
On the Operationality/Generality Trade-Off
in Explanation-Based Learning

Alberto Maria Segre
segre@gvax.cs corncll.edu

Department of Computer Science
Cornell University

Ithaca, NY 14853-7501

Abstract
In this paper we examine the operationalityigenerality

trade-off and how it affects performance of explanation-based
learning systems. Experience with the ARMS learning appren­
tice system, presented in the form of an empirical performance
analysis, illustrates both sides of the trade-off.

1. Introduction
Recent work in explanation-based learning (EBL) has

attracted much attention from the machine learning community
[DeJong86,Mitchell86]. A number of systems have been and are
still being developed in a spectrum of domains from natural
language processing [Mooney85], to circuit design [Mitchell85a]

This paper discusses the operationality/generality trade-off
and how it arises in EBL in general and the implementation of
the ARMS (for Acquiring Robotic Manufacturing Schemata) sys­
tem in particular [Segre85,Segre87a,Segre87b]. ARMS is a
learning apprentice system [Mitchell85b] that learns to assemble
simple mechanical devices using an idealized robot arm. By
observing, analyzing, and generalizing a human planner's solu­
tion to an assembly episode, ARMS builds a new schema which
can be used to synthesize assembly plans for future episodes.

We begin with an intuitive discussion of the operationality
versus generality problem. We then proceed to give a short
description of the ARMS system [Segre87b] with emphasis on the
generalization process. Finally, we describe a simple ARMS
example to illustrate this important trade-off.

2. Operationality versua Generality
Explanation-based learning (EBL) systems are capable of

acquiring knowledge from a single example. Using a domain
theory, a sample problem solution is analyzed in order to account
for how the goal is accomplished. This analysis, or explanation, is
generalized to create a new knowledge structure.

If the newly acquired knowledge structure is available to
the system, it is said to be operational. If the new structure does
not improve the performance of the system in some fashion, it is
not worth learning. However, not all operational knowledge is
created equal: the cost of using the new knowledge structure is
called its operationality. The more operational the structure, the
easier (e.g., less expensive) it is for the system to apply it.

The ARMS system was designed and implemented by the author as part of
hit Ph.D. research at the University of Illinois at Urbana-Champaign. The au­
thor is indebted to Professor Q. DeJong and the rest of the Coordinated Science
Laboratory Artificial Intelligence Research Group for their comments and sugges­
tions.
Support for this research was provided by a Caterpillar Corporation Graduate
Fellowship, the Air Force Office of Scientific Research under grant P49620-82-K
0009, and the National Science Foundation under grants NSF-I8T-83-17889 and
NSF-IST-86-11542

Note that we have yet to address the issue of exactly how
the new structure is used. The only important point is that the
knowledge should increase some aspect of the system's capability
or performance. The new knowledge structure might be used in
order to construct explanations of more complex examples,
thereby increasing a system's comprehension ability. On the
other hand, it might be used by a system's performance element
(e.g., a planner) in similar problem-solving situations.

But just how similar is similar? The diversity of examples
covered by the new structure is directly related to its generality:
the more general the knowledge, the more situations where it is
likely to be useful. Unfortunately, the more general the struc­
ture the more expensive its application tends to be. We term
this dichotomy the operationality/generality trade-off: a more gen­
eral structure is less operational and vice versa.

Consider an example form the game of chess. Having
observed the successful capture of the opponent's rook using the
technique called a knight fork, a system could produce a very
operational new structure describing exactly this board situa­
tion.1 For the system to use this new structure in a future game,
every piece on the chess board would have to occupy exactly the
same position as in the first example.

Clearly this new structure, while operational to an
extreme, is hardly general. The position of a pawn on the other
side of the board can hardly affect the success of the knight fork.
On the other hand, it is quite simple and inexpensive to use: in
the same board situation, application of the structure is immedi­
ate and practically without cost.

If, however, the rook capture is analyzed and generalized,
the resulting knight fork knowledge structure might well take
into account the relative positions of the knight, the decoy, and
the victim (a rook in the observed example). It should not rely on
the actual positions of these pieces, since the knight fork is appli­
cable anyplace on the chess board. In addition, the piece type is
only important for the knight: the captured piece need not
always be a rook.

