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Abstract

We propose new nonparametric, consistent
Rényi-α and Tsallis-α divergence estimators
for continuous distributions. Given two in-
dependent and identically distributed sam-
ples, a “naïve” approach would be to simply
estimate the underlying densities and plug
the estimated densities into the correspond-
ing formulas. Our proposed estimators, in
contrast, avoid density estimation completely,
estimating the divergences directly using only
simple k-nearest-neighbor statistics. We are
nonetheless able to prove that the estimators
are consistent under certain conditions. We
also describe how to apply these estimators
to mutual information and demonstrate their
efficiency via numerical experiments.

1 Introduction

Many statistical, artificial intelligence, and machine
learning problems require efficient estimation of the
divergence between two distributions. We assume that
these distributions are not given explicitly. Only two
finite, independent and identically distributed (i.i.d.)
samples are given from the two underlying distribu-
tions. The Rényi-α (Rényi, 1961, 1970) and Tsallis-α
(Villmann and Haase, 2010) divergences are two widely
applied and prominent examples of probability diver-
gences. The popular Kullback–Leibler (kl) divergence
is a special case of these families, and they can also be
related to the Csiszár’s-f divergence (Csiszár, 1967).
Under certain conditions, these divergences can esti-
mate entropy and can also be applied to estimate Rényi
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and Tsallis mutual information. For more examples
and other possible applications of these divergences,
see our extended technical report (Póczos and Schnei-
der, 2011). Despite their wide applicability, there is
no known direct, consistent estimator for Rényi-α or
Tsallis-α divergence.

An indirect way to obtain the desired estimates would
be to use a “plug-in” estimation scheme—first, apply a
consistent density estimator for the underlying densi-
ties, and then plug them into the desired formula. The
unknown densities, however, are nuisance parameters
in the case of divergence estimation, and we would
prefer to avoid estimating them. Furthermore, density
estimators usually have tunable parameters, and we
may need expensive cross validation to achieve good
performance.

This paper provides a direct, L2-consistent estimator
for the Tsallis-α divergence and a weakly consistent
estimator for the Rényi-α divergence. These estima-
tors can also be applied to (Rényi and Tsallis) mutual
information.

The closest existing work most relevant to the topic
of this paper is the work of Wang et al. (2009a), who
provided an estimator for the α → 1 limit case only,
i.e., for the kl-divergence. However, we warn the
reader that there is an apparent error in their work;
they applied the reverse Fatou lemma under condi-
tions when it does not hold. It is not obvious how
this portion of the proof can be remedied. This error
originates in the work of Kozachenko and Leonenko
(1987) and can also be found in other works. Hero et al.
(2002a,b) also investigated the Rényi divergence estima-
tion problem but assumed that one of the two density
functions is known. Gupta and Srivastava (2010) de-
veloped algorithms for estimating the Shannon entropy
and the kl divergence for certain parametric fami-
lies. Recently, Nguyen et al. (2009, 2010) developed
methods for estimating f -divergences using their varia-
tional characterization properties. They estimate the
likelihood ratio of the two underlying densities and
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plug that into the divergence formulas. This approach
involves solving a convex minimization problem over
an infinite-dimensional function space. For certain
function classes defined by reproducing kernel Hilbert
spaces (rkhs), however, they were able to reduce the
computational load from solving infinite-dimensional
problems to solving n-dimensional problems, where n
denotes the sample size. When n is large, solving these
convex problems can still be very demanding. Further-
more, choosing an appropriate rkhs also introduces
questions regarding model selection. An appealing
property of our estimator is that we do not need to
solve minimization problems over function classes; we
only need to calculate certain k-nearest-neighbor (k-
nn) based statistics. Recently, Sricharan et al. (2010)
proposed k-nearest-neighbor based methods for esti-
mating non-linear functionals of density, but in contrast
to our approach, they were interested in the case where
k increases with the sample size.

Our work borrows ideas from Leonenko et al. (2008a)
and Goria et al. (2005), who considered Shannon and
Rényi-α entropy estimation from a single sample.1 In
contrast, we propose divergence estimators using two
independent samples. Recently, Póczos et al. (2010);
Pál et al. (2010) proposed a method for consistent
Rényi information estimation, but this estimator also
uses one sample only and cannot be used for estimating
divergences. Further information and useful reviews
of several different divergences can be found, e.g., in
Villmann and Haase (2010), Cichocki et al. (2009), and
Wang et al. (2009b).

