
Zoltan Esik
University of Szeged, Hungary
Igor Walukiewicz
Bordeaux University, France

ETAPS 2003 April 5-13, Warsaw, Poland

FICS’03 - FIXED POINTS IN COMPUTER SCIENCE

EUROPEAN JOINT CONFERENCES
J- ON THEORY AND PRACTICE

OF SOFTWARE 2003

APRIL 5-13, WARSAW, POLAND

Fixed Points in Computer Science

Proceedings of an International Workshop

EDITORS:

ZOLTAN ESIK

IGOR WALUKIEWICZ

Warszawa, 2003

Druk i oprawa: Zakiad Graficzny UW, zam. 248/2003

Table of Contents

Andreas Abel, Ralph Matthes
Primitive Recursion for Rank-2 Inductive Types 1

André Arnold, Luigi Santocanale
On Ambiguous Classes in the #-calculus Hierarchy of Tree Languages ... 4

Vincent Danos, Josée Desharnais
A Fixpoint Logic for Labeled Markov Processes 14

Luis Dominguez
A Bisimilarity Logical Relation for the Object Calculus S 19

Neil Ghani, Tarmo Uustalu
Coproducts of Ideal Monads 32

Erich Grädel
Inflationary and Deflationary Fixed Points 37

Martin Grohe
Monadic Datalog on Trees 42

Claus Jurgensen
Monadic Fusion of Functional Programs 4

Eugenio Moggi, Amr Sabry
An Abstract Monadic Semantics for Value Recursion 64

Darnian Niwiuiski
Hierarchies in si-calculus 80

Tarrno Uustalu, Varmo Vene
An Alternative Characterization for Complete Iterativeness 81

Primitive Recursion for Rank-2 Inductive Types

Andreas Abel* and Ralph Matthes**

Department of Computer Science
University of Munich

Recently, higher-rank datatypes have drawn interest in the functional pro
grainming community [0ka99,0ka96,HinOl]. Rank-2 non-regular types, so-called
nested datatypes, have been investigated in the context of Haskell. To define total
functions which traverse nested datastructures, Bird et al. [B P99] have developed
generalized folds which implement an iteration scheme and are strong enough to
encode most of the known algorithms for nested datatypes. In this note, we in
vestigate a scheme to overcome some limitations of iteration which we expound
in the following.

Since the work of Böhm et al. [BB85] it is well-known that iteration for rank-
1 datatypes can be simulated in typed lambda-calculi. The easiest examples are
iterative definitions of addition and multiplication for Church numerals. The
iterative definition of the predecessor, however, is inefficient: It traverses the
whole numeral in order to remove one constructor. Surely, taking the predecessor
should run in constant time.

Primitive recursion is the combination of iteration and efficient predecessor.
A typical example for a prim. rec. algorithm is the natural definition of the
factorial function. It is common belief that prim. rec. cannot be reduced to it
eration in a computationally faithful manner. This is because no encoding of
natural numbers in the polymorphic lambda-calculus (System F) seems possible
which supports a constant-time predecessor operation (see Splawski and Urzy
czyn [SU99]). Mendler extended System F by a scheme of prim. rec. for rank-i
datatypes and proved strong normalization [Men87]. Mendler’s formulation does
not follow the usual category-theoretic approach with initial recursive algebras
(see Geuvers [Geu92]).

For rank-2 datatypes there are also examples of functions which can most
naturally be implemented with prim. rec. One is redecoration for triangular ma-

ti-ices which is presented below. These examples are not instances of generalized
folds a Ia Bird et al., which remain within the realm of iteration but hardwire
Kan extensions into the recursion scheme. Rank-2 prim. rec., which we propose
in this work, seeks to extend rank-2 iteration in the same way that prim. rec.
extends rank-i iteration. We achieve this by lifting Mendler’s scheme of prim.
rec. to rank 2. The decision for Mendler-style and against the traditional way
roots in the following observation: Experiments with formulations according to
the traditional style showed unnecessary but unavoidable traversals of the whole
data structures in our examples. Mendler’s style, however, yielded precisely the

The first author is supported by the GraduiertenkoUeg “Logik in der Informatik” of
the Deutsche Forschungsgemeinschaft.
Both authors acknowledge financial support by ETAPS 2003.

desired efficient reduction behavior. This was crucial since the only reason to
incorporate prim. rec. is operational efficiency as opposed to denotational ex
pressiveness.

We work within the framework System F” of higher-order parametric poly
morphism formulated in Curry-style, i.e., as a type assignment system for the
pure lambda-calculus. For type transformers X, Y : * —* * we abbreviate the
type of natural transformations VA. XA —* YA from X to Y by X C Y. Let
id = .Xx.x denote the identity function.

We extend the framework by a new constructor constant p and two term
constants in and MRec and a new reduction rule as follows.

Formation. p :((*—+*)--**-+*)-+*-+*
Introduction. in VF’—’. F (pF) ç pF
Elimination. MRec : VF(**) (VX. X C pF —

X ç C -, F X ç C) - pF ç C
Reduction. MRecs(int) —+ a id(MRecs)t

The type transfomer pF : * —+ * is the least fixed-point of the constructor
F : (* -÷ *) —, * — * and denotes a simultaneously defined family of types
of well-founded trees, their shape depending on F. For instance, using F =

),X),A. 1 + A x X A the well-known type of polymorphic lists is recovered. The
term in is the general constructor, which, in case of lists, codes together nil
and cons. The term MRec establishes a scheme of primitive recursion in the
style of Mendler. Typical for this style is the universally quantified constructor
variable X in the type of the step term a which ensures termination without any
positivity restrictions on F. During reduction, X is instantiated by pF, and the
first parameter, i: X C pF, by id. The presence of a transformation i from the
blank type X back into the fixed-point pF is what distinguishes Mendler-style
prim. rec. from Mendler-style iteration.

AEEE...E
AEE...E

AE...E

A

An example of a non-regular datatype is Tn A = (p TniF) A with TniF =

)XAA.A x (1 +X(E x A)), the type of triangular matrices over a given entry type
E but with type A on the diagonal. For these matrices, we define a redecoration
operation

redec : VAVB. Tn A — (Tn A -+ B) -4 Tn B.

The call redec t f replaces each diagonal element a oft with the result of applying

f to the sub-triangle whose upper-left corner is a. Redecoration is a natural
example for primitive recursion and is no instance of a generalized fold.

System F”, extended by Mendler-style primitive recursion, is still confluent
and strongly normalizing. A dual construction can be carried out to obtain
coinductive families with primitive corecursion.

Acknowledgement. We thank Tarmo Uustalu for communicating the example of
triangula matrices to us.

References

[8B85] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed A-
programs on term algebras. Theoretical Computer Science, 39:135—154, 1985.

[BP991 Richard Bird and Ross Paterson. Generalised folds for nested datatypes. For
mat Aspects of Computing, 11(2):200—222, 1999.

[Geu92] Herman Geuvers. Inductive and coinductive types with iteration and re
cursion. In Bengt Nordstrom, Kent Pettersson, and Gordon Plotkin, edi
tors, Proceedings of the ggg Workshop on 7jpes for Proofs and Programs,
Bistad, Sweden, June 199, pages 193—217, 1992. Electronically available via
ftp: I/ftp. cc. chaimers . se/pub/cs—reports/baastad.92/proc. dvi. Z.

[HinOlJ RaIf Hinze. Manufacturing datatypes. Journal of Functional Programming,
11(5):493—524, 2001.

[Men87] Nax P. Mendler. Recursive types and type constraints in second-order lambda
calculus. In Proceedings of the Second Annual IEEE Symposium on Logic in
Computer Science, Ithaca, N. Y., pages 30—36. IEEE Computer Society Press,
1987.

[0ka96j Chris Okasalci. Purely Functional Data Structures. PhD thesis, Carnegie
Mellon University, 1996.

[0ka99J Chris Okasaki. From Fast Exponentiation to Square Matrices: An Adventure
in Types. In International Conference on Functional Programming, pages 28—
35, September 1999.

[SU99] Zdzislaw Spiawski and Pawel Urzyczyn. Type fixpoints: Iteration vs. recursion.
SICPLAN Notices, 34(9):102—113, 1999. Proceedings of the 1999 International
Conference on Functional Programming (ICFP), Paris, France.

On ambiguous classes in the t-calcu1us hierarchy
of tree languages

A. Arnold and L. Santocanale

LaBRI, Université Bordeaux I and CNRS (UMR 5800)

Abstract. Rabin has proved that if both a set of trees and its complement
are Büchi definable in the monadic second order logic then these sets are
weakly definable. In terms of u-calculus, this theorem reads as 172 fl E2 =

comp(17i, Ei).

It is natural to ask whether the equality 11,. fl E,, = comp(17-i, E,,_1) still
holds for higher levels of the hierarchy. In this paper we prove that it is NOT
the case.
We also show that Rabin’s result can be generalized as follows, taking into
account that any Büchi definable set is recognized by a nondeterministic
Büchi automaton: If a language and its complement are recognized by non-
deterministic 17,, automata then they are in comp(17,,i, E,,.1).

1 Introduction

It has been proved by Rabin 1111 that if a tree language is both Büchi and co-Büchi
then it is weakly definable. In terms of p-calculus, a Büchi set is a set recognized by a
nondeterministic automaton in 172, while a weakly definable set is a set recognizable
by an alternating automaton in comp(171,E1) [10,9].

Since a set is in 172 if and only if its complement is in E2 and since every set
in 172 is a Büchi definable set [2,8,4], Rabin’s result can be stated as: 172 fl E2 =

comp(171, E1) [3].
Therefore a natural question is whether the equality I7,flEn = comp(17 , En_i)

still holds for n > 2.
In [5], this equality has been proved for the p-calculus over non-distributive

lattices. In this paper, we prove that it does not hold for the p-calculus of tree

languages (this implies that it does not hold for the modal p-calculus). The proof of
this result is quite similar to the proof of the strictness of the p-calculus hierarchy
[1,4] and uses the same diagonalization argument.

But then a new question arises: why this equality is true for n = 2? What is the
specific property of 112 (or E2) which makes the property to hold? Indeed 112 is the

only class (with 17 and Ei) which has the property that a term is equivalent to a
“disjunctive” term in the same class]4]. 1

Therefore another possible generalization of 112 fl E2 = comp(171,E1) i: if L
and its complement are recognized by nondeterministic 17,, automata, they are in

comp(l7,,_i, En—i). Indeed, we show a stronger separation result: If A and 13 are
two nondeterministic automata in TIn such that L(A) fl L(!3) = 0 then there is an

alternating automaton C in comp(lIn...i, E,,_1) such that L(A) c L(C) ç L(13).
We prove this result in case of (binary) tree automata. The same proof also works
for modal automata introduced in [7]. It combines a technique used in (5] with the

construction of an alternating automata of (9].