Such a new structure is more general, since it can be
applied to many other board situations. Naturally, the cost of
applying this new structure is greater than the trivial case
described above. First, we must decide whether the structure is
applicable to the current situation. This involves more than a
simple matching, since our structure does not fully specify the
chess board. Second, we must identify which pieces on the board
play which roles in the structure.

Designers of EBL systems must decide where the new
structure produced by their system's generalizer lies in this
operationality/generality spectrum. Mitchell et al [Mitchell86J

1 This trivial case of learning is normally called memorization or rote learn­
ing. The careful reader will notice that rote learning does not really qualify as
EBL since there is no generalization step It does, however, serve to illustrate
operationality taken to the limit.

242 KNOWLEDGE ACQUISITION

posit a fixed operationally criterion to specify the level of
representation used for the new knowledge structure. They sug­
gest that a fixed vocabulary be established a prion, so that any
new structure described using this limited vocabulary is by
definition considered operational.

As pointed out by Mooney and DeJong [DeJong86], there
are obvious difficulties involved in finding such a fixed opera­
tional vocabulary for any given domain. Even if a fixed opera­
tionally vocabulary could be specified, there is no guarantee
that structures expressed with this vocabulary are easy to apply.
As an example, Mooney and Dejong give the following two propo­
sitions:

PROVABLE("2 + 2 = 4'')
PROVABLECFERMAT'S LAST THEOREM")

The first is clearly operational, while the second is not. Yet both
are described using the same vocabulary.

In any case, the fixed vocabulary approach seems needlessly
limiting, especially if one departs from the static classification
type tasks of Mitchell et al and considers acquiring problem-
solving skills. When learning problem-solving skills, the system
is acquiring the ability to plan solutions (sequences of operators)
to other problems by analyzing a trace of a successful solution.

Mooney and DeJong present an alternative, more dynamic,
definition of operationality based on the problem-solving capabil­
ities of a system. In their view, an EBL system makes previ­
ously known static concepts operational by learning how to
achieve these concepts. For example, the concept of checkmate in
the game of chess is easy to describe (a situation where one
player's king cannot escape capture) but difficult to operational-
ize (planning a series of operators to achieve checkmate). A con­
cept therefore becomes operational only when the system
acquires and can index a plan to achieve it.

Making a plan operational makes no statement about the
quality of the plan. From our earlier discussion, it is clear that
there are many different levels of operationality, levels that will
affect system performance. In the next section, we describe an
example from the ARMS system which compares two different
levels of operationality.

3. The ARMS System
We now turn our attention to an example taken from the

ARMS learning-apprentice system [Segre85,Segre87a,Segre87b].
ARMS is an EBL system that acquires the ability to plan
sequences of robot motions to accomplish assembly of simple
mechanisms. A complete description of the system is far beyond
the scope of this paper, however, a short overview describing the
general structure of the system will be helpful when describing
the example.

ARMS learns by unobtrusively observing an expert guide
the robot through an assembly task via the robot arm's teach
pendant. To the user, this method is indistinguishable from the
teach-by-guiding robot retraining method used in most current
robot arm installations. In contrast to teach-by-guiding systems
which provide for rote memorization of the input sequence,
ARMS acquires, from a single episode, the power to plan the
assembly of an entire class of functionally similar mechanisms.

The ARMS architecture is that shown in Figure 1. It
divides into two elements, the learning element and the perfor­
mance element, which do not operate concurrently. The two ele­
ments share domain knowledge which is stored in the form of
schemata in the schema library.

The user specifies an assembly by giving a functional goal
specification. The goal specification describes the mechanical
behavior of the desired assembly, without specifying a physical
description. If the performance element can derive a physical
goal description from the functional goal specification (the design

problem), it then attempts to derive a plan to transform the ini­
tial world state into a state containing an instance of the
design-problem solution (the assembly problem).

If the performance element fails to find solutions to the
design and assembly problems, control is transferred back to the
user, who now guides the learning element through the assembly
process. As the user moves the arm about the workspace, the
system observes the user's solution and produces a new schema
to use in future problem-solving situations.