The paper is organized as follows. In the next section
we formally define our estimation problem, introduce
the Rényi-α and Tsallis-α divergences, and explain their
most important properties. Section 3 briefly introduces
k-nn based density estimators. We propose estimators
for the Rényi-α and Tsallis-α divergences in Section 4
and also present our most important theoretical results
about the asymptotic unbiasedness and consistency of
the estimators. For their analysis we will need a few
general tools, which we collect in Section 5. We will
prove the asymptotic unbiasedness of our estimators
in Section 6. Due to a lack of space, we provide many
details of the proofs in Póczos and Schneider (2011).
The analysis of the asymptotic variances of our estima-
tors follows an approach similar to their biases but is
more complex; therefore, we relegate this material into
Póczos and Schneider (2011) as well. Section 7 contains
the results of numerical experiments that demonstrate
the effectiveness of our proposed algorithm. We also
demonstrate in that section how our divergence es-

1The original presentations of these works contained
some errors; Leonenko and Pronzato (2010) provide correc-
tions for some of these theorems.

timators can be used for Rényi- and Tsallis-mutual
information (mi) estimation. Finally, we conclude with
a discussion of our work.

2 Divergences

For the remainder of this work we will assume that
M0 ⊂ Rd is a measurable set with respect to the d-
dimensional Lebesgue measure and that p and q are
densities on this domain. The set where they are strictly
positive will be denoted by supp(p) and supp(q), re-
spectively.

Let p and q be Rd ⊇M0 : → R density functions, and
let α ∈ R\{0, 1}. The α-divergence D̃α(p‖q) (Cichocki
et al., 2008) is defined as

D̃α(p‖q) .
=

1

α(1− α)

[
1−

∫
M0

pα(x)q1−α(x) dx

]
,

(1)
assuming this integral exists. One can see that this is
a special case of Csiszár’s f -divergence (Csiszár, 1967)
and hence it is always nonnegative.2 Closely related
divergences (but not special cases) to (1) are the Rényi-
α (Rényi, 1961) and the Tsallis-α (Villmann and Haase,
2010) divergences.

Definition 1. Let p, q be Rd ⊇ M0 : → R density
functions and let α ∈ R \ {1}. The Rényi-α divergence
is defined as

Rα(p‖q) .
=

1

α− 1
log

∫
M0

pα(x)q1−α(x) dx. (2)

The Tsallis-α divergence is defined as

Tα(p‖q) .
=

1

α− 1

(∫
M0

pα(x)q1−α(x) dx− 1

)
. (3)

Both definitions assume that the corresponding integral
exists.

We can see that as α→ 1 these divergences converge to
the kl-divergence. The following lemma summarizes
the behavior of these divergences.

Lemma 2.

α < 0⇒ Rα(p‖q) ≤ 0, Tα(p‖q) ≤ 0

α = 0⇒ Rα(p‖q) = Tα(p‖q) = 0

0 < α < 1⇒ Rα(p‖q) ≥ 0, Tα(p‖q) ≥ 0

α = 1⇒ Rα(p‖q) = Tα(p‖q) = KL(p‖q) ≥ 0

1 < α⇒ Rα(p‖q) ≥ 0, Tα(p‖q) ≥ 0.

We are now prepared to formally define the goal of
our paper. Given two independent i.i.d. samples from

2See the Appendix for more details.
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distributions with densities p and q, respectively, we
provide an L2-consistent estimator for

Dα(p‖q) .
=

∫
M0

pα(x)q1−α(x) dx. (4)

By plugging our estimate of (4) into (3) and (2), we
immediately get an L2-consistent estimator for Tα(p‖q),
as well as a weakly consistent estimator for Rα(p‖q)
for α 6= 1.

3 k-nn Based Density Estimators

In the remainder of this paper we will heavily exploit
some properties of k-nn based density estimators. In
this section we define these estimators and briefly sum-
marize their most important properties.

k-nn density estimators operate using only distances
between the observations in a given sample and their
kth nearest neighbors (breaking ties arbitrarily). Let
X1:n

.
= (X1, . . . , Xn) be an i.i.d. sample from a dis-

tribution with density p, and similarly let Y1:m
.
=

(Y1, . . . , Ym) be an i.i.d. sample from a distribution
having density q. Let ρk(i) denote the Euclidean dis-
tance of the kth nearest neighbor of Xi in the sample
X1:n, and similarly let νk(i) denote the distance of the
kth nearest neighbor of Xi in the sample Y1:m. Let
B(x,R) denote a closed ball around x ∈ Rd with radius
R, and let V

(
B(x,R)

)
= c̄Rd be its volume, where c̄

stands for the volume of a d-dimensional unit ball.

