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Abstract

Reversing actions is the following problem: After
executing a sequence of actions, which sequence of
actions brings the agent back to the state just before
this execution (an action reversal). Notably, this
problem is different from a vanilla planning prob-
lem since the state we have to get back to is in gen-
eral unknown. It emerges, for example, if an agent
needs to find out which action sequences are un-
doable, and which ones are committed choices. It
has applications related to plan execution and mon-
itoring in nondeterministic domains, such as recov-
ering from a failed execution by partially undoing
the plan, dynamically switching from one executed
plan to another, or restarting plans. We formal-
ize action reversal in a logic-based action frame-
work and characterize its computational complex-
ity. Since unsurprisingly, the problem is intractable
in general, we present a knowledge compilation
approach that constructs offline a reverse plan li-
brary for efficient (in some cases, linear time) on-
line computation of action reversals. Our results
for the generic framework can be easily applied for
expressive action languages such as C+ or K.

1 Introduction

Reasoning about actions is an important area within knowl-
edge representation and reasoning. Several logic-based lan-
guages for representing actions have been proposed (see
e.g., [Gelfond and Lifschitz, 1998; Giunchiglia et al., 2004;
Son and Baral, 2001; Eiter et al., 2004]), and various rea-
soning problems about actions have been considered. The
most prominent among them are temporal projection (infer-
ence about the state after a sequence of actions occurred),
reasoning about the initial state after a sequence of actions
occurred, and plan generation (generate a sequence of actions
which takes the agent from an initial state to a goal state).
We study another reasoning problem about actions, namely
the problem of undoing the effects of an execution of an
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action sequence, by executing other actions. For exam-
ple, after doing the action go(home, office), the action
go(office, home) may reverse its effects and bring the agent
back to her previous state. If this holds regardless of the state
in which the agent was before doing go(home, office) and
afterwards, then go(office, home) is called a reverse action
for go(home, office). If, more generally, a sequence of ac-
tions R = By, ..., By, is guaranteed to bring the agent back
to the state before executing a sequence AS = Aj, ..., B,,
then R is called a reverse plan for AS. For example, R =
go(office, pub), go(pub, home) may be a reverse plan for
AS = go(home, bus_stop), go(bus_stop, office).

Undo actions are well-studied in the area of databases,
where they are a standard method for error recovery. In
a more general context of plan execution and recovery,
[Hayashi er al., 2002; 2004] use undo actions for execution of
plans by mobile agents in a dynamic environment. However,
the undo actions (one for each action) need to be specified
(manually) by the user. It therefore is desirable to have tools
which automatically generate undo actions, or more gener-
ally, reverse plans. This raises the following questions: given
an action domain and an action A, does there exist a reverse
action for A? More generally, given a sequence of actions
AS, does there exist a reverse plan for AS? If so, how can a
reverse action or plan be efficiently computed? From a com-
putational point of view, can reverse actions or plans be fruit-
fully exploited for efficient backtracking in action execution?

Backtracking may be considered for various reasons, like
to restart a plan (e.g., when the execution of the plan fails due
to some undesired effects of an action in a nondeterministic
environment), or to switch from the current plan to one which
is better (or safer) in the light of new information. When
the current state and the state we want to backtrack to are
known, then the problem amounts to a vanilla planning prob-
lem, which is intractable in general. However, the problem is
different if the backtrack state is unknown.

Motivated by these questions, we study computational as-
pects of action reversals. The main contributions of this paper
are as follows.

e We formally define the notions of a reverse action and
a reverse plan for actions. Rather than to commit to a
particular action language capable of modelling nondeter-
ministic effects, such as C+ [Giunchiglia et al., 2004] or
K [Eiter et al., 2004], we use here a generic transition-based
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framework for representing actions as in [Rintanen, 1999;
Turner, 20021, using propositional logic as a specification lan-
guage. Besides nondeterminism, it also accommodates con-
current actions and dynamic worlds. We extend the defini-
tions to conditional reversals, considering also partial knowl-
edge about the current state and the state before the execution.

e We thoroughly analyze the complexity of action reversals,
and characterize the complexity of recognizing and deciding
existence of reverse actions and plans, both for plain as well
as for conditional reversals.

e Unsurprisingly, action reversal is intractable in general.
For monitoring applications, we therefore present a knowl-
edge compilation method. It constructs offline a reverse plan
library from which reversals can be online computed in poly-
nomial (often, linear) time for important classes of instances.