3.1. World Model
The ARMS system relies on an emulation of the robot

world in order to reason about how pieces fit and move together.
This emulator is much like the modeling systems used for com­
puter graphics and CAD/CAM applications. It is a simple con­
structive solid geometry (CSG) modeler which represents pieces as
the sum and/or difference of primitive volumes.

The modeler is used to model the ARMS gripper and its
interactions with the world.2 It must realize when the gTipper is
manipulating a piece, what effects these manipulations have on
the position of that piece and any piece interactions. The
modeler maintains a copy of the world at each time tick by using
a storage-efficient mechanism similar to those used for copying
sparse matrices.

The rest of the ARMS system does not have direct access to
the emulation afforded by the CSG world modeler: rather it only
has access to descriptions of this world which are maintained by
the database. Any request for world information is shuttled
through the database, which manipulates tokens representing
relations between elements of the world model. This collection of
tokens corresponds to the state of the problem-solving domain.
Note that it is the responsibility of the database to uniquify
requests so that there is only one copy of a symbolic state to
describe a particular partial world state.

3.2. Knowledge Representation
All domain knowledge in ARMS is represented as sche­

mata. A schema [Chafe75,Charniak78,Minsky75,Schank77] is a
general structure which, via the use of slots which can be filled
with a variety of different values, can be used to represent a
class of similar concepts. A schema is said to be instantiated
when all of its slots are bound to constants or other instantiated
schemata, in which case it represents a unique concept.

ARMS schemata fall into five different categories.
(1) Physical object schemata represent the CSG models of the

pieces in the domain. While certain limitations are
2 While ARMS has been lined to drive a real robot arm (Guatafoon86j,' its

normal mode of operation involves driving the simulated robot arm in this simu­
lated environment.

Segre 243

imposed by the simplicity of the modeler, ARMS can model
an infinite set of different pieces.

(2) State schemata represent the vocabulary with which ARMS
reasons about the real world. These are maintained by the
database in an on-demand fashion: no state schema is ever
generated or otherwise manipulated except as a result of an
explicit request by the system. Each state contains tem­
poral information indicating start and end times for the
state.3

(3) Constraint schemata are just like state schemata, except
that they are time-invariant. Certain aspects of the world
are not mutable by applying system operators (e.g., rela­
tions between sizes of pieces): thus the constraint schemata
are maintained more efficiently by the database. Constraint
schemata are attached to state schemata to impose restric­
tions on the values the state schema slots may take.

(4) Joint schemata are also like state schemata in that they are
maintained by the database and have temporal scope. They
come in two flavors: abstract joint schemata describing the
mechanical behavior of two related pieces, and physical
joint schemata describing the implementation of the
mechanism in terms of interacting surfaces. Together, these
joint schemata form the building blocks of the ARMS
domain theory.4

(5) Operator schemata (which include the five primitive opera­
tor schemata) represent the plans the system can apply. The
primitive operator schemata correspond to the idealized
ARMS robot arm command set. They provide the lowest
level of description for robot motion. Operator schemata
describe the context in which they can be applied, as well
as what goals they achieve. The composite (e.g., non-
primitive) operators are recursively defined in terms of
other schemata. The system learns this kind of schema,
and it is this case we will examine a bit more closely later
in our operationality/generality discussion.

3.3. The Performance Element
Inputs to the performance element are:

1. The initial state of the world;
2. A goal specification given as an abstract joint schema.

The performance element produces a sequence of fully instan­
tiated primitive operator schemata.

The ARMS performance element begins with a design
phase, where a physical joint schema consistent with the func­
tional goal specification (an abstract joint schema) is derived.
This physical joint schema is then used to index into the schema
library and select a top-level plan. The planning phase recur­
sively expands the top-level plan to produce a robot arm com­
mand sequence which achieves the final state from the specified
initial state.