In the next section of the paper we introduce some definitions. The definition of

an automaton that we give is not the most general one, but every automaton can

“Disjunctivity” is a notion introduced in (71 to generalize the notion of nondeterminism.

be transformed into an equivalent one having this restricted form, without affecting
its position in the alternating depth hierarchy.

Section 3 contains the definition of a language which is in H fl E, and not in
comp(J1_i, E_1). The proofs of this section are not more difficult than the proof
of the strictness of the n-calculus hierarchy. Thus, they are only sketched.

Section 4 contains the proof of the separation theorem. This proof is more de
tailed and also self-contained, excepted for the proposition characterizing the emp
tyness of the intersection of two automata, which is also ahnost obvious. Then we
show how to extend this proof to the modal j-calculus.

2 Preliminary definitions

2.1 Tree automata

For simplicity, we consider only the case of binary trees. Let F be a set of binary
symbols, and recall that an F-tree is a mapping t from {1, r} to F.

An alternating tree automaton is a tuple A = (X, 4 p) where:

— X is a finite set of states (note that there are not initial states).
— For each x E X and each f E F, 1(x, is a positive boolean combination of

elements of X x {1, r}. By using the distibutivity laws and grouping together
pairs with the same direction, 1(z, f) can also be written as a set of rides,
where each rule r is a pair (X, Xi’) of subsets of X.

—
p is a mapping from X to N.

An automaton is nondeterministic if for each rule r the sets X and X’ are
singletons.

An automaton is in H (resp. E) if there is an even (reap. odd) integer m n—i
such that p(X) c{m—n+i,...,m}.

An automaton is in .r, = comp(17, E) if there is a preorder on X such that:

— for any x and f, for any rule r = (X, X’) E 1(x, f) and any x’ E X U X,,
x >-

— for any equivalence class X’ of X induced by (x is equivalent to x’ if x
and x’ x), there exists m n—i such thatp(X’) ç {m—n+ i,...,m) or
p(X’)c {m—n rn—i).

2.2 Tree languages

Let A be an automaton and t be a tree. We define the parity game G(A, t) as
follows.

— Eva’s positions are the pairs (x,u) with x E X and u E {1,r). The rank of
(x,u) is p(x).

— Adam’s positions are all the pairs (r, u) where r is a rule. The rank of an Adam’s
position is always 0.

— There is an Eva’s move from (x, u) to (r, u) if and only if r E Z1(x, t(u)).
— If r = (X’, X”) there is an Adam’s move from (r, u) to (x’, ul) for any x’ E X’

and to (x”,ur) for any x” E X”.

We say that t is recognized by A from state x if the position (x, e) is winning.
We denote by L(A) the set of trees recognized by A from x.

We say that a tree language is in H (reap. E, f’,) if there is an automaton A
in J7 (reap. E, F) and a state x such that L = L(A).

The following results can be proved using the notion of a dual automaton (see
[4]).

5

Proposition 1 L is in fin if and only if Z is in E.
L is in T, if and only ifL is in f’,.

It is also known that

Proposition 2 If L e f’, then L E ll+i fl En+i.

3 The inequality theorem

We are going to show:

Theorem 3 For any n > 2 there is a tree language in fin fl E, which is not in
rn-i.

3.1 Some tree languages

Let n> 2 and let A be the set of binary symbols {Cj, dj 1 n}.
Let Kn be the set of all trees over A such that on each branch the set of

symbols which occur infinitely often is included in {Cj, dill i n — l} or in
{Cj, d I 2 i n}. This set is in E2 since its complement K is in fi2, because the
condition that a tree has at least one branch belonging to a given regular w-language
is a Büchi condition.

Let W, be the (nondeterministic) automaton (in 11,, if n is even and in E
otherwise) whose set of states is {q1 I 1 i n} U {qi-}, where the rank of q is i
and the rank of q is 2, and whose transition function 1 is defined as follows:

— for any i, l(qT,cj) = 1(q-r,dj) = {(qT,qT)},

— foranyi andj, l(qj,cj) ={(qt,qi)} and 1(q,,d) = {(qi,qT),(qr,qi)}.

Let M be the (nondeterministic) automaton (in E if n is even and in fi,
otherwise) whose set of states is {q1 2 i n}U{q I 3 i n+ l}U{qT}, where
the rank of q1 and of q is i and the rank of q is 2, and whose transition function
Z is defined as follows:

— for any i,41(qT,cj) = (qT,di) = {(qT,qr)},

— for any i and any s qr 1(s,c) = {(s * i,s * i)}, and (s,d) =

{(s*i,qT), (qT,s*i)},

where $ * is defined as a function of s and i by the following table

1 i ••n—ln

q q q •.. qj q,—j q,

q3 q q qn—i q,

•q1_ q q q,,.—i q,

q q q1 q,

q q
...

q.1.1 q

q q “l+2 q1 q,

Let Wn Lqi(Wn) and Mn = Lq2(Mn). One of them is in fin and the other
one in En.

Proposition 4 Wn fl Kn = M fl K.

Proof A strategy a in the games G(W,,, t) and G(M,,, t) consists in selecting one
successor (left or right) at each node labelled by some d1. Let t, be the (partial)
tree obtained by cutting out the non-selected successors. With each branch b of t,,
we associate the infinite word b E {1,. .,n}” by substituting i for d or Cj. The
strategy a is winning if for each branch b of t,,

W,, : the largest number that occurs infinitely often in b is even,
M,, b is recognized by the parity word automaton whose transitions are given in

the previous table (with q as initial state).

It is easy to check that ifbis in {l,...,n}’({l,...,n—1}’’u{2,...,n}”’) then
these two conditions are equivalent. QED

An immediate consequence of this proposition is that W,, U R = M,, U
Since 7? € H2 c H,, fl E, we get

Proposition 5 W,, ui? = M,, UK,, E H,, fl E,, and Wn K,, €17,, n E,,.

3.2 The diagonal argument

Let us assume that fl K,, is in F,_1 C fi,,n E,,.
There is an automaton A such that W n K,, = L.(A), and for each -

equivalence class X’, p(X’) is included in (1 n — 1} or in {2 n}.
With each tree t over A,, and each state x of A we associate the tree C1 (t) over

A,, defined as follows. Let i be the rank of x, and let t = f(t’, t”) with f E A,,. Let
= {(X,X’) (X,X)}. Then

C1(t) d(cj(C’x.(t’),C,,,(t”)),

dj(cj(G”x.(t’) C,(t”))

d(c(C, (t’), C’,,,(t”)), c,(C, (t’), C’x,,(t”)))

where, for all t, i, and Y = {x1

G’(t) = cj(G1,(t), Cj (C12 (t), cj(Czk (t), CIk (t)) .
.

It is proved in (or in f1) that this mapping has the following property:

Proposition 6 t € L1(A) if and only ifC1(t) E W,,.
Each mapping C has a unique fixed point t1.

Moreover, because A is in f’,,_, we have the additional property:

Proposition 7 For any t and any x, C1(t) is in K,,.

It follows that t. E tfl K,, if and only t E W,,. Since t1 E K,,, €
W n K,, if and only t1. £ W,, a contradiction.

To extend this result to the modal p calculus, let us consider the set of all
directed graphs in which each vertex is labelled by a subset of A,, and each edge is
labelled by £ or r. Let us consider the modal automaton W having the same states
as W,, and whose rules are

= A((()qj A (r)qj)) A (d (((e)q A (r)q-r) V (()q-r A (r)qj))).

It is easy to see that the set of binary trees accepted by this automaton is
exactly W. More generally, with every tree automaton A one can associate a modal
automaton A’ in the same class, such that L(A) is exactly the set of binary trees
accepted by A’. In a similar way, a modal automaton K, which accepts the language
K is constructed. It is then proved that the modal automaton corresponding to the
logical formula -‘Wi A is equivalent both to a modal automaton in the class 17
and to a modal automaton in E. Observe that the equivalence that we consider —

and which is required for the argument — is now up to arbitrary transition systems,
and not only up to the binary complete trees.

Now, if W, fl K, is the set of trees accepted by a modal automaton B’ in
comp(17j, Efl_1) one can use the same diagonalisation technique: there exists C
such that for any t, C(t) E K and t E W, fl K, if and only if C(t) E W,.

4 The separation theorem

We say that a language L is in ndJ7 if there is a nondeterministic automaton A in
H, and a state x such that L = L,,,(A).

Although TI = ndJJ for n = 2 (2,4] this equality is no longer true for n > 2.
We are going to show:

Theorem 8 Let L and L’ be two disjoint tree languages over an alphabet F. If both
are in nd17 (with n 2) then there ezists K E I’,_j sack that L ç K ç L’.

We give the proof when the alphabet F has only binary symbols. The general
ization to any alphabet is straightforward.

4.1 Run of an automaton

Given a nondeterministic automaton A = (X, 4 p) and a tree t a run of A from
state son t is a mapping 6: {l,r} —‘ X such that 6(e) = sand for any u E {l,r},
(6(ul), O(ur)) E L1(6(u), t(u)).

Wesaythatarun6ontacceptstifforeveryb=did2...djE{l,r}”,
urn sup1 p(6(dj . . . d1)) is even.

A tree t belongs to L (A) if and only if there is a run 0 from x on t which
accepts t.

4.2 A game for deciding nonemptiness

Let A = (X, 4 p) and A’ = (Y, ‘, p’) be two nondeterministic automata over an
alphabet F of binary symbols.

Let us consider the (biparity) game C(A, A’) defined as follows.

— Eva’s position are all the triples (z,y,d) E Xx Y x {l,r}.
— Adam’s position are all the triples (r, r’, f) where r is a rule of A, r’ a rule of

B, and f E F.
— There is a move from (x,y,d) to (r,r’,f) if and only if r E 1(s,f) and r’ E

1’(y’f).
— If r = (s’ x”) and r’ = (y’, y”) then from (r, r’, f) there is a move to (s’, y’, I)

and a move to (x”, y”, r).

Because 1(s, f) and ‘(y, f) are never empty, all maximal plays in this game
are infinite. A play is winning for Eva if the sequence (z, yi, d1), (52, 112,d2),...,
(s, y,d1),... of Eva’s positions along this play is such that both lim sup p(x) and
lim sup p’(yj) are even.

The proof of the following result is quite easy and can be found in (6].

8

Proposition 9 L(A) flL5(A’) is not empty if and only if for some d the position
(x, y, d) is winning for Eva.

Note that the sets of plays from (x, y, 1) and (x, y, r) are the same (except, of course,
for the first position). Therefore one of these positions is winning if and only if the
other is.

By the previous proposition, for any two states x and y, L(A) fl L5(A’) = 0
if and only if the position (x, y, 1) in C(A, A’) is not winning for Eva. In this case
Adam has a winning (winning for him!) strategy with finite-memory H, i.e., in any
position (r, r’, f) he chooses either the left or the right direction.