Our results shed light on the complexity of action rever-
sals, and can be easily customized to particular action lan-
guages like C+ or K. Our algorithms for reverse plan assem-
bly suggest action reversal as a complementary method for
efficient backtracking (if no reverse plan exists, choose some
other method). For further in-depth material and proofs for
all results of this paper, we refer to [Eiter ef al., 2006].

2 Action Representation Framework

Following [Turner, 2002], let A be a set of action symbols and
let F be a disjoint set of fluent symbols, which are viewed as
propositional atoms. The set of states of an action domain is
encoded by the models of a propositional formula state(F)
over F. Let act(F, A, F') be a formula over F U A U F’,
where 7/ = {f' | f € F}. Then

tr(F, A, F') = state(F) A act(F, A, F') A state(F') (1)

encodes the set of transitions that corresponds to its models.
That is, in a transition, the start state corresponds to an as-
signment S to F ,! the (concurrent) action execution (or oc-
currence) to an assignment A to .4, and the end state to an
assignment S’ to F'.

Example 1 [Giunchiglia er al, 2004] Putting a
puppy into water makes the puppy wet, and drying
a puppy with a towel makes it dry. With the flu-

ents F = {inWater,wet}, and the action symbols
A= {putIntoWater, dryWithTowel}, the states can be
described by the formula state(F) = inWater DO wet.
Since there are three assignments to F satisfying state(F)
({inWater, wet}, {—inWater, wet}, {—inWater, ~wet})
there are three states: {inWater, wet}, {wet},{}. The
action occurrences can be defined through

act(F, A, F') =
(inWater' = inWater V putIntoWater) N
(wet’ = (wet A ~dryWithTowel) V putIntoW ater) A
(dryWithTowel > (—inWater A —putInto Water))

By the last line, dryWithTowel is executable if inWater
is false, but not concurrently with putintoWater. For ex-
ample, the assignment {—inWater, wet, dryWithTowel,

!“Assignment to S” means an assignment of truth values to the
symbols in S.

—putlntoWater, —inWater', ~wet'} satisfies tr(F, A, F');
therefore, it describes a transition from the state S =
{wet} to the state S’ = {} by executing the action A =
{dryWithTowel}. O

The meaning of a domain description can be represented
by a transition diagram, which is a directed labelled graph
whose nodes are the states and whose edges correspond to
action occurrences. A trajectory of length n is an alter-
nating sequence Sy, Ag, S1, ..., Sn—1, An—1, Spof states .S;
and action occurrences A;, such that Sy Ag S1 i1>, ceey
Sn-1 Ang Sy, is a labelled path in the graph. The trajectory
can be obtained from a corresponding model of the formula
tro(F,A) = /\;:01 tr(Ft, A¢, Fr41) where each F; (resp.,
each A;) results by adding time stamp i to each f € F (resp.,
each a € A).

An action sequence of length n is a sequence AS = (Ao,

..y Apn—1), where each 4; (0 < i < n) is a (concurrent)
action occurrence. We use |AS| to denote the length of A.
Note that in general, | AS| is different from the total number
of single action occurrences in AS.

In what follows, 7 = 7' denotes A\ f = f'.

3 Execution Reversals

After an agent executes an sequence (Ao, . .., A;), it may be
sometimes desirable that the effects of the whole or part of
the action sequence be undone, such that the agent is back in
the state S, j < ¢, which she had reached after executing the
actions Ay, ..., Aj_1.

An action can be undone by executing one of its “reverse
actions” or by executing a “reverse plan”. We define a re-
verse of an action below relative to a given action description.

Definition 1 An action A’ is a reverse action for A, if, for all
F and F', the formula revAct(F,F'; A, A"), defined as

tr(F,A,F') D
(tr(F, A F) ANF" (ir(F, A, F') D F=F"))

is a tautology (i.e., VFNF' revAct(F,F'; A, A’) holds).

The formula above expresses the following condition about
actions A and A’. Take any two states .S, S’ (described by the
assignments to fluents in F and F’ respectively) such that
executing A at S leads to S’. Then executing A’ at state S’
always leads to S.

