ON A NEW TOOL IN ARTIFICIAL INTELLIGENCE RESEARCH.

AN ASSOCIATE MEMORY, PARALLEL PROCESSING

LANGUAGE, AMPPL-II.

Nicholas V. Findler
Department of

by

and Wiley R. McKinzie*

Computer Science

State University of New York at Buffalo

ABSTRACT

One of the remarkable things about
human information processing is the way we
store and retrieve information. The human
associative memory is a device that has
been only rather crudely approximated with
computers in flexibility, self-
modifiability, and complexity of
associations.

In this paper, we describe a computer
language, AMPPL-IlI, which simulates a
machine with an extensive, variable size
associative memory and parallel processing

capability. It was to be made fairly
machine-independent and is, therefore,
embedded in a high-leve1 algebraic
language. The version outlined here is
built as an extension of SLIP (Symmetric
List Processing Language), itself being

embedded in FORTRAN |V.

The expected range of applicability
of AMPPL-II covers a rather wide area.
Candidates in the non-numerical field are
game playing, picture processing and image

identification, encoding-decoding,
simulation of cognitive behavior, multikey
information retrieval, language analysis,
sorting, merging, collating, query
systems, and so on. Numerical
applications would be matrix calculations,
solution of partial differential
equations, computation of auto- and cross-
correlation functions, signal correction,
etc.

Stimulated by this languaae, new
computational techniques and algorithms
may, hopefully, be developed. These, on
one hand, and technological advances, on
the other, may render the hardware

implementation of an AMPPL-like machine
economical.

*N.V.F. designed AMPPL and is
responsible for the mistakes contained in
this paper. W. R. McK. implemented the
language on the CDC 6400. Teiji
Furugori's contribution to the latter is
also acknowledged. Further, Peter Mullor

and Charles Bergenstock worked on an IBM
7044 implementation of AMPPL-I.

KJY WORDS AND PiiPASI s

Associative menory, parallel
processing, symbol manipulation, list
processina, extension of algebraic

lanuuages, information structures.

CR CATLOORIES
3.60, 3,69, &, 1o, 4,22

INTRODUCTION

There is an obvious interrelation
between the level of complexity of the
problems that are ootentially solvable on
computers, and the power of available
software and hardware. Further

dcvclonment in proaramming systems and
languages enables us to attack problems
that have so far been beyond the sphere of
practicability. List processing and
string manipulating languages, for
examnle, have opener’ un new vistas in many
research fields, probably most
significantly in Artifical Intelligence.

We describe in this paper an approach

to memory and information processing,
radically different from those of the
traditional von Neumann-type computers.

An Associative Memory, Parallel Processing
Language, AMPPL-II*, is introduced, which

simulates a computer built in
hardware. (We point out that some of the
facilities available in AMPPL-Il would
not be present in the engineer's
implementation. However, they do not
"cost" much in programmina effort and
in computing time, and they may also be
handy to have. We have, therefore,
decided to include a ‘ew "non-generic"

features.)

* The first version, AMPPL-I, was
reported on in [1,2] and was implemented
but not completely debugged for the IBM
7044. The presently described language,
running on the CDC 6400, has improved
dynamic memory allocation facilities and
more powerful instructions concerning
Relations (cf. Section 11/C).

2b9-

It should be noted here that there internal mechanism of SLIP had to be
are many references in the literature to modified to a small extent but the user

hardware and ~software efforts that are .04 ot be aware of this fact.) There
aimed at objectives similar to ours here. are only two A"PPL subprograms written in
The engineering activity can be divided assembly lanquage now. Converting often
|r_1tot two, rather d"|bs|t|nkct bcate“gorrl]es, used subroutines and functions, currently
rirst, very expensive ac oxer, ave coded in FORTRAN, into assembly language
been constructed and attached to snecial would of course save considerable
or general purpose computers to perform machine time with Iar’ge programs

some of the functions vl shall discuss)

later. Second, small associative memory

: ; ; ; Unlike the expensive and inflexible
units ?ave bee.?. included —in hcomputrt]ar associative memories oresently built in
syst.ems or specific purposes, suc as.t e hardware, the size of the Simulated
gﬁglrg?j ?npa%rhairt]leosn with large-scale time- Associative Memory (SaM) in determined by

) the programmer according to his needs. In

. fact, he has to specify the ratio between

| number of programming systems have the sizes of SAM and of the Available

also been developed, most of them directed Space List (AVSL) of SLIP at the beginning
towards specific, some of them towards of his program. The sum of SAM and AVSL
more general applications. Ve only wish equals the storage area left unused after

to single out here the work of Feldman and

Rovner” [3.4.5], and of Dodd, Beach and the compilation of the FOPTPAN program.