Loftsgaarden and Quesenberry (1965) define the k-nn
based density estimators of p and q at Xi as follows.
Definition 3 (k-nn based density estimators).

p̂k(Xi) =
k/(n− 1)

V
(
B(x, ρk)

) =
k

(n− 1)c̄ρdk(i)
, (5)

q̂k(Xi) =
k/m

V
(
B(x, νk)

) =
k

mc̄νdk(i)
. (6)

The following theorems show the consistency of these
density estimators.3

Theorem 4 (k-nn density estimators, convergence
in probability). If k(n) denotes the number of neigh-
bors applied at sample size n, limn→∞ k(n) =∞, and
limn→∞ n/k(n) = ∞, then p̂k(n)(x) →p p(x) for al-
most all x.
Theorem 5 (k-nn density estimators, al-
most sure convergence in sup norm). If
limn→∞ k(n)/ log(n) = ∞ and limn→∞ n/k(n) = ∞,
then limn→∞ supx

∣∣p̂k(n)(x)− p(x)
∣∣ = 0 almost surely.

3We use Xn →p X and Xn →d X to represent conver-
gence of random variables in probability and in distribution,
respectively. Fn →w F will denote the weak convergence
of distribution functions.

Note that these estimators are consistent only when
k(n)→∞. We will use these density estimators in our
proposed divergence estimators; however, we will keep
k fixed and will still be able to prove their consistency.

4 An Estimator for Dα(p‖q)

In this section we introduce our estimator for Dα(p‖q)
and claim its L2 consistency in the form of several
theorems. From now on we will assume that (4) can
be rewritten as

Dα(p‖q) =

∫
M

(
q(x)

p(x)

)1−α

p(x) dx, (7)

whereM = supp(p). In other words, in the definition
of Dα(p‖q), it is enough to integrate on the support of
p. There are other possible ways to rewrite Dα(p‖q)
(such as

∫
(q/p)(1−α)p,

∫
(p/q)αq, or

∫
(q/p)−αq), and

we could start our analysis from these forms as well. If
we simply plugged (5) and (6) into (7), then we could
estimate Dα(p‖q) with

1

n

n∑
i=1

(
(n− 1)ρdk(i)

mνdk(i)

)1−α

;

however, this estimator is asymptotically biased. We
will prove that by introducing a multiplicative term the
following estimator is asymptotically unbiased under
certain conditions:

D̂α(X1:n‖Y1:m)
.
=

1

n

n∑
i=1

(
(n− 1)ρdk(i)

mνdk(i)

)1−α

Bk,α,

(8)
where Bk,α

.
= Γ(k)2

Γ(k−α+1)Γ(k+α−1) . Notably, this mul-
tiplicative bias does not depend on p or q. The fol-
lowing theorems of this section contain our main re-
sults: D̂α(X1:n‖Y1:m) is an L2-consistent estimator for
Dα(p‖q), i.e., it is asymptotically unbiased, and the
variance of the estimator is asymptotically zero.

In our theorems we will assume that almost all points
ofM are in its interior and thatM has the following
additional property:

inf
0<δ<1

inf
x∈M

V
(
B(x, δ

)
∩M)

V
(
B(x, δ)

) .
= rM > 0;

we will explain why this condition is needed later. We
introduce the following function:

H(x, p, δ, ω)
.
=

k−1∑
j=0

(
1

j!

)ω
Γ(γ+jω)

(
p(x) + δ

p(x)− δ

)jω
×

×
(
p(x)− δ

)−γ(
(1− δ)ω

)−γ−jω
. (9)

When 0 < γ
.
= 1 − α < k, we have the following

theorem.
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Theorem 6 (Asymptotic unbiasedness). Assume that
(a) 0 < γ

.
= 1 − α < k, (b) p is bounded away from

zero, (c) p is uniformly Lebesgue approximable, (d)
∃δ0 s.t. ∀δ ∈ (0, δ0),

∫
MH(x, p, δ, 1)p(x) dx < ∞, (e)∫

M ‖x − y‖
γp(y) dy < ∞ for almost all x ∈ M, (f)∫∫

M2 ‖x − y‖γp(y)p(x) dy dx < ∞, and that (g) q is
bounded from above. Then

lim
n,m→∞

E
[
D̂α(X1:n‖Y1:m)

]
= Dα(p‖q),

i.e., the estimator is asymptotically unbiased.