Many of the benchmarks used in planning are from the
transportation domain (logistics, blocks world, grid, etc.).
E.g., moving from x to y is the reverse action of moving from
y to x, putting down an object is the reverse of picking it up.

Definition 2 A reverse plan for an action A is a sequence
(AG, ..., AL _1), m>0, of actions such that, for all F and

y4im—1
F', the following formula is true:

revPlan(F,F'; A, (A}, ..., AL, _4]) =
tr(F, A, F) D
v F A F(Fo=F D
(A ar(FL A D or(Fyy Ay FL)) A
(tr (F, A') D Frp = .7-'))).
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The formula above expresses the following condition about
an action A and an action sequence (Aj(,..., A" ;). Take
any two states S,S’ (described by the assignments to flu-
ents in F resp. F') such that executing A at S leads to S’.
Then the action sequence (Aj,..., Al ;) is executable at
state S’, and it always leads to S. The executability condi-
tion of (Af, ..., Al _,) is described above by the formula on
the second line. Note that revPlan(F, F'; A, [Ap]) is equiva-
lent to revAct(F,F'; A, Aj). For instance, a reverse plan for
booking online a room may be first calling the hotel in which
the room is reserved, and then cancelling the reservation.

We can further generalize the notion of reversing by con-
sidering action sequences, rather than actions, to be reversed.
There are two motivations for this generalization: It might
not always be possible to find reverse plans for single actions,
but only for sequences of actions. Also, a reverse plan for an
action sequence might be shorter than a reverse plan obtained
by concatenating reverse plans for subsequences.

Definition 3 A sequence (Aj),..., Al,_1) (m > 0) of ac-
tions is a reverse plan for an action sequence (Ao, . .., Ax_1)
(k > 0), if, for all F and F’, the following formula is true:

multiRev(F, F'; [Ao, . .., Ag—1], [Ah, - - Al 1)) =
B Fi(F = Fontre(F,A) ANF' = F) D
o (P
ot (e (F A D ar(F, Ay Fl))
Atrm (F',A) D Fl, = .7-')).

The formula above is very similar to revPlan(F, F'; A, [Ao,
., Arm—1]). The only difference is that, in the premise of the
formula, a trajectory is considered instead of a single tran-
sition. Note that multiRev(F,F; [Ao] [Af, ... AL s
equivalent to revPlan(F, F'; Ao, [Ap, - .-, ALD).

So far, a reverse plan has been deﬁned for an action se-
quence at any state reachable by that sequence. However,
at some such states, an action sequence may not admit any
reverse plan. That is, an action sequence may have a re-
verse plan under some conditions, that do not necessarily hold
at every reachable state. Furthermore, if some information
about the state which we want to reach by reversing actions
is available, e.g., values of some fluents obtained by sens-
ing, then a reverse plan might be possible depending on this
information. To make execution reversals applicable in such
situations, we generalize reverse plans to “conditional reverse
plans” as follows.

Definition 4 A sequence (Aj,..., AL, 1) (m > 0) of
actions is a ¢;1-reverse plan for an action sequence
(Ao, ..., Ak—1) (k > 0) if, for any F and F', the formula

U(F)NG(F') D
multiRev(F, F'; [Ao, - .., Ak—1], [Ab, - - s Al _1])

is true, where ¢(F") is over F' and and (F) over F.

For the case where (F) = T, we simply write ¢-reverse
plan for ¢; v-reverse plan. For instance, a conditional reverse
plan for booking a room may be first calling the hotel in which
the room is reserved, and then cancelling the reservation, with
the condition that another room is available at another hotel.

A question which comes up naturally is whether it is possi-
ble to formulate conditions, which are necessary or sufficient
for the existence of a reverse action for a given action. In the
following, we briefly discuss two conditions, of which one is
necessary, while the other one is sufficient.

Let us first focus on the necessary condition. Imagine the
following situation: The action A, which is to be reversed,
results in the same state S when executed in two different
states S’ and S”, i.e., r(S’, A, S) and 1 (S”, A, S) both hold

It is then impossible to find a reverse plan (A, ..., AL, 1)
for A. If we could, then if some Sp,...,Sn ex1sted such
that 7r,,(S, A’), then both S,,, = S’ and Sm = 5" would

hold, which is impossible, as we assumed that S” = S”. This
necessary condition can be stated more generally as follows:

Proposition 1 If a ¢;1)-reverse plan for A = (A, ...,
Ap_1) exists, then, for every two sequences S = Sy, ..., S,
and 8" = S, ..., Sl of states such that Sy # S, tr, (S, A),
trn (87, A), ¢(Sn), #(SL), ¥(So), and ¥(S}) hold, it holds
that S, # S).