The planning process is a depth-first search through the
plan space defined by the operator schemata (both built-in and
acquired) stored in the schema library. This schema planner
(similar to the skeletal planner of [Friedland79]) is a simple
design which selects an abstract plan (in the form of an operator

3 Even though state schemes are checked against the emulator only at a
reeult of a request, the amount of time spent by the database in satisfying re­
quests for symbolic information about the world accounts for a large portion (in
some examples as much as 96% of the total) of the computational resources ex­
pended by the ARMS system. While ARMS runs on a serial machine, this kind of
database mechanism is a prime example of those algorithms which seem best
suited to large grain size parallel machines

4 The system is capable of learning physical joint schemata, but the finite
set of abstract joint schemata is built in (the reader is referred to [Segre87] for a
diacussion).

schema) to achieve the specified goal state, and repeatedly
expands it until the process bottoms out with a robot arm com­
mand sequence.5

3.4. The Learning Element
The learning element is responsible for first understanding

how the user solved the problem, and then generalizing the
observed solution into something that can be used again later by
the performance element. We divide this task into three distinct
sub tasks: understanding, verifying, and generalizing.

Inputs to the learning element are:
1. The initial state of the world;
2. A goal specification given as an abstract joint schema;
3. A sequence of instantiated primitive operator schemata.

The primitive operator schemata are echoed from the teach pen­
dant of the robot arm being led through the assembly episode by
the user. The understander builds a causal model of the exter­
nal agent's problem solving behavior.

When the user is finished, the system verifies that the func­
tion of the physical mechanism constructed by the user
corresponds to the initial functional goal specification. The
verification process relies on a naive kinematic domain theory to
analyze the function of a mechanism. This process may result in
the acquisition of a new schema via explanation-based specializa­
tion that operationalizes the functional goal specification and
provides a solution to future design problems, (see [Segre87b]
for a more thorough description of the verifier).

Next the generalizer produces another schema via
explanation-based generalization. This newly acquired schema
can then be used to solve an entire class of assembly problems
which share the same functional goal specification.

In this paper, we give a quick description of the generalizer
only: the reader is again referred to [Segre87b] for a more
thorough discussion.

3.4.1. The Generalization Process
The generalizer takes as its input the verified goal

specification given by the user and the causal model produced by
the understander. The generalizer produces a new composite
operator schema which can be used both in understanding and
planning (see Figure 2).

As a result of the verification process, an instantiated ver­
sion of the user-specified abstract joint schema is tied to a set of
physical joint schema tokens in the causal model. These tokens
constitute the top-level sub goal set.

We begin by ordering the top-level subgoal set on the basis
of a causal dependency analysis. This causal analysis relies on
the ARMS domain theory to determine if there are any ordering
dependencies between elements. In short, the limits of travel in
the individual subjoints of the mechanism are examined to see if
their boundary conditions rely on other subjoints.

5 The ARM8 planner stops at the level of primitive robot arm commands.
When driving the robot arm, the primitive operator schemata are expanded into
arm-dependent control statements: this is done with an arm-specific algorithm
which takes robot level statements down to the kinematic level. Note that
ARMS does not deal with collision avoidance, an active research topic which goes
well beyond the scope of this implementation. For now, ARMS assumes an un­
cluttered workspace so that collision avoidance is not a problem

' Apologies to McDermott:
Wa should avoid, for axample, labeling any part of our programs an "under-
staadsr " It is the job of the text accompanying the program to axamins carefully
how much understanding is prssent, how it got there, and what ita limits are
[McDermott76]

While we often use the alternate, but less illustrative, term justification analyzer,
which is perhaps more acceptable from McDermott's point of view, this practice
conflicts with our goal of descriptive simplicity

244 KNOWLEDGE ACQUISITION

To extract the explanation from the causal model, it is
sufficient to follow the pointers established during the under­
standing process from the (now causally ordered) top-level
sub goal set down to the primitive operator inputs. The relevant
pointers are those connecting operators to their recursive expan­
sions. Note that an explanation should also contain pointers to
all of the constraint schemata supporting states in the explana­
tion.

At this point, the generalizer must pick a level of represen­
tation for the new operator schema. The higher the level of
representation, the more generally applicable the new schema
will be: however, a price will be paid in the amount of work done
by the planner in applying the new schema. The extra work
comes from the added levels necessary in the recursive expansion
of the plan. Conversely, a more operational new schema will be
easier to apply, but less generally applicable.

