Mathematics > Numerical Analysis
[Submitted on 29 May 2024]
Title:On adaptive stochastic extended iterative methods for solving least squares
View PDF HTML (experimental)Abstract:In this paper, we propose a novel adaptive stochastic extended iterative method, which can be viewed as an improved extension of the randomized extended Kaczmarz (REK) method, for finding the unique minimum Euclidean norm least-squares solution of a given linear system. In particular, we introduce three equivalent stochastic reformulations of the linear least-squares problem: stochastic unconstrained and constrained optimization problems, and the stochastic multiobjective optimization problem. We then alternately employ the adaptive variants of the stochastic heavy ball momentum (SHBM) method, which utilize iterative information to update the parameters, to solve the stochastic reformulations. We prove that our method converges linearly in expectation, addressing an open problem in the literature related to designing theoretically supported adaptive SHBM methods. Numerical experiments show that our adaptive stochastic extended iterative method has strong advantages over the non-adaptive one.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.