Rossol [6]. Their objectives are very The programmer can also build into
similar to ours, although the respective the progrpamg trap points, at which a part
techniques are different. Experience will of SAM or AVSL is dynamically reassigned
show which of these languages is more to the other part if there is a need for
powerful, easier to program and debug in. it, i.e. if the size of one memory type
. . decreases below a certain prespecified
. Excellent surveys, covering the field threshold value. Memory contraction,
Ln c}uesctjlon. up t7° 8the m;:ddletﬁf 196% Ca? coupled with a specific form of garbage
e found in [7,8]. = For € sake o0 collection, takes place in SAM at this
completeness, we mention a few more, some instance
left out of the above surveys, some of ’
more —recent vintage [9, 10, 11, 12, 13, There is an efficient and fast flow
14, 15, 16, 17, 18, 19, 20]. of information between any two of the SAM,
AVSL and FOPTrAN memory.
l. SOME BASIC CONCEPTS It will be helpful in understanding
. . the organization of AMPPL-II if we
In contrast with conventional, word- consider the diagram in Figure 1
oriented machines, computers with ’
associative memories are content-
addressable. These terms refer to the
interrelationship between data as well as INSERT FIGURE 1 ABOUT HERE
to the fact that a memory word or words
can be ~accessed by matching with a The main block is the Memory Matrix,
selectable field of a special word, rather which consists of £ SA.M-words* each
than by an address. Parallel processing, having 2n bit positions. There are four
a related idea and distinct from special words, the short registers, each
multiprocessing, allows command sequences n bits long (On the CDC 6400, there are
to be executed simultaneously over large n=60 bits in a word.) Two of these serve
numbers of data sets. as Argument Registers 1 and 2. The other
) two represent Mask Registers 1 and 2.
It was intended to develop a language There are also three long registers,
which incorporates, from the programmer's vertical columns £ bits in length and 1
viewpoint, these facilities in addition to bit in width. Two ""of these are called
the previously available algebraic, list response Register 1 and Response Register
processing and string manipulating 2. The third one is the Availability
facilities. Register. (The role of the words FIRST

For understandable reasons, embedding and LAST in Figure 1 is explained later).

seemed to be an economical and fairly In the following we shall briefly
efficient approach, which also achieves a describe some of the o'perations used in
reasonably high level of maclhlne AMPPL-Il and discuss only two, the 'Search
independence. The presently described and Flag' and 'Set Relation' in detail
version is an extension of SLIP, itself ’)

being embedded in FORTRAN I[V. (The
¢As will be seen later, every SAM-

word consists of two actual memory words.
-260-

| Argument Register 1 1

| Argument Register 2]
| Mask Register 1 1
| Mask Register 2]

Memory Matrix:

r ShMevords, each

with 2n bit positions

Response Register 1
Response Register 2
Availability Register

L
L
I

hddress Address
FIRST
of Flag 1 of I'lag 2

hodress Address
LAST

of Flag 1 of Flag 2

The Structure of the Sfimulated Associative
Momory and Parallel Processor

FIGURE 1

-261-

I 1. OPERATIONS IN AMPPL-II

(1) Memory Allocation:

As mentioned above, the initial
subdivision of free core into SAM and AVSL
can be dynamically modified during the
execution of the program. Instructions

are available to count the number of
currently available SAM and AVSL cells,
and to accomplish the transfer of free
cells from one memory category to the
other. At these points, and also at the
tine of mass input into SAM (see below),
memory contraction and garbage collection
in SAM takes place.

(2) Input-Output:

Mass input-output is obtained when
FORTRAN arrays or SLIP lists are read into
SAM, and when designated SAM-words are
loaded into FORTRAN arrays or SLIP lists.
Also, wholesale clearing operations can be
executed between any two specified SNVM-
addresses. (A SAM-address can be
conceived of as the index of a one-
dimensional array.)