For the definition of a uniformly Lebesgue approximable
function, see Definition 14. The following theorem
states that the estimator is asymptotically unbiased
when −k < γ

.
= 1− α < 0.

Theorem 7 (Asymptotic unbiasedness). Assume that
(a) −k < γ

.
= 1 − α < 0, (b) q is bounded away from

zero, (c) q is uniformly Lebesgue approximable, (d)
∃δ0 s.t. ∀δ ∈ (0, δ0)

∫
MH(x, q, δ, 1)p(x) dx < ∞, (e)∫

M ‖x − y‖
γq(y) dy < ∞ for almost all x ∈ M, (f)∫∫

M2 ‖x − y‖γq(y)p(x) dy dx < ∞, (g) p is bounded
from above, and that (h) supp(p) ⊆ supp(q). In this
case, the estimator is asymptotically unbiased.

The following theorems provide conditions under which
D̂ is L2 consistent. In the previous theorems we have
stated conditions that lead to asymptotically unbiased
divergence estimation. In all of the following theorems
we will assume that the estimator is asymptotically
unbiased for the parameter γ = 1−α as well as for a new
parameter γ̃ .

= 2(1−α) (corresponding to α̃ .
= 2α− 1),

and also assume that max
(
Dα(p‖q), Dα̃(p‖q)

)
<∞.

Theorem 8 (L2 consistency). Assume k ≥ 2 and that
(a) 0 < γ

.
= 1− α < (k − 1)/2, (b) p is bounded away

from zero, (c) p is uniformly Lebesgue approximable, (d)
∃δ0 such that ∀δ ∈ (0, δ0),

∫
MH(x, p, δ, 1/2)p(x) dx <

∞, (e)
∫
M ‖x− y‖

γp(y) dy <∞ for almost all x ∈M,
(f)

∫∫
M2 ‖x− y‖γp(y)p(x) dy dx < ∞, and that (g) q

is bounded above. Then

lim
n,m→∞

E
[(
D̂α(X1:n‖Y1:m)−Dα(p‖q)

)2
]

= 0;

that is, the estimator is L2 consistent.

For the −(k − 1)/2 < 1 − α < 0, k ≥ 2 case, the
following theorem holds.

Theorem 9 (L2 consistency). Assume k ≥ 2 and that
(a) −k/2 < γ

.
= 1 − α < 0, (b) q is bounded away

from zero, (c) q is uniformly Lebesgue approximable,
(d) ∃δ0 s.t. ∀δ ∈ (0, δ0),

∫
MH(x, q, δ, 1/2)p(x) dx <∞,

(e)
∫
M ‖x− y‖

γq(y) dy <∞ for almost all x ∈M, (f)∫∫
M2 ‖x − y‖γq(y)p(x) dy dx < ∞, (g) p is bounded

above, and that (h) supp(p) ⊂ supp(q). In this case,
the estimator is L2 consistent.

Finally, for the k = 1 case, we will see that the theorems
below are true. Define the following function:

L(x, ω, γ, k, p, δ, δ1)
.
= δ1 + δ1

∫
‖x− y‖γp(y) dy+

+ (c̄r(x))
−γ

H(x, p, δ, ω). (10)

Theorem 10 (L2 consistency). Assume k = 1 and
that (a) 0 < γ

.
= 1 − α < 1/2, (b) p is bounded away

from zero, (c) p is uniformly Lebesgue approximable,
(d)

∫
M ‖x− y‖

γp(y) dy <∞ for almost all x ∈M, (e)∫∫
M2 ‖x − y‖γp(y)p(x) dy dx < ∞, and that (f) q is

bounded above. If there exists δ1, δ0 > 0 such that for
all δ ∈ (0, δ0),∫∫

L(x1, 1/2, 1, γ, p, δ, δ1)L(x2, 1/2, 1, γ, p, δ, δ1)

× ‖x1 − x2‖−2γp(x1)p(x2) dx1 dx2 <∞,

then the estimator is L2 consistent.
Theorem 11 (L2 consistency). Assume k = 1 and
that (a) −1/2 < γ

.
= 1− α < 0, (b) q is bounded away

from zero, (c) q is uniformly Lebesgue approximable,
(d)

∫
M ‖x− y‖

γq(y) dy <∞ for almost all x ∈M, (e)∫∫
M2 ‖x − y‖γq(y)p(x) dy dx < ∞, (f) p is bounded

above, and that (g) supp(p) ⊂ supp(q). If there exist
δ1, δ0 > 0 such that for all δ ∈ (0, δ0),∫∫

L(x1, 1/2, 1,−γ, q, δ, δ1)L(x2, 1/2, 1,−γ, q, δ, δ1)

× ‖x1 − x2‖2γp(x1)p(x2) dx1 dx2 <∞,

then the estimator is L2 consistent.