Depending on the value given by the user to the
operationality/generality parameter, the ARMS generalizer
expresses a new schema as follows:
(1) as the abstraction of the top-level subgoal set, producing a

more general new schema (see Figure 3).
(2) by descending the explanation structure to a level where all

of the state schemata are roots of independent subtrees in
the explanation (a more operational new schema). The
state schemata at this lower level become the subgoal set of
the new composite operator schema. This produces a new
subgoal set which preserves any causal dependency order-
ings established during the joint analysis (see Figure 4).
Having in this fashion collected a set of subgoals, we now

complete the construction of the new operator schema and
integrate it into the schema library.

Level with No Shared Substructures in Explanation
The two elements of the top-level subgoal set are represented
as white nodes at the root position of two overlapping explana­
tion subtrees. When producing the more operational new sche­
ma, the generalizer descends into the explanation structure
until it can produce a subgoal set (represented here as black
nodes) with no shared substructure. This set then becomes the
subgoal set model for the new schema.

Figure 4

At first glance, the two schemata do not seem terribly
different. In fact, both new schemata are equally capable of solv­
ing a set of similar problems, yielding identical solutions. While
their operationality difference is obvious in the levels of recur­
sive expansion required in planning, their generality difference
is not immediately evident.

Closer examination shows that the more general new
schema is better able to integrate subsequently acquired sche­
mata in its planning behavior. In other words, as the system
learns how to do things in other ways, the more general new
schema, unlike the more operational new schema, is immediately
able to take advantage of this new knowledge.

4. An Example
Consider as an example a mechanism (see Figure 5) assem­

bled from three pieces: a washer, a bored block, and a peg. The
shaft of the peg is inserted first through the hole in the washer
and then into the hole in the block. The washer spins freely
about the peg, while the peg fits snugly into the bored block. We
call this simple mechanism a widget.

We can describe the widget physically by describing the
pieces (call them $Pegl, $Washerl, and $BoredBlockl) and the
mating conditions between them (this is the approach taken by
most task level programming systems such as RAPT
[Popplestone80]). We could also describe this mechanism at a
functional level as a revolute joint, e.g., a single rotational degree
of freedom, between $ Washerl and $BoredBlockl. Unlike the

Sogre 245

physical description, the functional description need not expli­
citly mention $Pegl. In fact, the same functional description
would hold for any assembly having the requisite one rotational
degree of freedom, regardless of the physical mechanism used to
achieve this function.

The system is first given the piece descriptions and their
initial placements in the workspace 'see Figure 6 for an exam­
ple). When asked to achieve a revolute joint between the washer
and the bored block, the system should automatically generate a
sequence of fully instantiated (i.e., with all parameters bound)
primitive operators which, when applied by the robot arm,
transform the initial state into the assembly described above.
The sequence should take into account factors such as the proper
grasping strategy for each piece, whether pieces are cleared off
before attempting to move them, and so on.

Since the system currently has no plan to achieve this con­
cept (in fact, the system does not yet possess a concept
corresponding to this function's physical realization), the system
admits defeat, and the user proceeds to show it how to build a
mechanism which has the desired functionality. The user guides
the system through an assembly episode which results in a phy­
sical assembly that fits the specified goal. Note that the assembly
sequence given by the user (input to the system as fully instan­
tiated primitive operators) need not be an optimal sequence, but
simply effective in accomplishing a physical instantiation of the
functionally specified goal.

The system verifies, using its domain theory, how the phy­
sical assembly realized instantiates the desired functional goal.
During the verification process, a new concept corresponding to
this physical realization of the functionally specified goal is
acquired.

If the verifier terminates successfully, the generalizer pro­
duces either a more general or a more operational new schema
which can be used to solve similar problems.

5. Results
In this section, we present some empirical results collected

from the ARMS system. ARMS is implemented using the object-
oriented language LOOPS, which is in turn constructed in
INTERLISP-D. These results were collected on a Xerox 1109
Lisp Machine running the Koto release of INTERLISP-D and the
Buttress version of LOOPS. The 1109 has 3.5 megabytes of main
memory, a 43 megabyte hard disk drive, and a hardware floating
point coprocessor.