Individual words can be transferred
between any two of the SAM, SLIP and
FORTRAN memories. Designated parts of SAM
can be printed in different modes.

The basis of comparison is usually*

put into one of the Argument Registers.
The search is carried out only over those
fields of SAM-words that are marked by

bits Vv in the
The success of a search s

relevant Mask Register.
indicated by

flags (bits <!+*) at the level of the
corresponding SAM-vord in the relevant
Response Register. Those SAM-words that
have not been wused or are no longer
necessary are denoted by a tag (bit '1")
in the Availability Register.

Two points should be mentioned here.

In order to speed un the search processes

in SAM, one-directional pointers link
flagged SAM-v;ords (see Figure 2) ana,
also, end markers indicate the addresses

of the SAM-words first and last flagged in
the two Response Registers (the contents
of the FORTRAN variables FIRST and LAST on
Figure 1).

Two other FORTRAN variables, POINT1
and POINT2 contain the SAM-addresses of
the last SAM-word searched, whether
successfully or otherwise, with reference
to Response Register 1 and Response
Register 2, respectively. (Cf. the
possible values of the argument WhICH of
the subroutine SLRELS.)

The actual form of the major

instruction performing the above described

processes is

Full words or specified bit
configurations can be put into the
Argument and Mask Registers, and the

contents of the latter can also be read
into the FORTRAN memory.

(3) Operations Concerning the

Response Registers are

Reqgisters:

To the AMMPL programmer, SAM appears
to contain information in a manner that
permits certain basic processes,
including reading and writing, to be
carried out simultaneously in particular
cells. These designated cells contain

responding pieces of information and were
selected by a previous 'Search and Flag'
operation or were deliberately flagged by
a special flagging instruction. The

*Search and Flag' operations locate and
mark SAM-words according to various
criteria. Subsequent processes may then
be performed on these again and the
results can represent Boolean
combinations, AND's, OR's and NOT's of

consecutive searches.

*If, for example, those numbers are
searched for that are greater than a given
one- However, if the"criterion of search
is, for example, emaximum*, the Argument
ignored.

-262-

SERFLG

where

REWRSE

ANDRSP
BPGLE =
#RRSP

HPTRSP

{ SAMADR
FIRST
HXT
WHICH =

LAST

ALL

\ ANY

(BOOLE, WHICH, CRITER,

’

IARG,

i.e. the resulting

flags in IPRESP are

i.e. flags are put
in IRESP if CRITEP
is satigfied for

IMASK,

IRESP)

regardless of previous status
of the Response Register,

AND-ed with flags in the
other Response Register,

OR-ed with flags in the
other Response Register,

NOT-ed and left in the
same Response Register;

a certain SAM-addressed word,

the first SAM-word,

the next-after-POINT word,

the last SAM-word,

all SAM-words,

any single SAM-word;

-263-

NLXTII

HEXTL@

HLXT

MAX

MIN

CRITER = GTECQ ,

EQU

LTEC

BITSMI

BITSLY

\ cregen

1
IARG = { ,

IMASK = { ,

1
IRESP = .
2

i.e. search for

the word(s)

i,e. the number of

Argument Register;

i.e. the number of

Mask Reqgiater;

i.e, the number of

Reanponse Register,

-264-

next higher than the one
in Argument Register,

next lover than the one
in Argument Register,

nearest in absolute value to the
one in Argument Register,

of largest value,
of lowest value,
greater than or equal to the

one in Argument Register,

equal to the one in
Argument Register,

less than or equal to
the one in Argument Register,

with the hiahest number of bits match-
ed with string in Argument Register,

with the lowest number of bits match-
ed with string Argument Register,

with the hiahest number of matching
groups of M(=2-8) bits regardless of
group position, starting from the left;

the relevant

the relevant

the relevant

A few words of comment are needed
here. Two subsequent 'Search and Flag'
operations with CRITER=GTEQ and LTEQ yield
responsive words of values between given
limits. NEXTHI can be performed by two
subsequent searches with criteria GTEQ and

MIN, similarly HMNEXTL@# is done with
criteria LTEQ and MAX. The value of one
of NEXTHI and NEXTL@, that is nearer to
the value in the Argument Register, yields
NEXT. The criteria BITSHI and BITSLO are
useful in comparing non-numerical data and
selecting the "most similar- or "least
similar" pieces of information,

respectively. The number of matching bits

can be found as the values of special
FORTRAN variables. GRPOFM finds, for
example, misprints caused by
transposition, missing and added
characters. The character set can be
represented by groups of 2-8 bits. Since
the matching process ignores the position
of the groups being matched, there are
extra facilities to identify transposition
errors. Also, the number of the matching

groups is accessible.

