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Abs t rac t 

Default reasoning is reasoning with generalised knowledge 
which we want to use if there is no more specific knowledge also 
applicable. This paper presents a formal, model-theoretic charac­
terisation of default reasoning. Defaults are treated as possible 
hypotheses in a "scientific" theory to explain the results. One of 
the problems with systems that reason with defaults occurs when 
two answers can be produced, and one is preferred. In terms of 
our default logic, we define a semantic characterisation of the 
notion of the more specific theory. This overcomes many of the 
problems which motivated non-normal defaults, and provides a 
semantics for correct inheritance in inheritance systems, where we 
want choose the result supported by the most specific knowledge. 
We also show how to produce a general computational mechanism 
in terms of normal first order predicate calculus deduction systems. 

1 . I n t r oduc t i on 

Various formalisms have been proposed to give a semantics to 
systems with knowledge with exceptions (Reiter[80], McDermott 
and Doyle[80], McCarthy[80,84], Moore(83], Poole[84b,c]). One 
problem which arises, particularly with respect to inheritance sys­
tems (Etherington and Reiter[83], Touretzky[84]), is how to resolve 
ambiguity when different defaults can be used to produce different 
answers. 

Poole [84b] gives a model theoretic definition of default reason­
ing with defaults as possible hypotheses in a scientific theory. An 
answer is explainable if it logically follows from some consistent set 
of default instances (a theory) together with the facts. In this paper 
we propose, in the case of ambiguous answers, a theory comparator 
to find the answer supported by the best explanation. This is 
applied to the problem of default inheritances in semantic net­
works, where the most specific theory is preferred. If there is gen­
eral knowledge applicable to an answer, and more specific 
knowledge also applicable, then the most specific knowledge is pre­
ferred. 
2. Defau l t Logic 

2 . 1 . Syntax 
The syntax is an extension of the first order predicate calculus. 

A wff is a well formed formula of the first order predicate cal­
culus. The input of the system is defined as follows: 

Inputs of the first type are called facts, and inputs of the second 
type are called defaul ts. An instance of a default is the wff with 
values substituted for the variables appearing before the ASSUME. 

The facts correspond to the axioms in a normal logic, and the 
defaults are knowledge which can be used as long as they are con­
sistent. 

2.2. F o r m a l Semantics 

If F is the set of facts, and the set of defaults, we say that g 
is explainable if there is some D, a set of instances of elements of 
A such that 

and FUD is consistent. 

D is said to be the theory t h a t explains g. D is like a "scien­
t i f ic" theory. Theorems is the corresponding "logical" 
theory. 

That is, g is explainable if there is a theory which explains it. 
The instances of defaults are the possible hypotheses in this theory. 
This theory must be consistent with all of the facts. 

2.3. Example 1. 

Consider the knowledge that "birds f ly" This is knowledge we 
may want to use although it has exceptions (eg. emus, penguins, 
roast ducks, little chicks etc.). The default "a bird can fly unless it 
can be shown not t o " is given by: 

If we are also given the knowledge that emus are birds that don't 
fly, and that Tweety is a bird, and Edna is an emu, we input 

From this knowledge we can explain flien (tweety) with the theory 

{bird (tweety) flies (tweety)} 

which is consistent (its negation cannot be proven), and together 
with the facts can be used to prove flies (tweety). 

We cannot explain flies(edna) as the corresponding theory for 
edna is not consistent, as its negation can be proven from the facts. 

2.4. Example 2 

Suppose that we modify the first example to have "emus don't 
f l y " as a default rather than a fact. We get the following system: 

We can now explain everything we could in example 1, and can 
also explain flies (edna) with the theory 

with the 

This is an example where there are two different things which 
can be explained, and where one is preferred. We prefer to say 
that edna does not fly, as our knowledge that emus don't fly is 
more specific than our knowledge about birds flying. 

8. A Theo ry C o m p a r a t o r 

So far we have given the semantics of a default logic, closely 
related to the normal defaults of Reiter [80] (see section 5.2). Our 
theories differ from his extensions, as our theories are intended to 
be minimal (the simplest theory to explain the results), whereas his 
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extensions are the theorems following from maximal sets of 
instances of defaults which are consistent. 

As in example 2 above, a problem arises with normal defaults 
when two different answers can be produced in two extensions, but 
where one is preferable over the other (Reiter and Criscuolo[8l]). 

Within inheritance hierarchies we want default links, but want 
to use the most specific knowledge to deduce an answer (Ethering-
ton and Reiter[83], Touretzky[84]). Within our system this is done 
by preferring the most specific theory to explain the results. We 
want our definition of more specific to be a semantic rather than a 
syntactic definition so that it can be understood and justified 
independently of any implementation, and so that it does not fall 
into the problems of shortest paths and redundant knowledge 
which arise with particular syntactic definitions of best inheritance 
(Touretzky[84]). 

To formalise the notion of one theory being applicable when­
ever another one is, we need to be able to talk about, "what if 
something else were the case" To do this we divide the facts into 
two classes: 
Fn those facts necessarily true in any world in our domain. 

Fe those facts which happen to be true in the case we are consid­
ering. 

In the birds fly example above, is a neces­
sary part of our domain. We do not want to consider the case 
"what if emus were not birds?". This should be contrasted with the 
fact emu(edna). In this we want to say the theory which explains 
flies(edna) is more general as it is applicable even if we only knew 
Edna was a bird. Thus we do want to consider the case where 
Edna is not an emu. 
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The two corresponding theories are both more general than each 
other. This can be shown by considering the possible facts 
republican (dick), which makes the theory explaining his non-
pacifism more general, and the fact quaker(dick) making the alter­
nate theory more general. Thus we prefer neither explanation. 
3.4. Example 5 

To show that we can handle more complex cases, even where 
no contradictory results are obtained, consider the following exam­
ple: 

From the contingent fact, at_emu_farm(randy), we can explain 
say(randy , runs) and say (randy , flies). The solution of 
say (randy, flies) is more general, as it is also applicable for the fact 
bird(randy). However, we cannot show that the solution explaining 
say (randy ,runs) is more general. Thus we prefer the solution of 
say(randy ,runs). 