This strategy yields a finite graph C whose nodes have the form (x, y, d, h) or
(r,r’,f,h). If (x,y,d,h) is a node of C then for any f E F, any r € (x,f), any
r’ E ‘(y, f), there is an h’ such that (r, r’, f, h’) is a successor of (x, y, d, h) in C.
If (r, r’, f, h’) is a node of C and if r = (xi, Zr), r’ = (y, Yr) then this node has a
unique successor (xd, y, d, h”) for some d E (I, r} and some h” E H. We denote
by succ(s, r, r’, f) the pair (s’, d’) where s’ is the unique successor of the successor
(r, r’, f, h’) of s and where d’ is the direction of s’.

Let S be the set of nodes of C of the form (x, y, d, h). For any s = (x, y, d, h) € S
we set lrx(s) = x, 7ry(s) = y, and IrD(s) = d.

Proposition 10 For any infinite path p in C, the projection i, 52 s,.. of p
on S is such that lim sup1 p(lrx(s1)) is odd or lim sup, p’(lry(sj)) is odd.

Moreover, let s = (x, y, d, h) be in 5, let t be any tree, 6 be any run of A from
x on t and 6’ be any run of A’ from y on t. These four data define a unique
path in C. We denote by b(t,s,6,6’) the projection s = 81,82 se,... on S of
this unique path. Then for any i, irX(s,) = 6(irp(si) . . .rD(s_1)) and lry(s,) =

IrD (s,

It follows that for any x and y, there exist d and h such that s = (x, y, d, h) is
in 5, if and only ifL1(A) fl L(A’) = 0.

4.3 The separation property

Let A and A’ be two nondeterministic automata in fl,,..1.Without loss of generality,
we may assume that there is an even m such that p(X) and p’(Y) are both included
in{m—n m}.

Let us consider the subgraph C of C(A, A’) induced by a winning strategy of
Adam, defined in the previous section Let us define the preorder on S by s s’
if and only if there is a path from s to s’. It is easy to see that s is equivalent to
s’ (with espect to the equivalence induced by the preorder) if and only if they
belongs to the same strongly connected component of C.

We define a new mapping p” S —, N as follows. Let C be a strongly connected
component in C, which contains at least one node of S. If C is trivial (it contains
only one s) then we set p”(s) = m — 1. If C is nontrivial there cannot be in C
an s and an s’ with p(lrx(s)) p’(Iry(s’)) = m. Therefore either p never has the
value m on irx(C) or p’ never has the value m on iry(C). In the first case we set
p”(s) = p(rx(s)). In the second case we set p”(s) = p’(lry(s)) + 1.

Proposition 11 Let s1, 52, . . , si,... be the projection on S of an infinite path in
C. Then
limsup1p(irx(sj) is even =. limsup,p”(s,) is even limsup,p’(7ry(s1))is odd

Proof Let k = limsup,p(irx(sj), k’ = limsup,p’(iry(sj), and k” = limsup, p”(s,)

Since from some n, the set {s, I i n} is included in a nontrivial strongly
connected component of C, either k” = k, or k” = k’ + 1. If k is even, then by

Proposition 10, k’ is odd, thus k” is always even. If k’ is even, then k is odd, thus
k” is always odd.

QED

We define two alternating automata C1 = (S, 4, p”) and C2 = (S, 4’, p”) by

— Z.1’’(s, I) VrE4(,rx(s),f) Ar’E’(lry(s)f) succ(s,r,r’, f).
— j(s, f) = Ar’E4’(y(3),f)VrE4(wx(s),f) suc.c(s, r, r’, f).

Proposition 12 C1 and C2 are in comp(17, Es).
For any s, L8(C1)ç L3(C2).

Proof Using the preorder on S, and the definition of p”, it is easy to see that C1
and C2 are in comp(17, E,).

Since the boolean formula

V A succ(s,r,r’,f)

rE4(,rx (s),f) r’E’(,ry (a)f)

logically implies

A V succ(s,r,r’f),
r’E’(,ry(s),f) rE(,rx(s)f)

we obviously have L3(Cj) ç L3(C2). QED

Note that if we exchange the roles of A and A’ in the above construction we get
two automata C and C. The dual automaton C2 of C2, which satisfies L.(C2) =

L3(C2), is the automaton (S, , p’4i) where p’4i(s) = p”(s) + I and

I.1’’(s, f) = V A succ(s, r, r’, f)
r’E&fry(s),f) rE(irx(s)f)

It is easy to see that C2 is equivalent to C. Similarly, C1 is equivalent to C.
Therefore, the following proposition achieves the proof of the Separation Theo

rem.

Proposition 13 For any s E S, Lirx(s)(A) ç L3(C1).

Proof If t E L,()(A) there exists an accepting runS from 7rx(s) on t. For any run

9’ from lry (s) let b(t, s, 9,9’) = Sj, . . . , By Proposition 10, limsup p(lrx (si))
is even, hence, by Proposition 11, limsup, p”(s,) is even. In the game G(C1,t), an
Eva’s strategy consists in selecting r E 1(irx(s),t(u)) at each node (s,u). If Eva
chooses the rule r that B uses at node u, then, by the previous remark, this strategy
is winning at (s c) Hence, t E L3(C1).

QED

4.4 The case of modal z-ca1cu1us

If instead of tree automata we consider modal automata, we get the same result

using a similar proof.
The modal automata we are considering are intended to accepts Kripke struc

tures over a set of local properties. Edges are not labelled: The case of labelled edges

10

can be treated in exactly the same way. One can assume without loss of generaliy
that each node u of a Kripke structure K has a unique label .\(u) taken from the
powerset F of local properties. Finally, instead of using the usual modalities () and
[J, we use the unique modality —i, introduced in [7], whose argument is a set, pos
sibly empty, of variables (for nondeterministic automata) or a set, possibly empty,
of boolean combinations of variables (for alternating automata) with the following
interpretation: a vertex v of a labelled graph satisfies —‘ E if for any successor v’ of
v there is an e E E such that v’ satisfies e, and for any e E E there is a successor
of v such that v’ satisfies e. It should be noted that the conjunction —4 EA —‘ E’ is
equivalent to the disjunction of the terms — {e A e’ (e, e’) R} for all R ç E x E’
such that the first and second projections of R are respectively E and E’.

Therefore, a nondeterministic modal automaton associates with each state x E X
and each symbol f € F a set 1(x, f) of rules, possibly empty, where each rule r is
—‘ X, where X,. is a subset of X.

The game C(A, A’) for deciding emptyness is defined as follows:

— In position (x, y) Eva chooses a symbol f, a rule r in (z, f) and a rule r’ in
1’(y, f) and moves to (,-, r’, f).

— In position (r, i-’, f) Eva chooses a relation R ç Xr X Yr’ such that its projections
are Xr and Yr’ and moves to R. Note that if X,. = Yr’ = 0 there exists only one
such relation, the empty one. If only one of these two sets is empty, there is no
such relation, therefore the position (T, r’, f) is loosing for Eva.

— In position R, Adam moves to (x’, y’) € R. If R is the empty relation, this
position is loosing for Adam.

Let C be the subgraph of C(A, A’) induced by a winning strategy of Adam.
For any s, any f, any r £ /1(irx(s),f), any r’ £ z’(iry(s),f), there exists in C a
unique successor (r, r’, f, h’) of s. Note that C does not contain any node (r, T’, f, h)
with X,. = Yr’ = 0 because this node has a unique successor which is a loosing
Adam’s position. Let succ(s, T, r’, f) be the set of successors of (r, T’, f, h’). This
set is empty if one of the two sets Xr or Yr’ is empty. Otherwise, this set has the
following property:

Proposition 14 Let R Xr X Yr’ be {(lrX(s’),lry(s’)) I S’ € succ(s,T,r’,f)}.
There exists x in X such that for any y in Yr’, (z,y) E R or there exists y in Yr
such that for any x in Xr, (x, y) e R.

Proof Assume that it is not true. Then the projections of the relation (X,. x Yr’) — R
are X,. and Yr’ Therefore succ(s, T, T’, f) must contain s’ such that (7rx (s’), lry (s’))
R, a contradiction. QED

Let us add to the set S two fresh elements T and I. For each node s of C and
for each node (r, r’, f, h) which is a successor of s, we define the modal expression
M(s,r,r’,f) as follows.

— If Xr and Yr’ are not empty and if succ(s, r, r’, f) satisfies the first condition
of Proposition 14 (for some x) then M(s, i, ,-‘, f) ()A{s’ E succ(s, ,-, r’, f)
7rx(s’) = x}.

— If Xr and Y,- are not empty and if succ(s, r, r’, f) satisfies the second condi
tion (for some y) then M(s,T,T’,f) is equal to the (dual) modal expression
U V{s’ E succ(s, r, T’, f) (iry(S’) = y}.

— If Xr = 0 then M(s, r, T’, f) =]j!.
— If Yr’ = 0 then M(s, T, ?, f) = T.

11

As in the case for trees, we define p” : S —, N. We define the alternating
automata C1 = (S’, ‘, p”) and C2 = (S’, 1’’, p”) in comp(TI, Es), where S’ =

S U {.L, T}, as follows.

— i. is a state which accepts nothing: its rank p”(.L) is any value and for any f,
‘(J f)=ç’(± f)=O.

— T is a state which accepts everything: its rank p”(T) is the even number m —2
and for any f, ‘(T, f) = 4’(T, f) =]T.

— Z(s, f) = VrEzi(irx(s),f) Ar’E’(,Ty(s)f) M(s, 7’ ,‘ f),
— /Y’(s, f) = Ar’E’(iry(s),f) Vr54(,rx(s),f) M(s, r, r’, f).

Note that in the above definition, a union over an empty set is equal to I and
an intersection over an emptyset is equal to T.

Here again, the dual of C2 is the automaton C obtained as C1 but exchanging
the role of A and A’. Hence, for proving the Separation Theorem, it is enough to
prove Proposition 13. Indeed Proposition 11 still holds. As to Proposition 10, we
have to substitute the notion of (winning) strategy of a nondeterrninistic modal
automaton A (or A’) on a Kripke structure K for the notion of (accepting) run on
a tree.

Let K be a Kripke structure. For any node u of K, we denote by u* the set of
successors of u, which is possibly empty. A (positional) strategy is a mapping
which associate with every pair (x, u) a rule r E 1(x,)(u)) (this implies that
1(x, (u)) is not empty) and with every pair (Xr, u) a relation in the set X,.
of all relations included in X,. x u* whose first and second projection are X,. and
us (this implies that X,. is empty if and only if us is empty).

For any (x,u), this strategy defines aset P,(x,u) of paths (x, u) = (x1,ui)(x2,u2)
(x3, U3) . . . such that its projection lrK(P,(x, u)) on K is the set of all maximal paths
in K starting in u. The strategy is winning if all infinite sequences in irx(Pa(x, u))
satisfy the parity condition with respect to p.