There are safeguards to prevent a

SAM-word of the wrong information mode
(e.g. floating point number instead of
alphabetic information) from becoming
respondent if its contents happens to be
the right bit configuration. A detailed

description of this is to be found in

122] .

noted that
flag and

Finally, it should be
there exist instructions to
unflag specified SAM-words, to count the
number of flagged SAM-words, and to put
the SAM-addresses of flagged words in a
FORTRAN array or a SLIP list.

Concerning the Availability

(4) Operations

Register:

As mentioned before, a bit 1 in the
Availability Register indicates that the
corresponding SAM-word is free. We call
this mark a 'tag', as distinct from the

+flag' in the Response Registers.

There are instructions which tag and
untag SAM-words, count the number of
available SAM-words, and which put the

SAM-addresses of tagged words in a FORTRAN

array or a SLIP list.

(5) Inter-Register Operations:

All the 16 logical operations
possible are executable between any two of
the short (Argument and Mask) Registers or
between any two of the long (Response and
Availability) Registers. Here the
operands are the bit strings occupying the
respective registers.

-265-

(6) Processes Regarding Relations:

Besides the 'Search and Flag'
operation, these processes are the most
significant in AMrPL-II. We shall,
therefore, discuss them, also, in some

detail.

Let us generalize the concept of an

algebraic function and define a Relation
(REL) between an Object (¢BI} and a Value
(VAL)

REL (PBJ) = VAL,

Each of the above three entities can
be sinqle items or three kinds of lists.
The first kind simply contains various
equivalent names of the same item. (One
can think of synonyms within the given
context.) This is called the EQUIVALENT
LIST. The second kind of list bears the
names of a number of subunits any
processing on which is always uniform. An
example of these lists nay be the students
of a «class, who always have the same
teacher, always stay in the same
classroom, etc. Distinguishing .processes,
such as grading of individual exams, are
not to be carried out on the elements of
so designated lists. Finally, the third
kind of list has distinct and, in some
respect, independent elements. An example
of this could be the pieces of furniture
in a certain room if one would like to,
say, paint them to different colors.

Also, the programmer <can define a

Relation as an ordered set of
Relations. The combining connectives are:

A land), v {or), =——inot),

t {concatenated), -=— (reverse).

Let us further define a reserved
symbol SELF in order to be able to exclude
self-referencing in unwanted cases.
Finally, the term on the left hand side of
a '‘concatenated’ symbol is considered to
be in (Teutonic) genitive. The following
examples should make this clear:

(i) PARENT =msp FATHER ¥ MOTHER
i.e. a parent is defined a father or
mother;

(i) CHILD == =— PARENT

i.e. the child is defined as the reverse

of the parent;
(iii)

i.e. the
father's or

GFANDFATIIER wi (FATHERVMPTHER)i FATHER

grandfather is defined as the

mother's father;

(iv) HUSEAND wep SPOUSE A — WIFE

i,e, the hushand is defined
but {(and) not wife;

as a spouse

(v} BROTHER™{(MOTHERAFATHER)$ SONA=-=5LLF
i.e. the Lrother is defined as the
mother's and father's son but (and) not
self; if we wish to include half-brothers
as well, we can put

BROTMER =((MOTHER v FATHER) ¢ SON} A ~= SELF

i.e, the mother's or father's son but
{(and) not self.