3.5. Example 6. 

The following example shows how the comparitor may produce 
a seemingly unintuitive answer. Consider the defaults 

Although the theories to explain -c and -d are strictly 
more specific than the corresponding theories to explain c and d, 
and the theory to explain g2 is more general than the theory to 
explain g1 the theory to explain g1 is more general than the theory 
to explain g2. This can be shown by considering This 
problem cannot be fixed up by simply making Fp be compatible 
with D1 

4. Imp lementa t ion 

For the general case of finding the best explanation a standard 
first order predicate calculus deduction system can be used (eg. 
Poole[82,84a)). To prove that a goal is explainable, we use the 
deduction system in two phases. In the first we try to prove the 
goal using the facts and the defaults as the axioms in the deduction 
system. The defaults used in the proof of the goal can be collected 
into a potentially explaining theory. This theory can be checked 
for consistency by using the same deduction system to try to prove 
the theory and the facts are inconsistent. This is, of course, unde-
cidable, in general. See Poole[84c] for a provably correct procedure 
for such a system, together with a description of the reverse 
Skolemisation needed to match the instances giving an incon­
sistency with those explaining the goal. 

The general proof for more specific is also a set of standard 
first order proofs. In general, standard first order proof techniques 
are adequate for handling the default system. There wil l , of course, 
need to be ways to improve the efficiency of such a system by 
allowing the proofs to interact to prune each other's search spaces, 
and by exploiting the structure of specific domains (see for example 
Poole[84c]). 

If we have a restricted language, for example in inheritance sys­
tems where logical entailment can be implemented by looking up 
the lattice, the corresponding efficiency can be transferred to han­
dling the problem of finding the most specific theory. For the case 
of inheritance in semantic networks, Touretzky[84) has provided an 
efficient way to implement our preference of the most specific 
theory by conditioning an inheritance system so that a shortest 
path reasoner will work. 

6. A Compar ison W i t h Other Systems 

5 .1 . Semantic Ne two rks 

An attempt to characterise the notion of using the most specific 
knowledge is incorporated in preferring the shortest inference path 
in NETL (Fahlman[79j). As pointed out in Touretiky[84], this 

causes problems when there are redundant links and ambiguous 
extensions. As our system uses a semantic notion of more specific 
rather than some syntactic notion, it does not fall into these prob­
lems of shortest paths. 

When everything is in the form of a semantic network, our 
logic provides a semantics for the inferential distance of 
Touretzky[84]. The inferential distance is whether there is an 
inheritance path from the subclass (the more specific) to the super­
class. The superclass then provides the fact which makes it more 
general. Our logic is not, however, restricted to the simple implica­
tions found in semantic networks, but can use arbitrary wffs as 
both defaults and facts. It also handles a mixture of defaults and 
facts rather than treating all arcs as defaults. As shown in example 
5, our system can find more specific theories when there are dif­
ferent, but not necessarily contradictory answers. 

5.2. Rei ter 's Defau l t Logic 

This work can be most directly compared with the defaults of 
Reiter[80]. The definition of default above corresponds to his defin­
ition of a normal default. His normal defaults of the form 

are expressed as the 
difference being that we allow the contrapositive of our defaults. 
We have a simple model-theoretic semantics as well as a proof 
theory (see Poole[84c] for a detailed comparison). 

The problems which gave rise to non-normal defaults, have 
however been solved in a very different manner. We have more 
modular statements than the corresponding semi-normal defaults 
(Reiter and Criscuolo[81], Etherington and Reiter[83]), as we do not. 
need to change the more general rules to add in exceptions to 
them, or know all of the more specific rules that may override a 
general rule we may have. We can add both more specific and less 
specific knowledge in a modular way without needing to change the 
other knowledge, or even needing to know that there are excep­
tions. The use of abnormality conditions (McCarthy[84]) still does 
not give the modularity of our system, but rather allows the excep­
tions to a general rule to be stated in a more modular way, but it 
must still be changed. In summary we have the notion that more 
specific knowledge is preferred as an integral part of the logic, 
rather than needing to be explicitly given. 

6. Conclusion 

We have outlined how defaults can be treated as possible 
hypotheses in a scientific theory used to explain the results. The 
problem of multiple answers can be overcome by allowing a com­
parison of theories to choose the answer which is supported by the 
"best" theory. When we have a set of knowledge which consists of 
general knowledge and more specific knowledge we want to choose 
the more specific knowledge in preference to the more general 
knowledge when there is a conflict. 

This paper gives a formal account of a system for such reason­
ing. This is defined in terms of normal first-order model-theoretic 
semantics, and is defined so a normal first-order predicate calculus 
deduction system can be used to derive results. 

We also provide an alternate semantics, and motivation for the 
"correct" inheritance in inheritance systems (Touretzky[84)). 
There are considerable advantages over non-normal defaults in 
terms of modularity for solving the same problem. 

This is not an attempt to solve all of the problems of when one 
theory is better than another. This may change from domain to 
domain, for example in the diagnosis domain (Jones and Poole[85]) 
where it is the theory, which is the diagnosis, that is important, and 
for example in learning systems where we want the most general 
theory (within constraints) which explains the observations. There 
are examples one can imagine where there is more domain-specific 
knowledge about which explanation is better. 
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