
ON THE DEFINITION OP SPECIALIZATION HIERARCHIES FOR PROCEDURES

Alexander Borgida

Department of Computer Science
Un ivers i ty of Toronto

Toronto, Ont. M5S 1A7, Canada

ABSTRACT II HEE& OF Ol&zll HIERARCHIES

We h i g h l i g h t the growing body of systems in AI
and outs ide where IS-A h ie ra rch ies of procedures
co-occur w i th more t r a d i t i o n a l onea of ob jec t s , and
we c l a s s i f y the var ious types of s p e c i a l i s a t i o n s .
We then g ive formal d e f i n i t i o n s which approximate
t h e i r intended meanings and, f i n a l l y , examine t h e i r
u t i l i t y using as a c r i t e r i o n the way in which they
a id program v e r i f i c a t i o n .

I MOTIVATION

Inher i tance (IS-A) h ie ra rch ies have been one of
the trademarks of Semantic Network knowledge
representat ions in A I . Although o r i g i n a l l y used
fo r descr ib ing ob jec ts on ly , there is growing
evidence both from w i t h i n and outs ide AI tha t
h ie ra rch ies of events/procedures are a lso use fu l
[1 , 2 , 3 , 4 , 5 , 6] . I t i s there fore o f some i n t e r e s t to
take a b r i e f look at possib le formal foundat ions to
the not ion of s p e c i a l i z a t i o n f o r procedures, and
compare them according to some uni form c r i t e r i o n .

We beging by reviewing b r i e f l y the intended use
of procedure s p e c i a l i z a t i o n in some of the systems
which cu r ren t l y support t h i s idea. In SIMULA [1] ,
SMALLTALK.76 [2] and PIE [3], the p r i n c i p a l use of
IS-A is f o r shar ing code through i nhe r i t ance ; the
goal is to save the programmer from the er ror -prone
process of copying the mater ia l several t imes. In
PSN [4] , the IS-A h ierarchy of programs provides
the semantic basis f o r de f i n i ng a l l o ther
h ie ra rch ies (e .g . PERSON IS-A ANIMAL only i f ,
among o the rs , the To-add program of PERSON IS-A the
To-add program of ANIMAL). In TAXIS [5 , 9 , 1 0] ,
g e n e r a l i z a t i o n / s p e c i a l i z a t i o n i s the p r i n c i p a l
abs t rac t ion t o o l of a methodology f o r In format ion
System design and implementat ion. For example, as
par t of a u n i v e r s i t y records system, the designer
could in t roduce the many ru les about what courses
students can or must take by descr ib ing f i r s t the
t ransac t ion f o r en ro l ing any atudent in any course,
and then s p e c i a l i z i n g i t t o , among o the rs , a
t ransac t i on f o r en ro l i ng graduate atudenta i n t o
undergraduate courses, one f o r en ro l i ng pa r t - t ime
atudents , e t c . In t h i s caae apec l a l i za t i on is used
as a d i s c i p l i n e f o r i n t roduc ing the d e t a i l a of a
system where consistency and completeneaa are at a
premium. F i n a l l y , Rich [6] and others use
h ie rarch iea to organize l i b r a r i e s of program plana
in order to f a c i l i t a t e l o c a t i n g them In program
syn thes is /ana lys is tasks .

In t h i s sec t i on , we w i l l consider in more
d e t a i l the varioua ways of de f i n ing the not ion of
s p e c i a l i z a t i o n f o r a c t i v i t i e s . Probably the
e a r l i e a t uae of inher i tance h ie rarch ies occurs in
SIMULA-67 [1] . Here, one def ines a c lass A by
g i v i ng I t s parameters PA and matching
apeo i f l ca t iona SA, dec larat iona DA, and a body of
operat lona IA;inner;FA. One can then describe a
subclass B by g i v i ng only the add i t i ona l par ts PB,
SB, DB, IB and FB w i th the e f f e c t that claaa K w i th
parameters PA and PB, . . . and body
IA: IB: inngr:FB:FA la created. We w i l l c a l l t h i s
t e x t u a l inher i tance and observe that i t s func t ion
is code shar ing. This is a syn tac t ic d e f i n i t i o n
slnoe the claas SIMULATION can be considered to be
IS-A the claaa LINKED-LIST, in contrast to the more
standard AI view tha t a l l ob jects in a subclass
must be viewable as ob jec ts of the superclass, at
leas t in some way.