The proofs of these main theorems will require a couple
of lemmas. The next section collects these tools.

5 General Tools

By the Portmanteau lemma (van der Wart, 2007), we
know that the weak convergence of Xn →d X im-
plies that E

[
g(Xn)

]
→ E

[
g(X)

]
for every continuous

bounded function g. However, it is in general not true
that if Xn →d X, then E[Xγ

n ]→ E[Xγ ]. The following
lemma provides a sufficient condition under which this
does hold.
Lemma 12 (Limit of moments, (van der Wart, 2007)).
Let Xn →d X, 0 ≤ Xn, 0 ≤ X, and γ ∈ R. If there
exists an ε > 0 with lim supn→∞ E

[
X
γ(1+ε)
n

]
< ∞,

then lim
n→∞

E [Xγ
n ] = E [Xγ ].

The following lemma of Lebesgue states that any func-
tion in L1(Rd) restricted to a very small ball approxi-
mately looks like a constant function.4

4L1(M) denotes the set of Lebesgue measurable func-
tions defined on the domain M that have finite integral
over M.
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(a) feasible (b) not allowed

Figure 1: A possible allowed and a not-allowed domain
M under the property in (13).

Lemma 13 (Lebesgue (1910)). If g ∈ L1(Rd), then
for any sequence of open balls B(x,Rn) with radius
Rn → 0, and for almost all x ∈ Rd,

lim
n→∞

∫
B(x,Rn)

g(t) dt

V
(
B(x,Rn)

) = g(x). (11)

This implies that ifM⊂ Rd is a Lebesgue-measurable
set, and g ∈ L1(M), then for any sequence of Rn → 0,
for any δ > 0 and for almost all x ∈ M, there exists
an n0(x, δ) ∈ Z+ such that if n > n0(x, δ), then

g(x)− δ <

∫
B(x,Rn)

g(t) dt

V(B(x,Rn))
< g(x) + δ. (12)

We will later require a generalization of this property;
namely, we will need it to hold uniformly over x ∈M.
However, for this generalization to hold we must put
slight restrictions on the domain M to avoid effects
around its boundary. We will consider only those do-
mainsM that posses the property that the intersection
ofM with an arbitrary small ball having center inM
has volume that cannot be arbitrary small relative to
the volume of the ball. To be more formal, we want
the following inequality to be satisfied:

inf
0<δ<1

inf
x∈M

V
(
B(x, δ) ∩M

)
V
(
B(x, δ)

) .
= rM > 0. (13)

Figure 1 illustrates this notion by showing example
domains that satisfy and violate this constraint.

When the following property holds uniformly over x ∈
M, we say that the function g is uniformly Lebesgue
approximable.
Definition 14 (Uniformly Lebesgue-approximable
function). Let g ∈ L1(M). g is uniformly Lebesgue
approximable onM if for any series Rn → 0 and any
δ > 0, there exists an n = n0(δ) ∈ Z+ (independent of
x) such that if n > n0, then for almost all x ∈M,

g(x)− δ <

∫
B(x,Rn)∩M g(t) dt

V
(
B(x,Rn) ∩M

) < g(x) + δ. (14)

This property is a uniform variant of (12). The follow-
ing lemma provides examples of uniformly Lebesgue-
approximable functions.

Lemma 15. If g is uniformly continuous onM, then
it is uniformly Lebesgue approximable onM.

Finally, as we proceed we will frequently use the fol-
lowing lemma:

Lemma 16 (Moments of the Erlang distribution). Let
fx,k(u)

.
= 1

Γ(k)λ
k(x)uk−1 exp(−λ(x)u) be the density of

the Erlang distribution with parameters λ(x) > 0 and
k ∈ Z+. Let γ ∈ R such that γ + k > 0. The γth
moments of this Erlang distribution can be calculated
as
∫∞

0
uγfx,k(u) du = λ(x)−γ Γ(k+γ)

Γ(k) .

6 Proving Asymptotic Unbiasedness

The following subsection contains several specific lem-
mas and theorems that we will use for proving the
consistency of the proposed estimator in (8).

6.1 Preliminaries

Recall that ρk(j) is a random variable that measures
the distance from Xj to its kth nearest neighbor in
X1:n \Xj .