Let us assume that is a strategy for A winning at (irX (s), u). We construct a
strategy for Eva in the game G(C1,K) winning at (s,u).

Let us assume that Adam plays according to a given arbitrary strategy in the
game C(C1,K) and the play consistent with the two strategies has reached a position
(se, u,).

Eva selects r, in the nonempty set zlfrx (si),?1(u1)) and a relation R, E Xr ‘

us. If .‘(1ry (s,),)(u,)) = 0 then‘1’(s, .>(u1)) = T and Eva wins. Otherwise Adam
chooses T E 4’(iry(sj, A(u)). Next:

— If Xr is empty (and also us) then M(s1,T1,r,A(u)) = IJI and Eva wins,
since u1* is empty.

— If X,. is not empty and Yr’: is empty, then M(s, r1, r,)(u)) = (>T and Eva
wins, since u1* is not empty.

— If M(s1,T1,r,’,)(uj) = ()A{s’ E succ(s,r1,r’,)(uj)) I irx(s’) = x}, Eva
chooses ui E u* such that (x,uj÷l) E Rj and Adam chooses (note
that lrx(s1+1) = x).

— If M(s, r, r’, f) = 1] V{s’ E succ(s, T, T,)(u)) I Try(s’) = y}, Adam chooses
u.1. E u1* and Eva chooses such that (irx(s+i),u1÷i) e Rj.

By construction the play (s, u) = (si,u1), (32, U2),... satisfies

(lrx(sl),ul),(lrx(s2),u2),. . . E P,,(irx(s),u).

Thus, by Proposition 11, it is won by Eva.

References

1. A. Arnold. The ji-calculus alternation-depth hierarchy is strict on binary trees.
RAIRO- Theoretical Informatics and Applications, 33:329—339, 1999.

2. A. Arnold and D. Niwifiski. Fixed point characterization of Büchi automata on infinite
trees. J. Inf. Process. Cybern. ElK, 26:453—461, 1990.

3. A. Arnold and D. Niwixlski. Fixed point characterization of weak monadic logic defin
able sets of trees. In M. Nivat and A. Podelski, editors, Thee automata and Languages,
pages 159—188. Elaevier, 1992.

4. A. Arnold and D. Niwidaki. Rudiments of z-calculus. Number 146 in Studies in logic
and the foundations of mathematics. Elaevier, North-Holland, 2002.

5. A. Arnold and L. Santocanale. Ambiguous classes in the gaines z-calculua hierarchy.
In FOSSA CS 2003 (to appear).

6. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. Theoretical Computer Science, to appear, 2002.

7. D. Janin and I. Walujciewicz. Automata for the modal p-calculus and related results.
Lecture Notes in Computer Science, 969:552—562, 1995.

8. R. Kaivola. On modal mu-calculus and Buchi tree automata. Information Processing
Letters, 54:17—22, 1995.

9. 0. Kupferman and M. Y. Vardi. The weakness of aelI-complementation. Lecture Notes
in Computer Science, 1563:455—466, 1999.

10. D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak monadic
theory of trees and its complexity. Theoretical Computer Science, 97:233—244, 1992.

11. M. 0. Rabin. Weakly definable relations and special automata. In Y. Bar-Hillel,
editor, Mathematical Logic and Foundation of Set Theory, pages 1—23. North—Holland,
Amsterdam, 1990.

A Fixpoint Logic for
Labeled Markov Processes

Vincent Danos* Josée Desharnais
CNRS & Université Paris 7 Université Laval, Québec

March 18, 2003

We develop in this abstract a probabilistic fixpoint logic for Labeled
Markov Processes (LMPs). One reason for doing this comes from (2, 3].
There, it was shown that the LMP logic characterizing bisimulation can be
used to define in a natural way finite-state approximants of LMPs. An ex
tension of this logic with fixpoints such as the one we propose allows for
stronger notions of approximants. Steady properties, i.e. properties related
to infinite behaviours, can be obtained in finite approximations.

Our logic only deals with greatest fixpoints. In a probabilistic setting,
one has a the pending constraint that all logical terms denote measurable
sets. Since measurability is preserved by countable boolean operations, only
continuous or cocontinuous operators are meaningful. Least fixpoints are

trivial in our case (more about this below) so we’re left with greatest fixpoints.
As an illustration of the descriptive power of the logic, we provide an

explicit construction of the coarsest probabilistic simulation of a given finite
LMP by an arbitrary one. This construction is interesting in its own right.
Finally a continuous state space example is given.

An LMP can be described as a family of probabilities (p(s))SES indexed by
the state space 5, p(s)(A) representing the probability that the process will

jump from s to A a measurable subset of S. In some special circumstances

(when all the p(s) are mutually absolutely continuous, i.e. define the same

negligible events) the Radon-Nikodm theorem makes it possible to extend

the cr-algebra of events into a complete boolean algebra and therefore a logic

with both fixpoints and arbitrary monotone operators seems possible. We

might pursue this option in the future.

Corresponding author: Equipe PPS, Université Paris 7 Denis Diderot, Case 7014, 2

Place Jussieu 75251 PARIS Cedex 05, Vincent.Danos@pps.jussieu.fr

1 Preliminaries

Definition 1 (LMP) S = (S, E, h : L x S x —, [0,1]) is a Labelled
M.arkov Process (LMP) if (S, E) is a measurable space, for all a e L, A E E,
h(a, s, A) is E-measurable as a function of s and for all s E 5, h(a, s, A) is
a subprobability as a function of A.

Some particular cases: 1) when S is finite and E = 2’ we have the familiar
probabilistic automaton, 2) when h(a, s, A) doesn’t depend on s or on a we
have the familiar (sub)probability triple. An example of the latter situa
tion is ([0, 1], 13, Ii) with h(a, s)(B) = A(B) with A the Lebesgue measure on
Borelians.

Definition 2 (shifts) For a e L, r e [0, 1], one defines endomaps of E,
shifts and strict shifts as:

(a)r(A) = {s I h(a,s)(A) r} {a}(A) — {s I h(a,s)(A) > r}

Shifts are cocontinuous and strict shifts are continuous, but they have the
empty set as least fixpoint: {ajr(ø) = 0. Strict shifts are not co-continuous,
neither are shifts continuous.

As an example, consider again ([0, 1],B, h) as above:

{a}o(I (0, 1/n] = 0) = 0 C . {a}o((0, 1/n]) [0, 1]
I (a)((0, 1 — i/n]) = 0 C (a)i(I (0,1 — 1/n] = (0,11) = [0,1]

2 Fixpoint logic

Syntax. Let a countable set of variables x, y, etc. be given. Fixpoint terms
are given by the following grammar:

t:=xITItfltItUtI(a)rtl(t,...,t)Iirjtlt.’x.t

Examples of (closed) terms: vx.(a)5x, vx.((a).57r2x,(a).2irix). There is an
evident typing discipline and we will assume that all terms are well-typed
over a base type o. Types will be written as [ar’, urn]. Also, terms will be
considered up to the usual product equations.

Interpretation. Let Ccpo stand for the Cartesian category of w-cocontinuous
functions between w-cocomplete pointed partial orders.

For any LMP S — (S, E, h) we denote by C3 the full subcategory of
Ccpo generated by YD. Given a term t of type [jfl, jm] one defines inductively
t]I E C8[E11,Em]. All clauses are trivial, except:

frym.t(x11) = ,,ym.t]js(x, y))P(S,. .. , S).

The notation X, means that the sequence X, is decreasing in E (equipped
with the product ordering). We observe that the fixpoint used here is the
ambient greatest fixpoint of Ccpo which is a simple example of an iteration
operator (as defined in [1]) and is uniform with respect to costrict maps (as
defined in [4J).

Finite LMPs as terms. Given a subprobabilistic automaton A = (I, 2’, k)
with states I = {1, . . . , n}, we define t1(A) and t(A) both of type [cr’, cr11]:

ir (t1 (A)) = fl (x3)
ir(t(A)) = flJCI,aEL(2)k(a,i,J)(UjEJ x,)

By construction, for any S: t(A)3 ti(A)]}s (for pointwise ordering), be
cause there are more terms in the intersection defining ir(t(A)); and therefore
their respective fixpoints will be in the same order. Intermediate approxima
tions where J is varying in a subset of D make perfect sense.

3 Simulations

If 9 is a binary relation over S, and s E S, we write 9(s) for {t I (s, t) E R}.

Likewise if A C S, R(A) = USEA!P((S).

Definition 3 (probabilistic simulation) Let two LMPs S and 52 be given,
one says a relation !R S1 x S2 is a simulation of S1 by 52 when:

V(si, s2) E !R, a E L, A1 E I:
11(A1) E E2 = hi(a, s1,A1) h2(a, s2, !R(A1)).

The empty relation is a simulation, so the mere existence of a simulation is
not conclusive. What matters is if a given state Si E S1 is simulated by a
state 52 E S2, that is to say, if there is a simulation fl with (sj, s2) E R.

Proposition 4 For any LMP S and finite LMP A, there is a coarsest prob
abilistic simulation 6 (A, 5) ç I x S of A by S and it is given by:

(i,s) e 6(A,S) := s eir1vx.t(A)s.

The corresponding relation was defined with t1 in [2] and shown to yield the
coarsest non-deterministic simulation. Of course both relations will coincide
when for each a, A has at most one non-zero a transition from each state.
The difference only shows when there are correlations between transitions
from a same state as in the following example.

A simple example. Suppose L = {a} and let S = q0 —, q1 and A = q
q, q with all transitions having probability .5. In the non-deterministic
interpretation given by ti of type [v.3, o3] we have:

froti(A)]js(S, S, S) = (a).5(S) n (a).5(S) = {qo} n {q} = {qo}
vx.ti(A)s Iti(A)]Is(S, S, S) = ({qo}, S, S).

Now with the refined probabilistic interpretation of t:

fr0t(A)3(S,S, S) = (a).s(S) fl (a)5(S) fl (a)1.o(S U S) = 0,

frx.t(A)]js = (0, S, S).

Hence, by the proposition above, no state of S simulates q (in the sense
of definition 3). This can be seen directly: qj, in A has probability 1 to
do something, while no state in S has probability more than .5 of doing
something.