As the system reads in these
definitions from cards, it checks them in

toto for circularity, which it does not
accept, and puts them in a Polish prefix
form on DEFINITION LISTs. The latter are
sublists of the EQUIVALENT LISTs and
therefore sub-~sublists of the SLIP
ligt CADEL. (See Figure 2). On the

INSERT FIGURE 2 ABOUT HERE

CPDEL list, the members are either entity
{Relation, Object, Value) names, each less
than 11 characters long, or the names of
the three kinds of sublists mentioned
before. The machine address of an item on
the CPDEL list is called its Code HNumber,
Whenever a new Relation is defined by the
subroutine

SETREL (REL,@BJ,VAL,K),
the system sets up one (or more)
Descriptor word (s) in SAM,
contain{s), in the proper fields,
three code numbers representing
Relation, the Object and the Value.
Figure 3). K is an integer between

Relation
which
the
the
{See
0 and

INSERT FIGURE 3 ABOUT HERE

e W S S W o wr o m S o wr omm Em W e Er o o wr

7, and characterizes each of the three
entities whether they represent a single
item or non-distinct elements of a list,
on one hand, or distinct elements of a
list, on the other. In the latter case,
as many Relation Descriptor words are

established as the total numher of
combinations possible.
There are altogether seven basic

questions a retrieval system for Relations
can answer, These are as follows:

{a) Is a particular relation,
between a given object and value, true?

{b) What is (are) the value(s)
belonging to a given relation-object pair,
if any? REL (@BJ)=?

What is ({are) the object({s)
to a given relation-value pair,
REL{?)=VAL

(c)
belonging
if any?

{d) What is (are) the relation(s)
that connect(s) a given object=value pair,
if any? ?Z?(@BJ)=VAL

pair(s)
any?

wWhat
to a

relation=rbject
qiven value,

(e}
belong (s)
?(?)=VAL

(£)
belong (=)
? (PBJ) =2

{3} Finally, what
pair{s) belong{s} to a given relation,
any? REL(?)=?

if

pair{s)
if any?

relation-valuc
given object,

¥hat
te a

object-value
if

The answers are obtainable by using

cne simple instruction in every case.

more
One

we note two
considerable power.

Finally,
instructions of
of them creates

RELZ2 (VAL} = $BJ

where the Object and Value connected

by

are

REL1 (¢BJ) = VAL

and

REVREL(PLL1}) = REL2
i.e. REL1 and REL2 are Reversed Relations.
Examples of this are:

REL1 REL2
husband of wife of
spouse of spouse of
parent of child of
loves is loved by
superset of subset of
Bimilar to similar to
greater than less than
above below

left to right to

Note that always

RLVREL {RLVREL (REL1)) = RELI

Another instruction finds X, for
which it is true that
A:B=C ;: X
where A, B, and C are any of the three
entities, RelatIon, Object, or Value; A,
and C, on one hand, and B and X, on the

other, are of the same type, and the third
entity iIin the Relation Descriptor words
containing A, B and C, X ins the same for
both, (Occurrences " of all possible
combinations of A and B are considered.)
Two examples should make this clear:

-266-

EQUIVALENT LIST

2
3
C@DEL LIST T T
GRANDFATHER DEFINITION LIST
AN N l [
GRANDPA et 2
1 3
i : .
[- | |
GRANDAD t
[
_n\/\V/ﬂh_r\,ﬁui LIST OF NON= FATHER
e DISTINCT ITEMS | |
v
Z [
FATHER
) AN IVRN—
i I MOTIIER
. D CHAIR 1
| !
AAAVAY Vo e CHAIR 2
!]
CHAIR 3
An Exemplary Segment of the
CHEDEL List and Its Sublists
FIGURE 2
CODE NUMBER 1 CODE NUMBER 2 CODL NUMBER 3
ADDRESS OF DOWNWARDS | ADDRESS OF DOWNWARDS
1] |1
NEAREST FLAG 1 NEAREST FLAG 2
1234586

ShM~word as Relation Descriptor

FIGURE 3

-267-

in Sam, we have Relation

standing for

(a) Suppose
Descriptor words

OF (JEANNE) = FRLNCH

MOTHEP
. . .
MOTHER TONGUE OF (JOSE) = SPANISH
If
A = JEANNE,
B = PRENCH,
C = Jos

the resulting X will be SPANISH since
Jeanne's relation to French is the same as
that of Jose's to Spanish — these are the
mother tongues of the people in question.