Lemma 17. Let ζn,k,1
.
= (n − 1)ρdk(1) be a random

variable, and let Fn,k,x(u)
.
= Pr(ζn,k,1 < u | X1 = x)

denote its conditional distribution function. Then

Fn,k,x(u) =

1−
k−1∑
j=0

(
n− 1
j

)
(Pn,u,x)j(1− Pn,u,x)n−1−j , (15)

where Pn,u,x
.
=
∫
M∩B(x,Rn(u))

p(t) dt and Rn(u)
.
=

(u/(n− 1))1/d.

We also have the following (Leonenko et al., 2008a).

Lemma 18. Fn,k,x →w Fk,x for almost all x ∈ M,
where Fk,x(u)

.
= 1−exp(−λu)

∑k−1
j=0

(λu)j

j! is the Erlang
distribution with λ = c̄p(x).

Lemma 19. Let ξn,k,x and ξk,x be random variables
with Fn,k,x and Fk,x distribution functions, and let
γ ∈ R be arbitrary. Then for almost all x ∈ M we
have that ξγn,k,x →d ξ

γ
k,x.

Theorem 20. For almost all x ∈ M the following
statements hold. If (i) −k < γ < 0, or (ii) 0 ≤ γ, and∫
M ‖x− y‖

γp(y) dy <∞, then

lim
n→∞

E
[
(n− 1)γρdγk (1)|X1 = x

]
=
(
c̄p(x)

)−γ Γ(k + γ)

Γ(k)
.
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Similarly, if (i) −k < γ < 0 or (ii) 0 ≤ γ, and∫
M ‖x− y‖

γq(y) dy <∞, then for almost all x ∈
supp(q) we have that

lim
m→∞

E
[
mγνdγk (1)|X1 = x

]
=
(
c̄q(x)

)−γ Γ(k + γ)

Γ(k)
.

We will only prove formally the first equation of The-
orem 20. The second one can be proven in the same
way. Note that the conditions here are different from
those given in Leonenko et al. (2008a,b); Goria et al.
(2005); Wang et al. (2009a). We are now ready to begin
proving Theorem 20.

Proof of Theorem 20. We already know from
Lemma 19 that ξγn,k,x →d ξ

γ
k,x for almost all x ∈ M.

If from this it follows that E[ξγn,k,x]→ E[ξγk,x], then

lim
n→∞

E
[
(n− 1)γρdγk (1) | X1 = x

]
= lim
n→∞

E
[
ξγn,k,x

]
= E

[
limd
n→∞ξ

γ
n,k,x

]
= E

[
ξγk,x

]
=

∫ ∞
0

uγfx,k(u) du

=
(
c̄p(x)

)−γ Γ(k + γ)

Γ(k)
,

assuming k + γ > 0 and using Lemma 16.

All that remains is to prove that if ξγn,k,x →d ξ
γ
k,x, then

E[ξγn,k,x] → E[ξγk,x]. To see this, it is enough to show
(according to Theorem 12) that for some ε > 0 and
c(x) <∞, it holds that lim supn E[ξ

γ(1+ε)
n,k,x ] < c(x). We

do not need explicitly to calculate E[ξ
γ(1+ε)
n,k,x ]; we simply

have to provide a finite upper bound.
Theorem 21. For almost all x ∈M, we have that (i)
if 0 ≤ γ,

∫
M ‖x− y‖

γp(y) dy <∞, and ξγn,k,x →d ξ
γ
k,x,

or (ii) if −k < γ < 0, and ξγn,k,x →d ξγk,x, then
lim
n→∞

E[ξγn,k,x] = E[ξγk,x].

Now, we are ready to put the pieces together and prove
our main theorems on the asymptotic unbiasedness of
the estimator (8).

6.2 The proof of Theorems 6 and 7

Proof. We want to prove that

Dα(p‖q)
Bk,α

= lim
n,m→∞

E

[
1

n

n∑
i=1

(
(n− 1)ρdk(i)

mνdk(i)

)1−α]
.

The r.h.s. can be rewritten as

lim
n,m→∞

EX1∼p

[
E
[
(n− 1)1−αρ

d(1−α)
k (1)

∣∣∣∣X1

]
×

× E

[
1

m1−αν
d(1−α)
k (1)

∣∣∣∣X1

]]
. (16)

If we could move the limit inside the expectation, then
we could apply Theorem 20 to continue the derivation
as follows.