We have found also a sufficient condition, motivated by the
following property of functions: A function f is involutory iff
f(f(x)) = z for each x in the domain of f. We say that an
action sequence Ay, . . ., A1 is (1-)involutory, if, for every
state S (satisfying 1)), the following hold:

e for every sequence S = Sp,...,5, of states such
that tr,,, (S, A) holds, there exist a sequence S,, =
S4y -+, Sl = S of states such that tr,,, (S’, A) holds;

e for every two sequences S = Sp,..., S, and S,
S4y - -, S), of states such that tr,, (S, A) A trp,(S’, A)
holds, it holds that S, = S.

Therefore, an action is involutory, if executing the action
twice in any state, where the action is executable, always re-
sults in the starting state. An example of an involutory action
is a toggle action: If a simple light switch is toggled twice, it
will always be in the same state as before. Then a sufficient
condition can be stated as follows:

Proposition 2 A i-involutory action sequence AS is always
Tsap-reversible, and a T ;1)-reverse plan is AS itself.

4 Complexity Results

We study the complexity of the following problems related to
the computation of execution reversals with respect to a given
action domain description:

(P1) for two given action sequences AS and R, and given
formulas ¢ and 1 over fluent symbols, recognizing whether
R is a ¢; y-reverse plan for AS;

(P2) for a given action sequence AS, deciding whether
there exist an action sequence R of a polynomially bounded
length, and formulas ¢ and ) over fluent symbols, such that R
is a ¢;1p-reverse plan for AS, and that ¢(.S”) holds for some
state S’ reached by AS from some state S such that ¢(.5)
holds;

(P3) for a given action sequence AS and formulas ¢ and 1)
over fluent symbols, deciding whether there exists an action
sequence R of polynomially bounded length such that R is a
¢; 1-reverse plan for AS.
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Problem | |[R|=1| |[R|=2 | |R| >2

(P1) coNP JNES JHES
(P2) 4 =P P
(P3) =P A P

Table 1: Complexities of (P1)—(P3), in terms of completeness

For our discussion of the computational complexities of
these problems, recall the following sequence of classes from
the polynomial hierarchy: First, ¥ = II, = P; and for all
k> 1,50 = NP¥-1 and II? = coNPZ-1. Each complex-
ity class at each level k£ (k > 1) of the hierarchy, includes all
complexity classes at lower levels. For further background on
complexity, we refer the reader to [Papadimitriou, 1994].

The complexity results for problems (P1)—(P3) are summa-
rized in Table 1. According to these results, checking whether
an action sequence is a ¢; ¥-reverse plan for another action
sequence (i.e., (P1)) is easier than finding a ¢; v -reverse plan
for an action sequence (i.e., (P2) and (P3)). Finding a ¢; -
reverse plan, where ¢ and 1) are given is harder than finding a
@; 1p-reverse plan for arbitrary ¢ and 1) for |R| = 2, but is of
the same complexity in all other cases. These problems get
more difficult when the length of R increases: Problems (P1)
and (P3) get more difficult when | R| > 2, while problem (P2)
gets more difficult when |R| > 2.

Intuitively, the X5-completeness of (P2) and (P3) is due to
the following intermingled sources of complexity:

(i) the exponentially many action sequences R of a polyno-
mially-bounded length and, in case of (P2), the exponentially
many formulas ¢ and ) which need to be considered,

(ii) the test that for all states .S and S’ such that ¢(S”) and
¥ (S) hold and S’ is reached from S after execution of AS,
every execution of R which starts in S’ ends in .S, and (iii)
the test that each partial execution of I? starting in some state
S’ as in (ii) can be continued with the next action, i.e., the
execution is not “stuck.”