SMALLTALK-76 [2] , and i t s descendant PIE [3 1 ,
provide ob jec ts grouped i n t o c lasses, where a claas
is def ined by the messages it recognizes and the
methods (procedures) used to respond to each
message. A subclass can add t r a i t s of i t s own or
over r ide those of i t s superclass by prov id ing a new
method f o r handl ing a message. SMALLTALK has a
defau. l t vers ion of i nhe r i t ance : i f a method f o r a
message to a claas is not e x p l i c i t l y s p e c i f i e d , one
looks up the chain of superclasses f o r a method.
Thla provided a great deal more freedom than in
SIMULA, where one cannot modify the body of the
auperclaaa, and in f ac t leads towards the opposite
end of the spectrum where any two procedurea can be
IS-A r e l a t e d . One can imagine Intermediate
ayn tac t i c versions of IS-A where, f o r example, one
la allowed to spec ia l i ze an IF-atatement only by
rep lac ing i t w i th another IF-atatement.

Some researchera (e . g . , [4 , 5 , 6 , 1 0]) adopt a
s t r i c t e r view of IS-A in which a subclass is a
subset of i t s superclass (a l b e i t one about which
more la known); thua, i f a l l EMPLOYEES must earn
more than $10,000 then JANITORa must do so a l s o , if
JANITOR IS-A EMPLOYEE. Such a s t r i c t e r
i n t e r p r e t a t i o n f o r apec la l i za t i on i s advocated f o r
AI representat ions in [1 2] , and In databases la
motivated by the observat ion tha t when processing
the elements of a c laas in a loop, i t la o f ten
uaefu l to assume tha t they a l l s a t i s f y the
I n t e g r i t y cons t ra in t s s ta ted f o r tha t c laaa.

254

For reasons of symmetry, we are then lead to a
d i f f e r e n t , more semantic d e f i n i t i o n of IS-A, one
where the execution of a spec ia l i zed procedure can
be viewed in some sense as the execution of the
more general one. On the basis of current
experience (e . g . , [4 , 5 , 6]) , i t seems tha t i f B and
A are procedures such tha t B IS-A A, then, i d e a l l y ,
(1) A should complete successfu l ly in a l l
s i t u a t i o n s where B does, (i l) the f i n a l or intended
e f f ec t s of B should inc lude at leas t those of A,
and (i i l) B should be allowed to have some
add i t i ona l e f f e c t s . A t y p i c a l example of t h i s
would be s p e c i a l i z i n g the procedure which creates a
new EMPLOYEE to the one which creates a new
JANITOR.

For the remainder of t h i s paper assume that a l l
procedures are expressed in a "core" language,
which al lows simple va r iab les , assignment and
cond i t i ona l statements, as we l l as a wh i le - loop
cons t ruc t . * If we view the program as modify ing
machine s ta tes described by var iab les and t h e i r
values, then we can def ine the semantics of a
program A by, among o thers , RA, the set of
i n i t i a l / f i n a l s ta te pa i rs connected by A, or PA,
the set { (p , q) ! p t rue in s , q t rue in s ' , (s , s ') i n
RA) where p and q are formulas in some FOL over
s ta tes .

We can s t a r t by de f i n ing (2,1): B IS-A A i f f
RB c RA ; t h i s ensures (i) and (i i) above but
un fo r tuna te ly forces A and B to be i d e n t i c a l
whenever both are def ined in the same s t a t e , thus
con t rad i c t i ng (i l l) . The same holds f o r the other
semantics o f programs in [8] , i nc lud ing r e q u i r i n g
PA £ PB. To be more s e l e c t i v e , one can def ine the
d i f fe rence A (s , s ') between s ta tes as the set of
changes from s to s ' , i . e . , the set o f pa i r s (x , e) ,
where x is a va r iab le w i th value e in s ta te s' but
w i th a d i f f e r e n t value in s . This leads to r u l e
(2,2): B IS-A A i f f f o r every (s , s f) in RB there
is (s , s ") in RA such tha t A (s , s ") c A (s , s ') . This
i s the basis o f the no t ion o f n e t s ide e f f e c t ,
which is one of the under ly ing cond i t ions of
s p e c i a l i z a t i o n in [7] . A l t e r n a t i v e l y , consider a
procedure A to be "de f ined" by some p a r t i c u l a r pa i r
of asser t ions (PreA, PostA) in PA and then l e t
(U) : B IS-A A i f f PreB = PreA & p, PostB =
PostA & q f o r some p, q; t h i s is the surface
no ta t ion f o r s p e c i a l i z a t i o n i n [6] . Another
p o s s i b i l i t y i s t o l e t F ree(f) stand f o r the set o f
f ree var iab les in a formula or program f , and l e t
FA be { (p ,q) in RA I F ree(p) , Free(q) c Free(A)} .
One might then def ine (£ * !) : B IS-A A i f f FA c
FB , and thus ob ta in another cha rac te r i za t i on of
IS-A which, l i k e (2.2) and (2 . 3) , captures
cond i t ions (i) , (i i) and (i i i) and yet const ra ins
the a d d i t i o n a l e f f ec t s of B so tha t they do not
"oon t rad i c t " those of A.