EX1∼p

[
lim
n→∞

E
[
(n− 1)1−αρ

d(1−α)
k (1)

∣∣∣∣X1

]
×

× lim
m→∞

E

[
1

m1−αν
d(1−α)
k (1)

∣∣∣∣X1

]]

= EX1∼p

[
(c̄p(X1))(α−1)

(c̄q(X1))(α−1)

Γ(k − α+ 1)

Γ(k)

Γ(k + α− 1)

Γ(k)

]
;

this would complete the proof of Theorems 6 and 7.
In the next section we will discuss conditions under
which the outer limit can be moved inside the above
expectation.

6.2.1 Switching limit and expectation

Our goal is to prove that

lim
n,m

∫
M
fn(x)gm(x)p(x) dx =

∫
M

lim
n,m

fn(x)gm(x)p(x) dx,

where

fn(x)
.
= E

[
(n− 1)1−αρ

d(1−α)
k (1)

∣∣∣∣ X1 = x

]
, (17)

gm(x)
.
= E

[
1

m1−αν
d(1−α)
k (1)

∣∣∣∣ X1 = x

]
. (18)

We investigate the 0 < γ < k and the −k < γ < 0
cases in two separate lemmas.
Lemma 22. Let 0 < γ

.
= 1 − α < k, and let p be

uniformly Lebesgue approximable onM = supp(p) and
bounded away from zero. Let q be bounded above by q̄.
Let δ1 > 0, and let be δ > 0 so small that p(x)− δ > 0
for all x ∈M. Then there exists a Np,q > 0 such that
if m,n > Np,q, then for almost all x ∈M,

fn(x)gm(x) ≤ γ2L(x, 1, k, γ, p, δ, δ1)

[
L̂(q̄, 1)

k − γ
+

1

γ

]
,

where L̂(q̄, β)
.
= (q̄c̄)

k
exp(q̄c̄β).

Similarly, for the −k < γ
.
= 1−α < 0 case we have the

following lemma.
Lemma 23. Let −k < γ

.
= 1 − α < 0, and let

supp(p) ⊆ supp(q). Furthermore, let q be uniformly
Lebesgue approximable onM = supp(p) and bounded
away from zero. Let p be bounded above by p̄. Let
δ1 > 0, and let δ > 0 so small that q(x) − δ > 0 for
all x ∈ M. Then there exists a Np,q > 0 such that if
m,n > Np,q, then for almost all x ∈ supp(p),

fn(x)gm(x) ≤ γ2L(x, 1, k,−γ, q, δ, δ1)

[
L̂(p̄, 1)

k + γ
− 1

γ

]
.
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Now, for the two cases 0 < γ = 1 − α < k and −k <
γ = 1 − α < 0, we can see that under the conditions
detailed in Theorems 6 and 7, there exists a function J
and a threshold number Np,q such that if n,m > Np,q,
then for almost all x ∈ M fn(x)gm(x) ≤ J(x) and∫
M J(x)p(x) dx < ∞. Applying the Lebesgue domi-
nated convergence theorem finishes the proofs of these
theorems.

7 Numerical Experiments

In this section we present a few numerical experiments
to demonstrate the consistency of the proposed diver-
gence estimators. We run experiments on beta dis-
tributions, where the domains are bounded, and we
also study normal distributions, which have unbounded
domains. We chose these distributions because in these
cases the divergences have known closed-form expres-
sions, and thus it is easy to evaluate our methods. We
will also demonstrate that the proposed divergence
estimators can be applied to estimate mutual informa-
tion. We note that in our simulations the numerical
results were very similar for the estimation of Rα and
Tα; therefore, we will only present our results for the
Rα case.

7.1 Normal distributions

We begin our discussion by investigating the perfor-
mance of our divergence estimators on normal distribu-
tions. Note that when α /∈ [0, 1], the divergences can
easily become unbounded.5

In Figure 2 we display the performances of the proposed
D̂α and R̂α divergence estimators when the underly-
ing densities were zero-mean Gaussians with randomly
chosen 5-dimensional covariance matrices. Our results
demonstrates that when we increase the sample sizes n
and m, then the D̂α and R̂α values converge to their
true values. For simplicity, in our experiments we al-
ways set n = m. The figures show five independent
experiments; the number of instances were varied be-
tween 50 and 25 000. The number of nearest neighbors
k was set to 8, and α to 0.8.

7.2 Beta distributions

We were also interested in examining the perfor-
mance of our estimators on beta distributions. To
be able to study multidimensional cases, we con-
struct d-dimensional distributions with independent
1-dimensional beta distributions as marginals. For a
closed-form expression of the true divergence in this
case, see the Appendix.