A continuous state example. Consider the continuous LMP, L {a, b},
ha(S, A) = sA(A) and hb(s, A) = (1 — s).X(A). Small s tend to be insensitive
to as and hypersensitive to bs and conversely. We can compute the shifts
on segments: (a)([x,y]) = [f(y — x), 1], (b)([z,y]) = [O,g(y — x)] with
f() = cr/c, and g() = 1 — f3/, and we see the set of (rational) segments
is stable by (rational) shifts. Combining a and b in the temporal property
gives:

T = [a,,, 1] (b)(a)a. . . T]] [0, 1
— /3n]

a —_A.
— 1—an n+1

—

The a,, sequence converges to a root of x2 + a — x(l + a
—

i3). If we set
a = 13 = 1/4—c, with e > 0, a,, converges to 1/2±/ when e is small enough
to keep the sequences a,, and /3,, within [0, 1]. So we get two fixpoints, and
the smallest gives the biggest segment:

vx.((a)(1r2x), (b)(irix)) = ([0, 1/2 + [1/2
—

1])

Observe the symmetry in the solution. Our fixpoint does find a pair of
state sets in the right hand side implementing the two-state subprobabilistic
automaton (associated to the term) given in the lefthand side.

References

[1] S. Bloom and Z. Esik. Iteration theories. EATCS Monographs on Theoretical
Computer Science, 1993.

2] Vincent Danos and Josée Desharnais. Labeled Markov processes: stronger and
faster approximations. Submitted, 2003.

[3] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating
continuous Markov processes. Information and Computation, 2003. To appear.
Available from http: //www. ift . ulaval. calj odesharnais.

[4] Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-
point operators. In Proceedings of the 15th Annual IEEE Symposium on Logic
in Computer Science (LICS 2000), pages 30—41. IEEE, June 2000.

A Bisimilarity Logical Relation
for the Object Calculus S

Luis Dominguez*
Departamento de Matematica, Instituto Superior Tecnico

Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
lald@math.ist.utl.pt

Abstract

In this paper I define a bisimilarity logical relation and prove it equal to
the axiomatic operational congruence of the primitive object calculus
S [1] of Abadi and cardelli, observing termination at every type.
The paper also summarizes essential theory of the Galois operators un
derlying the approach of Andrew Pitts adapted here. As in [3], I define
an open type indexed family of relators over closed term relations, in
terms of auxiliary relators returning closed value relations, and extend
them substitutively to logical relations between open terms.

1 Introduction

I have been developing a (co)inductive relational theory for reasoning, spec
ifying and verif’ing typed applicative sequential object based programs
“desugared” as terms of a calculus.

Among the many such foundational calculi in the literature, modelling
applicative and imperative object oriented programming languages, I pre
ferred those studied by Abadi and Cardelli in their book [1] for their better
understood type systems and meta theory. Abadi and Cardelli studied a
number of object calculi, with increasingly expressive and complex type sys
tems, namely: “first-order” (at most recursive types), “second-order” (with
type quantifiers) and “higher-order” calculi (with type operators). Due to
the shortcomings of the first-order calculi [1] and the syntactical and meta
theoretic complexity of the higher-order calculi and subtyping systems (for
example involving type conversion), I eventually concentrated on second-
order primitive object calculi. From these, quite expressive albeit with
heavier syntax and (sub)typing rules than standard typed lambda calculi,
I chose the largest SA [2j. This may be seen as a combination of two sub-
calculi: Sy and S. S extends the smallest subcalculus S with subtype

Thanks to Antonio Ravara for supervision, feedback and discussions on this subject.

bounded polymorphism. I call S the extension of S with call by value
functions. Abadi and Cardelli introduced S as the essence of applicative
typed object-based programming, and its extension Sy also for class-based
and polymorphic programming. The inclusions between such subcalculi of
S may be drawn as follows.

Sy C S,
U U

S C Scbv

Gordon defined an experimental similarity relation and proved by Howe’s
method it to be preadequate (observing termination at every type), sub
sumptive, compatible, substitutive and transitive. He added call by value
functions (obtaining S,.j,,, or S), so that experimental similarity equals not
only the calculus operational precongruence but also its contextual precon
gruence; instead of being finer grained than the latter.

Inspired by Gordon’s coincidence between the contextual precongruence
and the experimental similarity for S, I first solved the problem of find
ing a logical relation provably equal to the operational congruence for S.
Such type indexed family of relations constitutes a relational parametric
model of the calculus and gives further insight on the meta theory of SA.
This extensionality result expands the calculus theory in a richer relational
framework, allowing practical reasoning about term and stack relations to
prove behavioural properties, as illustrated by Pitts (41•

To prove the extensionality theorem, I adopt the approach of Andrew
Pitts, first explicit in [4] and [5] for call by name calculi, and tailored in
[3] for a call by value counterpart of PCF with let, record, polymorphic
and existential types. As in [3], I define an open type indexed family of
relators over closed term relations, in terms of auxiliary relators returning
closed value relations, and extend them substitutively to logical relations
between open terms. Subtyping and recursive object types are novel aspects
relatively to the referred work of Pitts, for which I had to adapt his method
and needed to introduce meta notions and notation, such as “bond”.

In order to reveal the method and essence of the extensionality proof in a
shorter and more clear way, this paper is confined to the simplest subcalculus
S of SA, which happens to keep most interesting proof cases. Despite its
few primitives it is Turing complete, as PCF could be encoded in it based
on function and fixpoint encodings in [1] which also shows how to regard
it as a kernel applicative typed object-based programming language. But
unlike for SA, it is not known if its bisimilarity is equal or contained in its
contextual congruence. If value and type substitution is representable by
contexts of S the encodings are probably too intrincate to be useful.

The contributions in this paper are:
(1) adaptation of Pitts’ approach, namely meta notions and notation, to

cope with the novel aspects of subtyping and primitive covariant self (recur
sive) object types;
(2) a synopsis of essential theory of the Galois operators underlying Pitts’

approach [4};
(3) definitions of value bisimilarity, and (term) bisimilarity, logical relations

which use maximum fixed points of non trivial typed relators, namely for
each object type constructor;
(4) proof that bisimilarity is equal to the operational congruence of S.

2 Notation

We use an isomorphic variant of S whose syntax is given by the following
grammar.

variance ‘t9 ::= o + —

type t u Ob(u)(jELj?9j t)

terme vle.lIer
valuev ::= zjo

object o ::= ob(u = t)(jELj cm3)
redefine frame r (1:=(u<:t,z : u)cm)

method m (z : u)e

top abbreviates Ob(u)() in this calculus with only object types.
The next grammar defines the syntax of some meta notation.

framef ::= .1r
frame stack s ::= fs

baseT ::= elr,u<:tIr,z:t
substitution o ::= C at/u I av/z

bond5 ::= eJ6,U/zI6,(E::)/u

r is the empty sequence. abbreviates tuple (t). Uppercase metavariables
(except), e.g. E, stand for relations, e.g. of term tuples ë, usually pairs.
Write rv V for the reverse of a binary value relation V. Write (ftv) fv for
the usual definition of the free (type) variables of a phrase. (dtv) dv stands
for the declared (type) variables of a substitution or a base.

Definition 2.1 (Base Formation) F Base

baseVoid baseAddVal baseAddTyp

Fr>t Type
e Base (F,z t) Base

Z dv
“ (F,u<:t) Base

U dtv F

Definition 2.2 (Type Formation [2]) r t Type

typeVar
(r,u<:t,r’) Base

r,u<:t,r’ u Type

typeObj Void
r Base

r Ob(u)() jpe
u g dtv F

typeObj
for all j E L

F,u<:top t, Type
t[u]

F> Ob(u)(,j,jY t) Type

Definition 2.3 (Subtyping) F> t<:t’

subtyVar
(F, u<:t, F’) Base

T,u<:t,F’> u<:t

subtyRefl
r> t Type
r t<:t

subtyTrans
F> t<:t’
r t’<:t”

F t<:t”

t Ob(u)(j,j9j : t3)
subtyObj Void

F>tType
ugdtvr

F > t<:Ob(u)()

s,J
Ob(u)j9j : t2) (i = 1,2)

subtyObj
F> t2 Type
for all j E L2

F,u.<:t1 >

F > t1<:t2
•L1 L2 0

Definition 2.4 (Subtyping under variances) F> t<:i9’ t’

subtylnv
F > t Type

r ot<: 0 t

subtyCovar
F> t<:t’

F>t<:+t’

subtyContrav
F> t’<t

E{o,—}

terrnVar
(F, z t, F’) Base

F, z t, r’ > z : t

subsurn
F>e:t
r t<:t’

F e : t’

t Ob(u)(L.ji9j tj)

terrnObj
for allj EL

F,z, : t > e[t/u] : tj[t/uJ

F > ob(u = t)(jeLj = c(z3 u)e) : t

s1J
t’ Ob(u)(jcLj9 t)
termlnvo

r> e:t
F>t<:t’ 1EL

r e.l t[t/uI E {o, +}

Definition 2.5 (Typing)

I I •0I.
= uiU)\L3u

.

termRedef
Tt e:t
r

leL
f’ c. e(l:=(u<:t, z : u)c(z’ : u)e’) t e {o, —)

We consider throughout only phrases and phrase relations well formed ac
cording to the rules for that phrase sort (e.g. subtyping rules for types, or
typing rules for terms). Stack formation s : t - t’ is easily defined from
typing as follows.

z t zs : t’
zfvs

F s t —b

Call F t a face when F t. Write E:: when E is a term relation between
tIm types in 1. Val, Tm, Sk are the sets of (well formed) resp. values, terms
and stacks. Eva1 abbreviates E fl (Vat2)

Definition 2.6 (Bond formation) novel notion with formation rules:

6:F
F i> t’ TypeF t Type

(6, /z): (F, z: t)
z dv 6

(6, (E /u): (F,u <: t’)
u dtv 6

We may separate any 6 : F in its relation substitution 6o as well as type and
value substitutions 6 for each i.

The operational semantics of S is given by the next closed relation -‘-f.

Definition 2.7 (Evaluation) e -‘--f v of closed term e to a value v is
derived by the next rules.

o ob(u = t)(jLj = c(z3 u)e)
evallnvo

eval Vat e o

v v ej[t/u,o/zjl V
IEL

e.1 -‘- v

OOb(U=t)(j5Lj=cm)

ob(u = t)(JEL\{j)j = cm3,
I = c(z’ : u)e’[o/z])

evalRedef
e -‘- o

el:=(u<:t’,z u)c(z’ u)e’) o’
I e L

Write for the set of evaluating terms e such that e , and 1 for noneval
uating terms e . Non evaluating well typed closed terms must perpetuate.
Abbreviate E2 Efl(2)and Et2 Efl(2)and Efl Efl(i x .i.[) and

Eft = En (x). Note that

Tm2 =2UJ2U(x.1,1.)U(.i,1.x) (1)

E = (2)

E is said adequate if its closed term restriction E6 c (2 U .1,2); and com
pletely adequate if also i2c E. E is said subsumptive if it is closed under
the subsumption rule. E is said substitutive if it is closed under the type
and the value substitutivity rules. (These rules appear in respective sections
below.) E is said compatible if it is closed under the compatibility rules of
[2].

Operational congruence is the face indexed family of largest ad
equate substitutive subsumptive congruence (ie compatible transitive sym
metric) binary term relations.