Membership of problem (P1) in IT} is straightforward from
Definitions 3 and 4. The ¢;y-reverse plan property is easily
rewritten to a prefix quantified Boolean formula (QBF) with
V3 pattern; evaluating such a formula is well-known to be
in II5. Problem (P3) is thus in X%, since a ¢;i)-reverse plan
can first be guessed and then checked with a I oracle. In
problem (P2), ¢ and 1) are w.l.o.g. conjunctions of literals
and can be guessed along with the plan; the extra condition is
checkable with an NP oracle. Hardness is shown by suitable
reductions of evaluating QBFs.

When limiting the length of the reverse plan, some quan-
tifiers vanish. Informally, when |R| = 1, source (iii) disap-
pears, and similarly when |R| = 2 for (P2). The reason is
that if R = (A1) and if the current state S’ and the state S to
which we want to get back are known, then in the light of (ii)
we just need to check whether (S’, 45, S) is a valid transition,
which is polynomial. In the case of (P2) and R = (A1, As3),
we similarly just need to check after reaching S” from S’ by
executing A, whether (S”, As, S) is a valid transition. Com-
bined with other properties, this yields the X% upper bound.

In problems (P1) and (P3), we do not check that the for-
mulas ¢ and v are actually satisfied at some states S’ and

S, respectively, such that S’ is reached from S be execution
of AS (if no such states exist, the problem is trivially solved).
Checking this condition changes the complexity of (P1) when
|R| = 1 from coNP to D¥ (which is the “conjunction” of NP
and coNP); it does not change the complexity of (P3).

The complexity of problems can be lower under some con-
ditions. For example, if the reverse plan is short (i.e., has
a length bounded by a constant) and contains no parallel ac-
tions, and ¢, ¥ are formulas from a polynomial size set of for-
mulas, then only a polynomial number of candidates for ¢; -
reverse plans need to be checked for (P3). If the executability
of actions can be determined in polynomial time then (P1)
gets coNP-complete, and (P2) and (P3) get X5-complete.

Tractable cases. Also tractability can be gained in certain
cases. For example, if ¢ and ¢ are conjunctions of literals
which have a single model and the description of transitions
tr(F, A, F') is such that for given fluent values S (resp., S’)
and action occurrences A all fluent values S’ (resp., S) such
that tr (.5, A, S”) holds can be determined in polynomial time,
then finding a short ¢; 1)-reverse plan without parallel actions
for a short action sequence is feasible in polynomial time.
Thus in particular, reversal of the current state in the exe-
cution of an action sequence is possible in polynomial time
under these conditions.

S Computation of Reverse Plans

We compute reverse plans in the spirit of knowledge com-
pilation [Cadoli and Donini, 1997]: first we compute offline
reverse plans for some action sequences, and then use this
information online to construct a concrete reverse plan for a
given action sequence. In the offline phase, the computed
reverse plans for action sequences are collected in a library.
This library may not contain all possible reverse plans for all
action sequences (since exponentially many of them exist),
but a polynomial number of reverse plans for short action se-
quences (typically, of a few steps, and the reverse plans are
short themselves). From these short reverse plans, one might
efficiently compose online reverse plans for longer action se-
quences. For example, a reverse plan (Bs, By) for the action
sequence (A, As) can be composed of the two reverse ac-
tions B; and By that undo the effects of two actions A; and
A, respectively. As we show later, such a construction of
a reverse plan for an action sequence, from the reverse plan
library, can be done efficiently.
We define reverse plan items and libraries as follows.

Definition 5 A reverse plan item (RPI) is a tuple of the form
(AS, R, ¢,%) such that R is a ¢;-reverse plan for the
(nonempty) action sequence AS, where ¢ = ¢(F) and 1 =
W(F). An RPI is single-step, if |AS| = 1, i.e., AS consists of
a single action, and unconditional, if ¢ = i = true.

Definition 6 A reverse plan library L is a (finite) set of RPIs;
it is called single-step (resp., unconditional), if each RPI in it
is single-step (resp., unconditional).