5See the Appendix for the details.
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Figure 2: Estimated vs. true divergence for the normal
distribution experiments as a function of the number
of observations. The results of five independent experi-
ments are shown for estimating the (a) Dα(f‖g) and
(b) Rα(f‖g) divergences.

Our first experiment, illustrated in Figures 3(a)–3(b),
indicates that the estimators are consistent when d = 2;
as we increase the number of instances, the estimators
converge to the true Dα(f‖g) and Rα(f‖g) values. The
figures show five independent experiments, varying the
sample size between 100 and 10 000. α was set to 0.4,
and we used k = 4 nearest neighbors in the density
estimates. The parameters of the beta distributions
were chosen independently and uniformly random from
[1, 2]. We repeated this experiment in 5d as well. The
5d results, shown in Figure 3(c)–3(d), show that the
estimators were also consistent in this case.

7.3 Mutual information estimation

In this section we demonstrate that the proposed diver-
gence estimators can also be used to estimate mutual
information. Let f = (f1, . . . , fd) ∈ Rd be the density
of a d-dimensional distribution. The mutual informa-
tion Iα(f) is the divergence between f and the product
of the marginal variables. Particularly, for the Rényi
divergence we have Iα(f) = Rα(f‖

∏d
i=1 fi). Therefore,

if we are given a sample X1, . . . , X2n from f , we may
estimate mutual information as follows. We form one
set of size n by setting aside the first n samples. We
build another sample by randomly permuting the coor-
dinates of the remaining n observations independently
for each coordinate to form n independent instances
sampled from

∏d
i=1 fi. Using these two sets, we can

estimate Iα(f). Figures 4(a)–4(b) show the results of
applying this procedure for a 2d Gaussian distribution
with a randomly chosen covariance matrix. The subfig-
ures show the true Dα and Rα values, as well as their
estimations using different sample sizes. k was set to
8, and α was 0.8.

Figures 4(c)–4(d) show the results of repeating the
previous experiment with two alterations. In this case
we estimated the Shannon (rather than Rényi) infor-
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Figure 3: Estimated vs. true divergence for the beta distribution experiments as a function of the number of
observations. The figures show the results of five independent experiments for estimating the Dα(f‖g) and
Rα(f‖g) divergences. (a,b): f and g were the densities of two 2d beta distributions—the marginal distributions
were independent 1d betas with randomly chosen parameters. (c,d): The same as (a,b), but here f and g were
the densities of two 5d beta distributions with independent marginals.
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Figure 4: Estimated vs. true Rényi information for the mutual information experiments as a function of the number
of observations. (a) and (b) show five independent experiments for estimating Dα(f‖g) and Iα(f) = Rα(f‖g)
for a 2d Gaussian distribution using sample sizes between 100 and 20 000. In (c)–(d), we estimated the mutual
information between the marginals of a π/4 degree rotated 2d uniform distribution. The sample size was varied
from 500 to 40 000.

mation, and for this purpose we selected a 2d uniform
distribution on [−1/2, 1/2]2 rotated by π/4. Due to this
rotation, the marginal distributions are no longer inde-
pendent. Because our goal was to estimate the Shannon
information, we set α to 0.9999. The number of nearest
neighbors used was k = 8, and the sample size was
varied between 500 and 40 000. The estimators gave
quite good results for the Shannon mutual information
as well as for D1(f‖

∏d
i=1 fi) = 1.

8 Discussion and Conclusion

We have derived a new nonparametric estimator for
the Rényi-α and Tsallis-α divergences, two important
quantities with several applications in machine learn-
ing and statistics. Under certain conditions we showed
the consistency of these estimators and how they can
be applied to estimate mutual information. We also
demonstrated their efficiency using numerical experi-
ments.

The main idea in the proofs of our new theorems was
that the expected value of our estimator can be rewrit-

ten as in (16). We showed that asymptotically the
terms inside this expectation converge to the Erlang
distribution and applied the well-known formulas for its
moments. The main difficulty was to show that we can
indeed switch the limit and expectation operators; that
is, the limit of expectations equals the expectation of
the limits of the random variables. For this purpose we
bounded above these random variables and applied the
Lebesgue dominated convergence theorem. To derive
a bound on these random variables, we made several
assumptions on the densities p and q.

There remain some open issues: the conditions of the
theorems could be weakened considerably, and the
rates of the estimators are still unknown. It would
also be desirable to investigate whether the proposed
estimators are asymptotically normal.
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