3 Pitts’ operators

S)ëE (2 uJJ.2). From
this and the evaluation definition one can prove the following.

Proposition 3.1 1. E2 S if ((rv --+) o E2o -...*) j S

2. ESiff(Eo-.)IS

3. EjSiff((rv -‘-.+)oEj)IS

4. EçE’S’_DSimpliesES

Define j E as the largest suitably typed stack relation S such that E S
and S as the largest suitably typed term relation E such that E S.

Proposition 3.2 1. fr2 Sk2 and Sk2 = (‘ft2)
2. (.1,1.2 U 2)

{‘} and {} = (JJ.2 U 112)

3. If X C X’ are both either term or stack relations then X DI X’

Call 12 E (I E) the Pitts’ closure of E; and similarly for stacks
I2SI(IS

A term relation E is said Pitts’ closed if E =j2 E which is tantamount
to E =12 E’ or to E = S. Similarly S is said Pitt& closed if S =12 S if
S =12 5’ if S =i: E.

Lemma 3.3 If E is Pitts’ closed then (oEo) = E

The backward inclusion (oEo) E holds trivially by reflexivity of
and monotonicity of o. The forward inclusion may be proved as in lemma
3.14 of [5].

V is said Pitts’ value closed when (12 V) = V. E is said value Pitts
closed when 12 Ed = E. From the lemma and previous propositions we
also have the following.

Corollary 3.4

1.

12 E 2 u
(0 vai o(rv .*) o E2o 0 uaL o(rv -‘))U

(* 0 va1 o(rv ..) o E*o)u

(oEo 0 vai o(rv -s-b))

2.t2V=t(_oVo).

3. E is value Pitts closed if is Pitts value closed.

4. V is Pitts value closed if 12 V is value Pitts closed.

5. If V is Pitts’ value closed then V = oVo va1).

6. If E is value Pitts’ closed then E (va1 oEvaio =vai).

4 Open bisimilarity from relators
dfLet t = Ob(u)(jEL3i9j: t) in

V(j E L+)(v.j) e Bt1(6,E/u) :: (tö)
3 E obi, E (t5)

V(j E Lt_)V(r : t -+ t’ iF)(vr6) El2 E
3 E obrt,or E:: (t6)

obt,6,r,u(E) (obij, E) fl (obrt,,r’ E) (tö)

The obr relator experiments with bisimilar instantiations (r61) of an open
redefinition frame r, thus with same outmost constructor; not just identical
closed frames (sr) as in (2].

Since evaluation is call-by-value as in [3], we need one relator for each
value constructor of the language.

Definition 4.1 (open type indexed relators) Assuming I’ . t and 6:
r, the open type indexed family of relators Vt and F3 over 6 are defined as
follows.

l36 I2 (Vt 6)
df

V 6 = (6o U)vai :: (6 u)

VOb(u)(jLji9j:tj) 6 V(X)obt,o,r, X :: (jOb(u)(jELj?Yj :t36)))

Notice the maximum fixed point for each object type constructor. Note that
6 :: (to1) and (V 6):: (t6).

Definition 4.2 (Bisimilar bond)

61r otT

i7 E (Bt 6) E ç (B OIt)
(6, iY/z) : (r, z : t) (6, (E :: t)/u) : (T, u

(6, €i/z) (r, z : t) (6, (E :: tD/u) (T, u

Lemma 4.3 If 6 j T and T t Type then (B 6)vai = (12 (Vt 6))vai Vt 6.

Definition 4.4 (Bisimilarity) V and B is the face indexed family Brt
of open term binary relations defined as follows:

V(61r) V(611’)
(v6) E V 6 (e6) e !3 6

€‘EVr,.t ëEBrt

Note that Vi-, = (13it)vat

5 Adequacy

Lemma 5.1 B is adequate.

Proof: Consider any ë E Bp t. Then ë E (Bp t)e if for every i we have
t and for all S T, e6 e E (B 6) = B e. Thus (Bp) = If

(ftv t) {} then B6 = {} which is trivially adequate. If t Type then by
definition 13 =12 V for some V :: (it). As V (e,e), that is (r,e) E V,
then by definition (12 V) I (e,e); so 13, e C (f2 u 2). D

6 Subsumptiveness

E is said subsumptive if it is closed under type subsumption.

ë E
r> t <:t’

ë E Er>’

Write (E :: tD <:: (E’ ::) if (1) t <: t for every i and (2) E :: and
(3) E’ :: and (4) E C E’.

Lemma 6.1 (Subsumption lemma) If T t <: t’ then V(6 r)(B 6::
t6) <:: (B,. 6:: t’6)

(1) Proved by induction on the subtyping derivation, as 6 r implies 6 : F
for every i. (2) and (3) hold by the definition of 13t 6. (4) follows by the
monotonicity of 12 from Vt 6 ç Vt, 6 which comes from (v obt,5j-’U) c
obt’,s,r,(i.’ This holds because t6 <:t’62 implies (obt,o,r,u X) c
(obt’,,c,r, X).

Proposition 6.2 B is subsumptive.

Proof: Goal: ë E Brt’. Assume (Hi) e e Br and (H2) F r> t <:t’. By
the subsumption lemma, the latter implies Y(6 I F)(B 6) C (Be’ 6). As
(Hi) stands for V(6 fl(e16) e B 6, then V(6 j F)(e16) E 13t’ 6 which is
nothing but the goal. 0

7 Substitutivity

A term relation E is said substitutive if E[ItU(E),/1 C E; that is when
closed under the next rules

ë E Eru<:t’,r’.ti’ ë é Er,,r’’
rt<:t’ 3eVr

(e(t/u1) e Et/u1r,ri1t,11,.t”fLJu] (ie[vi/z1) E E[V/z : t1p,r’ t’

Lemma 7.1 (Type substitution lemma) If (ö,(B 6 :: (t6j))/u,6’)
(F,u <:t’,F’) andT,u <: t’,F’’e2 : t” andFt <: t’ then E
Be” (6, B 6/u, 6’) ifi (e[t/uj (ö, 6)) e Btit,j (6,6’)

Provable by induction on the structure of term e.

Lemma 7.2 (Value substitution lemma) If F, z : t, F’ ej : t’ and
F v : t and 6 : F and 6’ : F’ then (ej[v/z1(6,6’)) = e
B’ (6,6’)

Provable by induction on the structure of term e.

Proposition 7.3 B is substitutive.

Proof:

Closure under type substitution Goal: (ei[t/u}) e BF,F![t/u]>tIl(t/u]. As

sume H ë E8r,u<:t’,r’,r’t” and H’ F t <: t’. From H’, the
subsumption lemma and given any 6 j F we have (B 6) c (13t’ 6).
Then, from H, ‘v’((6,B 6/u,6’) (F,u <: e
B’(6, L3 6/u, 6’). By the type substitution lemma, this is tantamount
to v((6, 6’) (F, F’[t/u]))(e[t/u](6, 6)) e B”1j,j(6, 6’) which is what
the goal stands for.

Closure under value substitution Goal: (ieivi/zl) E Br,pi’. Assume

0

dl — , df —H = e E Br,z:t,r’>’ and H = v E The latter means V(6
r)(v.161) E 13t 6. By this and H one has V((6, (v6)/z, 6’) (F, z
t, F’)) (e (6, v6/z, 6)) E B’ (6, 6’). This is equivalent by the value
substitution lemma to V(6, 6’) I (F, F’)(e[v/zj(6, 6)) E !3’(6,6’)
which is the definition of the goal.

8 Compatibility

A term relation is said compatible if it is closed under the next compatibility
rules.

t’ Ob(u)(jiji9’. : t”
.7 2sy ,(1:=(u<:t, z : u)cc(z : u)ej

compatRedef
ë E Br1,
F> t<:t’
e E13Fu<:t,z:u,z’:uct I é L

(er) E Bpct E {o, —}

Proof: I show the full backward proof tree just once for the easier case of
variable compatibility. In the remaining cases I only hint on non routine
proof aspects.

sy
t Ob(u)(jELj&9 : tj)

oj ob(u = t)(3Lj = c(z, : u)e)
cornpatQbj

V(j e L) (ej[t/u]) E

compatVar
(F, z : t, F’) Base
(z) E‘3F,z:t,F’t. z:t

t’ Ob(u)(jEj,j19 : t)

compatlnvo

(o) e

ë E Br,t
F>t<:t’ IEL

(e.I) E 13r.t;[t/uj i9 E {o,+}

Proposition 8.1 B is compatible.

variable Let H (F, z : t, F’) Base

1. (z) E Brz.tr’,t H H
v(6, /z, 6’) I (F, z : t, F’)(z[6, v/z, 6]) E !3t 6 H H
(z[v/z]) E 13t 6 -1 H, (6, v3/z, 6’) I (F, z t, F’)

e B 6 H H,6 I F,13 E B 6,6’ F’

invocation provable using the subsumption lemma and routine applica
tions of other previous lemmas.

object the hard aspect is to find a bisimulation relation 0 c obt,,r 0 such
that (o6) E 0.

redefinition key in the proof is a methodwise object bisimilarity relation
defined as follows.

t Ob(u)(jjt93 : t)
, df .

0: ob(u =t6j)(jELI = cm)

0 E t,o ¶4 V(j E L)(i m[t6/u}) E A(Z3 6Bt[t/J 6)

0

9 Transitivity and Symmetry

Note that adequacy is an equivalence and that the subsumption, compati
bility, type and value substitution rules preserve transitivity and symmetry.
Transitivity and symmetry are provable directly as hinted next.

9.1 Transitivity

Lemma 9.1 (Vt 6o) o (Vt 5) C V (6 o 6)
(B 6o)o(B 6) cB (6oo6)

Lemma 9.2 V(6 F)8(6’,6” F)60 = (6o6() A 6’ = 6 A 6 = 6’s’ A 6’2’ =

62

Proposition 9.3 B is transitive.

This may be proved from the preceeding lemmas.

9.2 Symmetry

Lemma 9.4 (rv 6’) I F whenever 6’ F

Lemma 9.5 rv(12 E) I2 (rv E)

Lemma 9.6 rv (V 6) = Vt(rv 6)

Lemma 9.7 B is symmetric.

This may be proved from the preceeding lemmas.

10 Operational congruence equals bisimilarity

Theorem 10.1 rt=Z3rDt

Proof:

Right to left inclusion (i-t2 Bj-) Bj-’ is adequate, subsumptive, sub
stitutive, compatible, transitive and symmetric, as proved above. FD
is by definition the family of largest relations with precisely such prop
erties. So the inclusion holds.