Performance of the system is adversely affected during
these tests by the information-collecting mechanism. The system
suffers a factor of eight slowdown while collecting these statis­
tics. However, since our only interest here is in comparing one
example with the other, the slowdown effects are not relevant.

Initial State 1
The robot gripper is located in the center of the picture with
fingers closed and pointed down. $BoredBlockl is to the right,
$Pegl is to the left, and $Washerl IS in the foreground just left
of center. The functional goal specification is given as an
abstract joint schema $RevoluteJointr$BoredBlockl, $Wash-
erll.

Figure 6

5.1. Learning Episode 1
Given the initial configuration shown in Figure 6, the sys­

tem is presented with a sequence of 12 primitive operator sche­
mata which complete the assembly of the widget shown in Fig­
ure 3. The system constructs a new, more operational, schema
which can plan the assembly of this and other functionally simi­
lar mechanisms.

The size of the causal model and the explanation are given
in terms of tokens, where each token represents a schema
instance. This is a pretty good measure of the difficulty of the
example: the larger the number, the more complex the analysis
or the plan.

The number of database queries, tokens created, requests
issued and slot manipulations are a good general indicator of
how much work is performed by the system.

The total CPU time reflects the time for emulating, under­
standing, verifying, and generalizing the example. Also provided
is the CPU time for generalization alone.

5.2. Learning Episode 2
This example is identical to Learning Episode 1, except

that the more general new schema is constructed.
As expected, the results shown here are almost identical to

the results of the previous, identical, episode. The only difference
is in the time spent on generalization. The extra analysis
required to produce the more operational new schema is clearly
evident in the greater CPU time for generalization in the opera­
tional case. This is consistent with expected behavior.

246 KNOWLEDGE ACQUISITION

5.3. Problem-Solving Episode 1
We again present the system with the initial configuration

of Figure 6. The system is asked to produce a revolute joint
between $BoredBlockl and $ Washer 1. The system solves the
design problem and then applies the more operational version of
the new schema to the assembly problem, generating a 12 step
solution.

5.4. Problem-Solving Episode 2
This example is identical to Problem-Solving Episode 1 (see

Figure 6), except that the new schema being applied is the more
general version. We therefore expect this example to be less
efficient, since the planner must work harder when applying a
more general schema.

The system generates the same solution as in Problem-
Solving Episode 1. The solution, however, is more expensive to
generate as indicated by the number of tokens generated and
requests issued This behavior is also evident in the total CPU
time figure (42 minutes as compared to 29 minutes in the other
case). In addition, the planner subtree is a bit larger: but since
the additional nodes tend to be at the highest level of abstrac­
tion, the increase in CPU time tends to be more than linear in
the increased subtree size.

Initial State 2
The robot gripper is located in the center of the picture with
fingers closed and pointed down. $BoredCylinderl is to the left,
with $Pegl stacked on top of it. $Peg3 and $Washer2 are
stacked (from left to right) on top of $Blockl on the right side
of the workspace. The functional goal specification is the same
as in Initial State I

Figure 7

5.5. Problem-Solving Episode 3
This problem-solving episode demonstrates the power of the

system in planning the assembly of physically different yet func­
tionally similar mechanisms. The system is asked to plan for a
revolute joint between $BoredCylinderl and $Washer2 There is
no mention of $Peg3: the system must decide for itself which of
the other pieces in the workspace can be used to achieve a physi­
cal instance of the functionally specified goal. The initial state is
shown in Figure 7.

In this example, we are asking the system to deal with not
only a more complicated initial starting configuration, but also
the system must construct a functionally specified assembly from
physically different pieces.

5.6. Problem-Solving Episode 4
Problem-Solving Episode 4 is identical to Problem-Solving

Episode 3 (see Figure 7). The system supplies the identical solu­
tion, but at greater computational expense. This is consistent
with expected behavior.

Segre 247

6. Conclusion
In this paper, we have provided an overview of the

operationality/generality trade-off for explanation-based learning
systems. We have described one approach, that of the ARMS
learning-apprentice system, for characterizing the operationality
of a new schema based on the structure of the explanation itself.
Finally, we described an experiment that provides preliminary
empirical evidence of the importance of this trade-off.