There are various ways to compute RPIs to fill a reverse
plan library. Thanks to the logical framework and definitions
of reverse actions and plans, it is fairly straightforward to en-
code the problem of actually finding an RPI (AS, R, ¢, ) by
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Algorithm REVERSE(AS, I, L)

Input: Action sequence AS = (Ao, ..., Ai—1),7 >0,
sequence of formulas (percepts) IT = 7o (F), . . .
7;(F), reverse plan library L;

Output: Reverse plan RP for AS from Il and L or “no”

)

(01) foreachj=0,..,i—1do S[j] :=1;

(02) S[i):=T; /*trivially, S; is reversible to itself */
(03) RP :=REVERSEI1(%);

(04) if RP =“no” thenreturn “no”

(05) else return (RP,S[0])

Figure 1: Algorithm REVERSE to compute execution rever-
sals using a multi-step plan library.

solving QBFs, which has been proposed as a problem solving
method in the planning domain earlier, e.g., [Rintanen, 1999].
Another possibility is to reduce the problem to solving con-
formant planning problems defined relative to a modification
of D. Due to space reasons, we cannot give the details, and
instead focus on the more interesting problem of online re-
verse plan computation.

At runtime, when we do try to assemble a reverse plan,
we can think of three increasingly expressive scenarios, de-
pending on available state information in form of percepts m;
about some states S;, j = 0,1, ..., 1, of the execution:

1. There is no information about the current state, S;, and
past states Sy, S1, ..., S;—1. In this situation, only uncon-
ditional reversal plans, assembled from unconditional RPIs,
might be used.

2. (Partial) information about the current state S; is avail-
able, expressed by a formula 7r;(F) such that .S; is one of its
models, but no information about the past states. In this case,
we can also make use of conditional RPIs.

3. (Partial) information about the whole execution history
is available, formalized in terms of a sequence II = 7, ...,
m; of formulas over fluent symbols, such that the state .S; is
a model of 7;(F), foreach j = 0,1,...,:. Here, we might
exploit an even larger set of RPIs.

Clearly, scenario 3 generalizes the other ones; due to space
limitations, we thus focus here on this general scenario.

When we consider a multi-step plan library, i.e., not
necessarily a single-step plan library, finding a reverse plan
RP is trickier since RP may be assembled from L in many
different ways, and state conditions might exclude some
of them. For instance, take AS = (A,B,C), and L =
{(<A7 B>7 <D>7 ¢17T)7 (<C>7 <E>a b2, T)? (<A>’ <F>a ?3, T)?
((B,C),(G), ¢4, T)}. We can assemble the action sequence
(A, B,C) from (A, B) and (C), or from (A) and (B, C).
However, in the former case, ¢; might be false at the state
resulting from reversing C' by E, while, in the latter case, ¢3
might be true at the state resulting from reversing the action
sequence (B, C) by the action G. Thus, we need to consider
choices and constraints when building a reverse plan.

Fortunately, this is not a source of intractability, and a re-
verse plan from L can be found in polynomial time (if one
exists) by the algorithm REVERSE in Figure 1.

The auxiliary array S in the algorithms is used for keeping

Algorithm REVERSE1 (j)

Input: Integer j,0 < j < i (=|AS));

Output: Reverse plan RP for (Ao, ..., A4;_1)

from g, ..., 7w}, or “no” if none exists

(01) if 5 =0 then return e ; /* empty plan */
(02) for each (As, R,$,v) € Ls.t. As is a suffix

of (Ao,...,A;_1) and S[j—|Als] = L do
(03) if T D ¢ and Tj—|AS| 2 1) then
(04) begin
(05) S[j—|As|] :=T; /* reversing to S; possible */
(06) RP :=REVERSEI (j—|As|);
7) if RP # “no” thenreturn R+ RP
(08) end
(09) return “no”

Figure 2: Algorithm REVERSE], in the scope of REVERSE.

information to which states S; a reversal is established. The
main algorithm, REVERSE, initializes every S[j] (j < i) of S
to L since this is false initially. The recursive algorithm RE-
VERSE1 updates S whenever new knowledge is gained. For
instance, if the action A;_1 can be reversed at state .S;, then
we know that a reversal to .S;_; exists and modify S[i — 1] ac-
cordingly. Having this information available in S helps us to
find a reverse plan for the action sequence AS from L. Also,
it prevents us to explore the same search space over and over.

The algorithm REVERSE starts constructing a reverse plan
for an action sequence (Ao, . .., A;_1) by considering its suf-
fixes As. For efficiently determining all As in L, we can em-
ploy search structures such as a trie (or indexed trie) to repre-
sent L: consider each node of the trie labelled by an action, so
that the path from the root to the node would describe an ac-
tion sequence in reverse order. If the node describes an action
sequence As such that (As, R, ¢, ) is in L, then the node is
linked to a list of all RPIs of form (As, R’, ¢’,¢’) in L.