Left to right inclusion (rtc 13r>t) Assume any (e) Ert. Given
any 6 such that 6 r we want to prove (ej6) E B 6. Note that
(ei 6, e1 6) Et,s as this is reflexive since it is compatible by definition.
Also (e161,e162) e (Bt 6) which follows from 6 r by induction on the
structure ofe1.And (e162,e262) E2 by substitutivity of . Thus
(e6) e (t61 oi3t 6° As l3 6 =12 V 6 is trivially Pitts closed,
the inclusion holds by lemma 3.3.

0

11 Further work

I conjecture that the extensionality result also holds for S and S.
As for the relation between bisimilarity and contextual congruence, I

conjecture that: they coincide for S with only closed types (as for full
SA); but that for S bisimilarity is fined grained than contextual congruence
(as discussed by Gordon for Sb’).

I have been generalizing the calculus theory for preorders (dropping sym
metry), roughly replacing symmetric notions and notation by preorder coun
terparts, for instance: adequate by preadequate, closure by preclosure, etc.

I have investigated a first-order mu logic for S, distilled years ago
from case studies on specification and verification of object oriented pro
grams. I am considering alternative semantics, developing proof systems and
analysing practically relevant meta theory, namely soundness. A higher-level
logic over such (positive) core logic is also envisaged.

Finally I intend to identify object specification and verification tech
niques and patterns, explore semantical relators for specification (generaliz
ing the grammatical ones already used) and revisit such practice as appli
cation of the developed theory.

References

[11 M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2} A. Gordon. Operational equivalences for untyped and polymorphic ob
ject calculi. In A. Pitts and A. Gordon, editors, Higher-Order Opera
tional Techniques in Semantics. Cambridge University Press, 1997.

3] A. M. Pitts. Existential types: Logical relations and operational equiv
alence. Number 1443. Springer-Verlag, 1998.

(41 A. M. •Pitts. Parametric polymorphism and operational equivalence.
Electronic Notes in Theoretical Computer Science, 10, 1998.

[5] A. M. Pitt.s. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10, 2000.

Coproducts of Ideal Monads
(Extended Abstract)

Neil Ghani Tarmo Uustalu
Dept. of Math. and Comp. Sci. Institute of Cybernetics

University of Leicester Tallinn Technical University
University Road Akadeemia tee 21

Leicester LE1 7RH, UK EE—12618 Tallinn, Estonia
ng13cmcs . le . ac . uk tarinotcs . ioc . ee

Abstract

The development of a calculus of monad combinators has been a subject of much recent
esearch. Although a general construction exists, its generality is reflected in its complexity
hich limits the applicability of this construction. Following our own research [12], and

hat of Hyland, Plotkin and Power [8], we are looking for specific situations when simpler
onstructions are available. This paper uses fixed points to give a simple construction of the
oproduct of two ideal monads.

A Brief Reminder on Monads A monad T = (T,i7,m) on a category C is given by an
endofunctor T : C C, called the action, and two natural transformations, i : 1 — T, called
the unit, and m : TT — T, called the multiplication of the monad, satisfying the monad laws:
mTi = T = miT, and mT = mmT. We write m for the multiplication rather than the usual
z since we reserve /2 for least fixed points and free monads.

The canonical example of monads is that of term algebras. Every signature S defines a monad
Ts : Set — Set whose action maps a set to the term algebra over this set. The unit maps
a variable to the associated term, while the multiplication describes the process of substitution.
The monad laws ensure that substitution behaves correctly, i.e. substitution is associative and the
variables are left and right units. Monads also model a number of other important structures in
computer science, such as (many-sorted) algebraic theories, non-well-founded syntax [15, 1, 6], term
graphs [7], calculi with variable binders [5J, term rewriting systems [11], and, via computational
monads [13], state-based computations, exceptions, continuations etc. These applications involve
base categories other than Set and the desire for a uniform treatment underpins their monadic
axiomatisation.

Combining Monads A prerequisite for modular reasoning is an understanding of how individ
ual components of a large system interact with each other. In particular, if different components
of a system are modelled by different monads, how do we combine these monads to represent the
overall system. Concretely, if two term rewriting systems R and R’ are modelled by monads TR
and TR’ how can we reason about the combined system R+R’ via its representing monad TR÷R’?
Alternatively, given a monad modelling exceptions and a monad modelling state transformations,
can we derive a monad modelling computations which can either raise exceptions or modify the

state? One possible answer to these questions is given by the theory of monad transformers [14].
Although the concept of a monad transformer is rather elegant, in our opinion the definition is too
general to support an adequate meta-theory. For example, given a monad it is not clear whether
it. is possible and, if so, how to define an associated monad transformer.

This paper is based upon the thesis that colimits of monads provide an appropriate framework
for combining monads. A construction of the colimit of monads was given by Kelly [9] but
the generality of the construction is reflected in its complexity which can be deterring even for
experienced category theorists and which certainly limits its applicability. Consequently, recent
research has focussed on i) coproducts of monads which model combinations of systems where
there is no sharing as in the examples above; ii) providing alternative constructions which, by
restricting to special cases, are significantly simpler and hence easier to apply in practice; and iii)
although the existence of the coproduct of two monads usually follows from general categorical
considerations, it is often unclear what the action of this monad is. Hence we seek alternative
functorial and fixed point characterisations of the coproduct of monads which make explicit the
action.

The rest of this paper recalls what is known for free monads and then tackles the question of com
posing ideal monads. Our results are similar to those in [12] but our proofs are much simpler and
hence more useful in practice. This is because we have used fixed points to hide the construction
of various cocones etc. Given a functor F : C — C, we denote (the carrier of) its initial algebra
by jF.

Coproducts of Free Monads Monad morphisms between monads T and H are natural trans
formations h : T — H which preserve the unit and multiplication of the monads. Given a
fixed base category C, monads and monad morphisms on C form a category Mon(C). To achieve
abstraction we follow the standard practice of replacing a signature E with the associated polyno
mial functor F : Set -4 Set. Given an endofunctor F : C — C, the free monad on F is written
F and is defined as the universal arrow from F to the forgetful functor U Mon(C) — IC,CJ.
The first important connection between fixed points and monads is:

Proposition 1 [4]: Given a functor F C — C, the free monad is the initial 1 + F o -

— [CC] algebra.

Note that the term algebra monad is such a free monad. We could formalise free monads as left
adjoint to the forgetful functor by using lip-categories and flnitariness [10, 3] but in this paper we
want to work without such technical assumptions. There are a number of other simple connections
between fixed points and monads. For example, the free completely iterative monad [1] arises as the
final 1 + F o _: [C, C] — [C, C] coalgebra while the term graph monad and rational monads [7, 2]
are also 1 + F o - fixed points. Coproducts of free monads are easy to construct and understand.

Proposition 2: Let F and C be functors. Then F + C = (F + C)’ = i(1 + F o
- + Co).

In general, this proposition indicates the sort of analysis we want, that is a reduction of the
construction of the coproduct monads to a fixed point formula involving endofunctors. A more
general result [8] shows that if S is any monad and F’ a free monad, then S ÷ F = S(FS).
This is a significant improvement as it reduces the coproduct of any monad with a free monad
to functorial composition. Furthermore, this functorial formula can be reduced to a fixed point
formula: S(FSY SCu(1 + FS o..)) = ,u(S(1 + F o)). The last equality is an application of the
rolling lemma for fixed points.

Coproducts of Ideal Monads The core of this abstract is the use of fixed points to calculate
the coproduct of a large variety of monads—the so-called ideal monads [1]. These were introduced
to describe those monads which can be decomposed into their variable and non-variable parts.

33

Formally, a monad m) is ideal if there is a functor T0 such that T = 1 + T0, the unit is the
left injection and there is a natural transformation m0 : T0T — T such that

TOT-!TT

ma

T0 T
Zn2

We write ideal monads in the form 1 + T0 for simplicity and leave the restricted form of multipli
cation m0 implicit. A monad morphism f I + T0 — R whose source is an ideal monad has
its action on 1 forced by the monad laws and is hence of the form f] where J0 : T0 — R.
Examples of ideal monads include free monads, free completely iterative monads etc. The funda
mental observation behind the construction of the coproduct .1? + S of ideal monads R 1 + R0
and S = 1 + S is that i) R + S should contain as submonads R and S; and ii) R + S should be
closed under the application of R0 and So Hence R + S should consist of alternating sequences
beginning from R0 or S0. Thus we ask for least fixed points

T1_R0(1+T2) T2S0(1+T1)

and write t1, t2 for the structure maps. Intuitively T1 consists of elements in R+S whose top layer
is a non-variable R-layer (captured by the use of I?) and whose next layers are either variables or
a non-variable S layer etc. We henceforth assume T1 and 7’2 exist, for example, we may require C
to have w-colimits and for R0 and S0 preserve them.

Proposition 3: The action of the coproduct of ideal monads 1 + R0 and 1 + So is the functor
T = 1 + (T1 + T2).

Functoriality of T is obvious. The unit ‘ is the injection 1 _-.L. 1 + (T1 + T2) = T. The
multiplication m is fT, in2 (mi + m2)J where m1 T1T — T1 and m2 : T2T — 2’2 can be
constructed by generalized mutual iteration:

Ro(1 + T2)T -- T1T T2T -- So(1 + T1)T

Ro(T+m2) m1 m2 So(T+mi)

Ro(T+T2) ‘T1 T2 . S0(T+T1)
P1 P2

where P1, P2 denote the composites

Ro(T+T2)—R0((1+T2)+T1)
Ro((1+T2)+t’)

flR(1
T) m0(1+T2)

R0(1+T2) T1

S0(T + T1) — So((1 + T1) + T2)
So((1+Ti)+t2

SS(1 + T1)
mg(1+Ti)

S(1 + T1) T1

The unit Jaws are satisfied trivially. For the associativity of multiplication one explicitly constructs
m31 = T1TT — T1 and m3 = T2TT — 1’2 by generalized mutual iteration to then show
that both m Tm and m mT equal m3 = [m, in2 (m3 + m)1 : TTT — T.

Next, we need monad morphisms R, S — T to play the role of injections. They are given by
the composites

R0 - R0(1+T2)_LL T1 So
Srn,
S0(1+T1)—-- T2

These maps are natural as we work in a functor category, preservation of the unit is again trivial
while preservation of the multiplication is a short diagram chase.

34

Finally, we turn to the construction of copairing. Given monad morphisms f, g : R, S — H
induced by fo,go : R0,S0 H we construct maps h1 : T1 H and h2 : T2 .— H by
mutual iteration:

R4(1+T2) T1 T2
• 12

So(1+T)

Ro(1+h2) h1 h2 S0(1+h1)

Ro(1+H) H H. S0(1+H)
qi q2

where q, q are defined as the composites

Ro(1 + H) Ro1,HJ R1H HH -f--.. H S0(1 + H) Soh,HJ S0H HH ---. H

By diagram chasing one shows that [‘‘, [h1,h2]] is a monad morphism, that it is a mediating
morphism and that it is the unique such. Intuitively, uniqueness should not be surprising since
any other monad morphism h : T H must equal [7111, [hj,h2]1 i) on variables because of the
laws on monad morphisms; ii) on I?o and So because they both form cones; and iii) on all other
elements ofT since they are essentially multiplications of .R0 and S0 which are preserved by monad
morphisms.