What we are really dealing with is a set of plans covering a
spectrum of operationality/generality characteristics. It is up to
the system designer to decide what the best level(s) of opera­
tionality are for a given system. Given that there is no single
solution, the best we can hope for is to understand the problem
well enough to decide where on the continuum a given system's
generalizer should reside.

References
[Chafe75] W. Chafe, "Some Thoughts on Schemata",

Theoretical Issues in Natural Language
Processing /, Cambridge, MA, 1975, 89-91.

[Charniak78] E. Charniak, "With a Spoon in Hand this Must
be the Eating Frame", Theoretical Issues in
Natural Language Processing 2, Urbana, IL,
1978, 187-193.

[DeJong86] G. F. DeJong and R. J. Mooney, "Explanation-
Based Learning: An Alternative View", Machine
Learning I, 2 (April 1986). Also appears as
Technical Report UILU-ENG-86-2208, AIRG,
CSL, University of Illinois at Urbana-
Champaign.

[Friedland79] P. E. Friedland, "Knowledge-based Experiment
Design in Molecular Genetics", 79-771,
Computer Science Department, Stanford
University, Palo Alto, CA, 1979.

[Gustafson86] B. Gustafson, "Development of Localized Planner
for Artificial Intelligence-Based Robot Task
Planning System", M.S. Thesis, University of
Illinois at Urbana-Champaign, Urbana, IL,
October 1986.

[McDermott76] D. McDermott, "Artificial Intelligence Meets
Natural Stupidity", SIGART Newsletter 57
(April 1976), 4-9.

[Minsky75] M. L. Minsky, "A Framework for Representing
Knowledge", in The Psychology of Computer
Vision, P. H. Winston (editor), McGraw-Hill,
New York, NY, 1975, 211-277.

[Mitchell85a] T. M. Mitchell, S. Mahadevan and L. I.
Steinberg, "LEAP: A Learning Apprentice for
VLSI Design", Proceedings of the Ninth
International Joint Conference on Artificial
Intelligence, Los Angeles, CA, August 1985, 573-
580.

[Mitchell85b] T. Mitchell, S. Mahadevan and L. Steinberg, "A
Learning Apprentice System for VLSI Design",
Proceedings of the 1985 International Machine
Learning Workshop, Skytop, PA, June 1985,
123-125.

[Mitchell86] T. M. Mitchell, R. Keller and S. Kedar-Cabelli,
"Explanation-Based Generalization: A Unifying
View", Machine Learning i, 1 (January 1986),
47-80.

[Mooney85] R. J. Mooney and G. F. DeJong, "Learning
Schemata for Natural Language Processing",
Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Urbana, IL.,
August 1985, 681-687. Also appears as Working
Paper 67, AIRG, CSL, University of Illinois at
Urbana-Champaign.

[Popplestone80]R. Popplestone, A. Ambler and I. Bellos, "An
Interpreter for a Language for Describing
Assemblies", Artificial Intelligence 14 (1980), 79-
107.

[Schank77] R. C. Schank and R. P. Abelson, Scripts, Plans,
Goals and Understanding: An Inquiry into
Human Knowledge Structures, Lawrence
Erlbaum and Associates, Hillsdale, NJ, 1977.

[Segre85] A. M. Segre and G. F. DeJong, "Explanation
Based Manipulator Learning: Acquisition of
Planning Ability Through Observation",
Proceedings of the IEEE International Conference
on Robotics and Automation, Urbana, IL., March
1985, 555-560. Also appears as Working Paper
62, AIRG, CSL, University of Illinois at Urbana-
Champaign.

[Segre87a] A. M. Segre, "A Learning Apprentice System for
Mechanical Assembly", Proceedings of the IEEE
International Conference on the Applications of
Artificial Intelligence, Orlando, FL, February
1987.

[Segre87b] A. M. Segre, "Explanation-Based Learning of
Generalized Robot Assembly Plans", Ph.D.
Thesis, Department of Electrical and Computer
Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL, 1987.

248 KNOWLEDGE ACQUISITION