(b) Let SAM now contain

UNCLES OF (JACK) = JOE, BILL, PETER

AUNTS OF (JACK) = MARY, CARONH

If

A = UNCLES OF

B = JOE, BILL, PETER

C = AUNTS QOF
the resulting X will be the list
with MARY, CARON Tsince JOE, BILL, PETER
are the uncles of the same person whose

aunts are MARY, CARON .,

(7) Parallel Operations over SAM;

Here, we briefly list some basic but
high-level instructions that should ©be
useful both in numerical and non-numerical

applications 2

word in one of the
added to,

A constant
Argument Registers can be
subtracted from, multiplied by, divided
into. Boolean AND-ed and OR-ed with
designated SAM-words through one of the
Mask Registers,

The above operations can also be
performed between any two fields, and the
Boolean NOT of any single field, of
designated SAM-words.

Specified fields of designated SAM-
words can be cleared.

Designated SAM-words can be shifted
to the left or to the right by specified
number of places.

Single elements, vectors, planes,
cofactors or all elements of an array can
be flagged if the array was read into SAM

according to the usual mapping order.
Vector addition, subtraction and
scalar multiplication are single

instructions.

instructions yield the
inverse of one, and
matrices.

Also, single
determinant and the
the product of two,

IIl1. AN OVERVIEW

We have tried
of a new computer
feel it is more
language" — it

to give a short outline
language. We, however,
than "just another
represents another
philosophy of, another approach to,
problem solving. After all, it is only
the sequential design of the von Neumann-
type machines that has imposed upon the
computing community the presently
prevalent but often quite unnatural
computational methods. Even using these
conventional methods, AJ'PPL-Il (a) should
decrease the length of written programs
and (b) should simplify the writing,
debugging and understanding of programs.
(It has very powerful diagnostic
facilities.) There is, however, a
significant trend, as can be seen in the
referenced literature, to develop new
algoritlims and techniques that make use of
content addressability and parallel
processing, expose latent parallelism, and
introduce computational redundancy. We
hope AMPPL-II will enhance this trend.

We have had only limited programming

experience with the language. The
following, as yet incomplete, projects are
representative examples:

(1) a query system, which can be
continually updated, dealing with complex

kinship structures;

(2) simulation of a
self-adapting organism in a
environment;

(3) empirical proofs of conjectures
in computational linguistics;

(4) simulation of a
problem; and

(5) scheduling
and students.

learning and
hostile

demographical

classrooms, teachers

We have found that, although one must

pay a certain price in machine time and
available memory, the programming ease
achieved is quite significant. (The disk

resident system consists of roughly 8k

-268-

words for each SLIP and AMPPL-Il. Only
the needed subprograms are called into
core.) In the INTRODUCTION, we listed a
number of broad areas of application in
which AMPPL-Il should prove useful. Now
we can be more specific in terms of
problem characteristics. We expect to
save considerable programming effort in
using the language whenever

(i) data are to be addressed by a
combination of various sets of reference
properties,

(ii) data elements satisfying the
above reference properties are scattered
throughout the memory in a sparse and
random manner,

(iii) data elements
change their location
consequence of the
acting on them,

dynamically
in the memory as a
information processes

(iv) identical sequences of processes
manipulate on distinct, non-interacting
data elements,

(v) the ratio between concurrently
and serially executable processes s

reasonably high.

criteria of
occur to

These
applicability

language
some extent with

practically every complex programming
problem. The availability of a
conventional algebraic language with the

AMMPL-cum-SLIP package
more efficient.

renders programming

We intend to study in a later paper
the numerous issues involved in using
AMMPL-II in various fields. Here, we only
wish to point to the fact that the
proposed system, to an extent, is capable
of simulating two distinct kinds of
associative memory. In the exact
associative memory, the information
processes are performed on the basis of
finding the intersection of several

matching descriptors. Because of the non-

uniqueness of many associations and, also,
because retrieval requests may be
incomplete, there can be several
respondent pieces of information.
However, ill-formulated and imprecise
tasks cannot, in general, be solved, and

there is no logical "interpolation" or
"extrapolation".

On the other hand, in a non-exact
associative memory these restrictions do
riot apply. Associations connect
statistically related entities, too. The
measure of "nearness" is an important
concept. Various counting processes, the

criteria of search for the most and least

similar items (BITSIII and BITSLO) and
matching groups of bits (GRPOFM) represent
steps in this direction. Biological
systems, of course, incorporate both of

the above described associative memories.