Observe tha t a l l o f the above d e f i n i t i o n s r e l y
so le l y on the e f f e c t of the programs, not on t h e i r
i n t e r n a l s t r u c t u r e , and henoe the f a m i l i a r no t ion

• S im i la r r e s u l t s hold in more general oases,
al though the d e f i n i t i o n s need to be more complex.

of inher i tance is missing. Both [5] and [6]
attempt to oomblne i n t o a hybr id d e f i n i t i o n the
s t r u c t u r a l aspects of the procedure (parameters,
statements, r o l es) w i th the semantic r e s t r i c t i o n s
noted above in order to a l low both inher i tance of
par ts and a l i m i t e d ex tens ion/modi f i ca t ion of the
more general procedure. In p a r t i c u l a r , in
s p e c i a l i z i n g a procedure one can usua l ly spec ia l i ze
(a) the parameters, by imposing add i t i ona l
cond i t ions on them, (b) the component statements,
t es t s and p r i m i t i v e operat ions, and (c) one can
extend the spec ia l i zed procedure by adding new
parameters and components. By using an FOL which
al lows procedures, e tc . as domains to be
q u a n t i f i e d over , t h i s can be stated ra ther
e legant l y ([6]) as B(x) = A(x) a r (x) where A is
the c h a r a c t e r i s t i c predicate of procedure class A,
which has al ready been spec i f i ed ax iomat i ca l l y .
One is lead to suppose tha t in "pure" PROLOG, where
there are no s i d e - e f f e c t s , the cond i t ion fo r B IS-A
A could simply be B«=>A; the reason f o r t h i s is
tha t PROLOG programs cons is t of clauses and a more
spec ia l i zed program would be " t r u e " in fewer cases
than the more general one, i . e . , i t would have
a d d i t i o n a l o r "s t ronger " c lauses.

I l l "IS-A" tttPABCMSS SL PBQCEPVEBS
AHE YMiriMTIPH

In add i t i on to the var ious uses fo r the
s p e c i a l i z a t i o n h ierarchy noted in sect ion 1, one
can observe tha t through inher i tance common par ts
of procedures are fac tored out i n t o higher c lasses.
Now not ice t ha t these cou ld , among o thers , be
tes ted and v e r i f i e d independently, and t h i s
v a l i d a t i o n could then be "shared" by a l l the
spec ia l i za t i ons of a procedure, i . e . , presumably we
need v e r i f y only the add i t i ons /mod i f i ca t i ons . *
This could be a p a r t i a l answer to the problem in
program v e r i f i c a t i o n of how one breaks up in a
motivated manner the proof of a large program i n t o
smal ler , yet coherent pa r t s . Consider, f o r
example, v e r i f i c a t i o n using the standard
Floyd-Hoare p a r t i a l correctness assert ions (pea's)

p{A}q . An important app l i ca t i on of t h i s occurs
in databases, where one would l i k e to prove that
a l l t ransact ions maintain the i n t e g r i t y cons t ra in ts
i n v a r i a n t , so tha t the system would not have to
check them a f t e r every update . • • It may there fore
be of I n t e r e s t to compare the var ious d e f i n i t i o n s
of IS-A on independent grounds: how do they
support such proof shar ing.

The existence of a commonly used r u l e of
in fe rence: p{C)q, q{D}r k p{C;D}r makes t e x t u a l
i nhe r i t ance , as in SIMULA, an a t t r a c t i v e approach
because i t su f f i ces to prove q{D}q in order to
deduoe p{C;D}q from p{C)q. Unfor tunate ly , t h i s is
not a necessary cond i t i on , as i l l u s t r a t e d by C i

• The problem of r e - v a l i d a t i n g programs which have
been a l t e red has also been considered in [1 1] .

•* An extensive example of v e r i f y i n g a group of
procedures organized in an IS-A h ierarchy is
presented i n [1 0] .

255

2*6

