 
or the plan. 

The number of database queries, tokens created, requests 
issued and slot manipulations are a good general indicator of 
how much work is performed by the system. 

The total CPU time reflects the time for emulating, under­
standing, verifying, and generalizing the example. Also provided 
is the CPU time for generalization alone. 

5.2. Learning Episode 2 
This example is identical to Learning Episode 1, except 

that the more general new schema is constructed. 
As expected, the results shown here are almost identical to 

the results of the previous, identical, episode. The only difference 
is in the time spent on generalization. The extra analysis 
required to produce the more operational new schema is clearly 
evident in the greater CPU time for generalization in the opera­
tional case. This is consistent with expected behavior. 
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5.3. Problem-Solving Episode 1 
We again present the system with the initial configuration 

of Figure 6. The system is asked to produce a revolute joint 
between $BoredBlockl and $ Washer 1. The system solves the 
design problem and then applies the more operational version of 
the new schema to the assembly problem, generating a 12 step 
solution. 

5.4. Problem-Solving Episode 2 
This example is identical to Problem-Solving Episode 1 (see 

Figure 6), except that the new schema being applied is the more 
general version. We therefore expect this example to be less 
efficient, since the planner must work harder when applying a 
more general schema. 

The system generates the same solution as in Problem-
Solving Episode 1. The solution, however, is more expensive to 
generate as indicated by the number of tokens generated and 
requests issued This behavior is also evident in the total CPU 
time figure (42 minutes as compared to 29 minutes in the other 
case). In addition, the planner subtree is a bit larger: but since 
the additional nodes tend to be at the highest level of abstrac­
tion, the increase in CPU time tends to be more than linear in 
the increased subtree size. 

Initial State 2 
The robot gripper is located in the center of the picture with 
fingers closed and pointed down. $BoredCylinderl is to the left, 
with $Pegl stacked on top of it. $Peg3 and $Washer2 are 
stacked (from left to right) on top of $Blockl on the right side 
of the workspace. The functional goal specification is the same 
as in Initial State I 

Figure 7 

5.5. Problem-Solving Episode 3 
This problem-solving episode demonstrates the power of the 

system in planning the assembly of physically different yet func­
tionally similar mechanisms. The system is asked to plan for a 
revolute joint between $BoredCylinderl and $Washer2 There is 
no mention of $Peg3: the system must decide for itself which of 
the other pieces in the workspace can be used to achieve a physi­
cal instance of the functionally specified goal. The initial state is 
shown in Figure 7. 

In this example, we are asking the system to deal with not 
only a more complicated initial starting configuration, but also 
the system must construct a functionally specified assembly from 
physically different pieces. 

5.6. Problem-Solving Episode 4 
Problem-Solving Episode 4 is identical to Problem-Solving 

Episode 3 (see Figure 7). The system supplies the identical solu­
tion, but at greater computational expense. This is consistent 
with expected behavior. 
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6. Conclusion 
In this paper, we have provided an overview of the 

operationality/generality trade-off for explanation-based learning 
systems. We have described one approach, that of the ARMS 
learning-apprentice system, for characterizing the operationality 
of a new schema based on the structure of the explanation itself. 
Finally, we described an experiment that provides preliminary 
empirical evidence of the importance of this trade-off. 

What we are really dealing with is a set of plans covering a 
spectrum of operationality/generality characteristics. It is up to 
the system designer to decide what the best level(s) of opera­
tionality are for a given system. Given that there is no single 
solution, the best we can hope for is to understand the problem 
well enough to decide where on the continuum a given system's 
generalizer should reside. 
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