REFERENCES

[IT Findler, N. V.,
which Simulates
Parallel Processing (Proc.
on Comp. Systems, Lyngby,

[2] Findler, N. V., Towards Making
Machines More Intelligent (Proc. Fifth
International Congress on Cybernetics |,
Namur, Belgium, 1967)

On a Computer Language

Associative Memory and
NATO Symposium

Denmark, 1967)

[3] Feldman, J. A., Aspects of Associative

Processing (M.I.T. Lincoln Laboratory
Technical Note 1965-13, April 196S)

[4] Rovner, P. D. and J. A. Feldman, An
Associative Processing System for
Conventional Digital Computers (ibid,
1967-19, April 1967)

[5] Rovner, P. D. and J. A. Feldman, The

LEAD Language and Data
IFIP Congress 68, preprints,
1968 A

Structure (Proc.
pp. C73-C77,

[6] Dodd, G. G., R. C.
Rossol, APL - Associative Programming
Language User's Manual (General Motors
Research Laboratories Publication GVWR 622,
July 1967)

Beach, and L.

[7] Hanlon, A. G., Content-Addressable and
Associative Memory Systems. A Survey
IEEL Trans, on EI. CorrL]p., EC-15, pp. 509-

21, 1966)

[8] Lehman, M., A Survey of Problems and
Preliminary Results Concerning Parallel
Processing and Parallel Processors (Proc.
IEEE, 54, pp. 1889-1901, 1966)

[9] Ewing, P. G. and
Associative Processor

P. M. Davies, An
(Proc. 1964 FJCC,

pp. 147-158, 1964; Spartan: Baltimore)
[10] Fuller, R. H. and J. M. Salzer,
Associative Processor Study (General

Precision, Inc. Peport; DDC No. AD-608427,
T95TH

[11] Fuller, R. 1l., J. C. Tu, and R. M.
Bird, A Woven Plated-Wire Associative
Memory (Proc. Nat. Aerospace Electronics
Convention 1965)

[12] McKeever, E. T., The Associative
Memory Structure (Proc. 1965 FJCC, pp.
371-388, 1965; Spartan: Baltimore)

[13] Slotnick, D. L. (Chairman), Special
Session on Parallel and Concurrent

Computer Systems (Proc. ITIP Congress 65,

pp. 319-322, 1965; Spartan: Baltimore)
[14] Chu, vy., A Destructive Readout
Associative Memory (IEEE Trans. on EI.

Comp., EC-14, pp. 600-605, 1965)

-269-

[15] Hasbrouck, B., N. s. Prywes, D.
Lefkovitz, and N. Kornfield, Associative
Memory Computer System - Description and
Selected Naval Applications (Computer
Control and Command Co. Report No. 25-
101-11, 1955)

[16] Fuller, R. H., R. M. Bird, and R. M.
Worthy, Study of Associative Memory
Techniques (General Precision, Inc.
Report; DDC No. AD-6!'H51£, 1955)

[17] Dugan, J. A., R. S. Green, J. Minker,
and W. E. Shindle, A Study of the Utility
of Associative Memory Processors (Proc.
ACM Nat. Meeting, pp. 347-360, 1966;
Thompson: Washington)

[18] Prywes, LI. S., Man-Computer Problem
Solving with Multilist (Proc. IKEK, 54,
pp. 1788-1801, 1966)

[19] Knapp, M. A., R. H. Fuller, R. M.
Bird, J. L. Cass, and J. M. Salzer,
Papers presented at the ONRRADC Seminar
on Associative Processing (Mimeographed
Proceedings, Washington, 1967)

[20] Stone, H. S., Associative Processing
for General Purpose Computers through the
Use of Modified Memories (Proc. 1968 FJCC,
pp. 949-955, 1968; Thompson: Washington)

[21] Weizenbaum, J. Symmetric List
Processor (Comm. ACM, 6, pp. 524-544,
1963) nn

[22] Findler N. v., User's Manual for the
Associative Memory, Parallel Processing
Language, AMPPL-I in press; SUNYB
Computing Center Press)

-270-