The next theorem bounds the running time of algorithm
REVERSE and states its correctness.

Theorem 3 (i) REVERSE(AS,II, L) has running time
O(|AS|(IL] - evalmax(A) + min(ASmax(L), |AS]))),
where evalmax(IL, L) bounds the time to evaluate m; O
¢ and 7; D for any 7; in 1l and formulas ¢, 1 in L;
and ASmax(L) = max{|As| | (4s, R, ¢,¢) € L}.

(ii) REVERSE(AS,II, L) correctly outputs, relative to L, a
reverse plan RP for AS and 11 or it determines that
such a reverse plan does not exist.

Corollary 4 REVERSE(AS,II, L) is polynomial, if all per-
cepts in II are DNF's and all formulas in L are k-term DNFs,
ie., V;?:l t;,; where k is bounded by a constant, or CNFs.

We remark that in an application setting, |AS| as well as
reverse plan R are expected to be small (bounded by a con-
stant) and percepts 7; and the formulas ¢, 1) consist of a few
literals. In this case, the running time is O(|L]) i.e., linear
in the size of the reverse plan library L. If, moreover, only
few of the entries in the reverse plan library match, then the
running time can be drastically shorter.
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6 Related Work

Our work on undoing the execution of an action sequence has
been partly motivated by [Hayashi ez al., 2002; 20041, where
the user has to provide the reversal information. Here, we
describe a method which allows for automatic discovery of
this knowledge. Moreover, we describe a flexible online as-
sembly of reverse plans from a reverse plan library. While
[Hayashi er al., 2002; 2004] just consider single actions and
associated reverse actions, this library may contain arbitrary
conditional action sequences, which the reverse plan algo-
rithm can flexibly use. Our work is further motivated by ap-
proaches to plan recovery in logic-based monitoring frame-
works [De Giacomo et al., 1998; Soutchanski, 1999; 2003;
Fichtner er al., 2003]. However, they either do not consider
action reversals or define it in a different way, usually com-
bined with goal reachability.

The idea of backtracking for recovery in execution mon-
itoring is similar in spirit to “reverse execution” in program
debugging [Zelkowitz, 1973; Agrawal et al., 19911, where all
actions are undone to reach a “stable” state. Our method is
more general, since no execution history is required a priori.
Undoing and redoing actions on the database is at the heart of
recovery in database management systems. However, also in
this context, a log of the action history is available, and so the
problem is significantly different.

The complexity of planning in different action languages
and the framework considered here has been studied e.g. in
[Baral et al., 2000; Liberatore, 1997; Turner, 2002; Rintanen,
1999; Eiter et al., 2004]. Conformant planning is deciding,
given an action domain and formulas init(F) and goal(F)
describing the initial state (not necessarily unique) and a
goal state, respectively, whether there exists some action se-
quence AS whose execution in every initial state makes goal
true. This problem is related to finding a reverse plan, and
has similar complexity for plans of polynomial length (3£-
completeness). However, the problem is different: In ac-
tion reversal, we lack a (known) goal to establish. More-
over, conformant planning is X%-complete already for plans
of length 1, and recognizing conformant plans of this length
is IT5-complete [Turner, 2002], differing from the results in
Table 1.

7 Conclusion

We formally defined undo actions and reverse plans for an ac-
tion sequence, in the logic-based framework for action repre-
sentation from [Turner, 2002]. As we have shown, determin-
ing an undo action or reverse plan for an action sequence is
intractable in general (more precisely, complete for the class
Y% respectively X% in the Polynomial Hierarchy). The in-
tractability is explained, on the one hand, by the intractability
of propositional logic underlying the framework, and, on the
other hand, by the intrinsic complexity of non-determinism;
nonetheless, tractability is gained under suitable restrictions.
To cope with intractability, we presented a knowledge compi-
lation approach by which undo actions and reverse plans can
be efficiently constructed (under suitable conditions, in lin-
ear time) from a reverse plan library. An implementation of

the compilation algorithms, including the generation of con-
ditional reverse plan libraries, is currently in progress.
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