Acknowledgements The first author’s research was supported by EPSRC under grant
No. GR/M96230/01 Categorical Rewriting: Monads and Modularity. The second author’s research
was supported by the Estonian Science Foundation under grant No. 5567 and his participation
at ETAPS 2003 was made possible by a travel grant from the Estonian Information Technology
Foundation.

References

1J P. Aczel, J. Adámek, and J. Velebil. A coalgebraic view of infinite trees and iteration. In
A. Corradini, M. Lenisa, and U. Montanan, editors, Proc. of CMCS’Ol, volume 44(1) of
Electronic Notes in Theoretical Computer Science. Elsevier, 2001.

[21 J. Adáinek, S. Milius, and J. Velebil. Free iterative theories: a coalgebraic view. Accepted
for publication in Mathematical Structures in Computer Science, 2002.

[3] J. Adámek and J. Rosick. Locally Presentable and Accessible Categories, volume 189 of
London Mathematical Society Lecture Notes. Cambridge University Press, 1994.

[4) M. Barr. Coequalizers and free triples. Math. Z., 116:307—322, 1970.

[5] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc. of LICS’99,
pages 193—202. IEEE CS Press, 1999.

[6] N. Ghani, C. Lüth, F. de Marchi, and J. Power. Algebras, coalgebras, monads and comonads.
In A. Corradini, M. Lenisa, and U. Montanan, editors, Proc. of CMCS’OI, volume 44(1) of
Electronic Notes in Theoretical Computer Science. 2001.

[7] N. Ghani, C. Lüth, and F. De Marchi. Coalgebraic monads. In L. S. Moss, editor, Proc. of
CMCS’02, volume 65(1) of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[8] M. Hyland, G. Plotkin, and J. Power. Combining computational effects: Commutativity and
sum. In A. Baeza-Yates, U. Montanan, and N. Santoro, editors, Proc. of IFIP 17th World
Computer Congress, TC1 Stream / TCS 200E, volume 223 of IFIP Conference Proceedings,
pages 474—484. Kluwer Academic Publishers, 2002.

[91 C. M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids,
colimits, associated sheaves and so on. Bull, of Australian Mathematical Society, 22:1—83,
1980.

110] G. M. Kelly and J. Power. Adjunctions whose counits are equalizers, and presentations of
finitary monads. Journal of Pure and Applied Algebra, 89:163—179, 1993.

[11] C. Lüth. Categorical Term Rewriting: Monads and Modularity. PhD thesis, University of
Edinburgh, 1998.

[12] C. Lüth and N. Ghani. Monads and modularity. In A. Armando, editor, Proc. of FroCoS’02,
number 2309 in Lecture Notes in Computer Science, pages 18—32. Springer Verlag, 2002.

[13] E. Moggi. Computational lambda-calculus and monads. In Proc. of LICS’89, pages 14—23.
IEEE CS Press, 1989.

[14] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113,
LFCS, 1990.

[15] L. Moss. Parametric corecursion. Theoretical Computer Science, 260(1—2):139—163, 2001.

Inflationary and Deflationary Fixed Points

Erich Grädel
Aachen University

graedel©informatik .rwth-aachen.de

Fixed point logics extend a basic logical formalism (like first-order logic,
conjunctive queries, or propositional modal logic) by a constructor for form
ing fixed points of relational operators. The most influential fixed point for
malisms in computer science have been concerned with least (and greatest)
fixed points of monotone operators.

• The modal n-calculus L, is the extension of propositional modal logic
by least and greatest fixed points. This logic has been extensively
studied, having acquired importance for a number of reasons. In terms
of expressive power, it subsumes a variety of modal and temporal logics
used in verification, in particular LTL, CTL, CTL*, PDL and also
many logics used in other areas of computer science. On the other
hand, L, has a rich theory, and is well-behaved in model-theoretic and
algorithmic terms.

• LFP, the extension of first-order logic by least fixed points is of crucial
importance in finite model theory and descriptive complexity, in par
ticular due to its tight connection to polynomial-time computability.
It relates to first-order logic in much the same way as L4, relates to
propositional modal logic.

In finite model theory and, to a lesser extent, in database theory, a num
ber of other fixed point operators have been extensively studied, including
inflationary, partial, nondeterministic and alternating fixed points. All of
these have in common that they allow the construction of fixed points of
operators that are not necessarily monotone.

In this talk, we will focus on inflationary and deflationary fixed point
inductions and compare them to least and greatest fixed points. We will also

show a number of examples and scenarios in which inflationary and defla
tionary fixed points arise in a natural way. Recall that in least fixed point
logic we can write formulae [lfpR.ço(R,.)J(a) expressing that a is in the
least set R satisfying R = { (R,)}. We can do this, provided that
the relation variable R appears only positively in . This guarantees that,
on every structure, the operator F, R i—* { : (R,±)} is monotone and
therefore has a least (and a greatest) fixed point. Moreover, the fixed point
can be obtained by an iterative process. Starting with the empty set, we
repeatedly apply the operator F, and thus obtain an increasing (possibly
transfinite) series of stages which converges to the desired least fixed point.
A slightly different variant permits also simultaneous least fixed point induc
tions over several formulae, but it can be shown that this does not provide
more expressive power.

Inflationary fixed points, on the other hand, can be built with formulae
(R, t) that need not be positive in R. Starting with the empty set, we can
still define an increasing sequence of stages by iteratively taking the union
of the current stage R with F,(R). Again this sequence must eventually
converge to a fixed point (not necessarily of F, but of the operator R —‘

R U F(R)), which we call the inflationary fixed point of . In IFP we build
formulae [ifp R.. (R,)J(a) saying that a is contained in the inflationary
fixed point of . The deflationary fixed point of (R, ±) is defined by a
dual process, starting with R = A’ and iteratively applying the operator
R —‘ R fl F,(R). This defines a decreasing sequence converging to a fixed
point, called the deflationary fixed point of , which is also definable in IFP.

We review some of the known results on the logics LFP and IFP.

(1) Gurevich and Shelah have shown that on finite structures, LFP and
IFP have the same expressive power. A recent result due to Kreutzer
shows that this equivalence of LFP and IFP also extends to infinite
structures.

(2) On ordered finite structures, LFP and 1FF express precisely the prop
erties that are decidable in polynomial time.

(3) Simultaneous least or inflationary inductions do not provide more ex
pressive power than simple inductions.

(4) The complexity of evaluating a formula in LFP or IFP on a given fi
nite structure is polynomial in the size of the structure, but exponential

in the length of the formula. For formulae with a bounded number k of
variables, the evaluation problem is PsPACE-complete, even for k = 2
and on fixed (and very small) structures. If, in addition to bounding
the number of variables one also forbids parameters in fixed point for
mulae, the evaluation problem for LFP is computationally equivalent
to the model checking problem for L, which is known to be in NP fl
Co-NP, in fact in UP fl Co-UP, and hard for PTIME. It is an open
problem whether this problem can be solved in polynomial time.

We also note that even though IFP does not provide more expressive
power than LFP on finite structures, it is often more convenient to use infla
tionary inductions in explicit constructions. The advantage of using IFP is
that one is not restricted to inductions over positive formulae. A non-trivial
case in point is the formula defining an order on the k-variable types in a
finite structure, an essential ingredient of the proof of the Abiteboul-Vianu
Theorem, saying that least and partial fixed point logics coincide if and only
if PTIME = PSPACE. Furthermore, IFP is more robust, in the sense that
inflationary fixed points are well-defined, even when other, non-monotone,
operators are added to the language.

Inflationary Inductions in Modal Logic. Given the close relationship
between LFP and IFP on finite structures, and the importance of the i
calculus, it is natural to study also the properties and expressive power
of inflationary fixed points in modal logic. We define a modal iteration
calculus, MIC, by extending basic multi-modal logic with simultaneous in
flationary inductions. Given formulae , . . . , ço we can build formulae
ifp X2 [X1 —

.. , Xk — k1 that construct sets by a simultaneous
inflationary induction. At each stage a, we have a tuple of sets Xe,. . . , X.
Substituting these into the formulae i, . .. , ço we obtain a new tuple of sets,
which we add to the existing sets Xe,. . . , X°’, to obtain the next stage.

It is clear that MIC is a modal logic in the sense that it is invariant under
bisimulation. In fact, on every class of bounded cardinality, inflationary fixed
points can be unwound to obtain equivalent infinitary modal formulae. As a
consequence, MIC has the tree model property. It is also clear that MIC is
at least as expressive as L. The following natural questions now arise.

(1) Is MIC more expressive than L,?

(2) Does MIC have the finite model property?

(3) What are the algorithmic properties of MIC? Is the satisfiability prob
lem decidable? Can model checking be performed efficiently (as effi
ciently as for Lu)?

(4) Can we eliminate, as in the u-calculus and as in IFP, simultaneous
inductions without losing expressive power?

(5) What is the relationship of MIC with monadic second-order logic (MSO)
and with finite automata? Or more generally, what are the ‘right’ au
tomata for MIC?

(6) Is MIC the bisimulation-invariant fragment of any natural logic (as L
is the bisimulation-invariant fragment of MSO?)

We provide answers to most of these questions. Although IFP and LFP
have equal expressive power, the situation for fixed point extensions of modal
logic is quite different. The modal iteration calculus MIC has much greater
expressive power than the a-calculus. Greater expressive power comes at a
cost: the calculus is algorithmically much less manageable. In particular, we
establish the following results:

(1) There exist MIC-definable languages that are not regular. Hence MIC is
more expressive than the it-calculus, and does not translate to monadic
second-order logic.

(2) MIC does not have the finite model property.

(3) The satisfiability problem for MIC is undecidable. In fact, it is not
even in the arithmetic hierarchy.

(4) The model checking problem for MIC is PSPACE-complete.

(5) Simultaneous inflationary inductions do provide more expressive power
than simple inflationary inductions. Nevertheless the algorithmic in
tractability results for MIC apply also to MIC without simultaneous
inductions.

(6) There are bisimulation-invariant polynomial time properties that are
not expressible in MIC.

(7) All languages in DTIME(O(n)) are MIC-definable.

No doubt, these properties exclude MIC as a candidate logic for hardware
verification. On the other hand, the present study is an investigation into the
structure of the inflationary fixed point operator and may suggest tractable
fragments of the logic MIC, which involve crucial use of an inflationary op
erator, just as logics like CTL and alternation-free L, carve out efficiently
tractable fragments of L,. In any case, it delineates the differences between
inflationary and least fixed point constructs in the context of modal logic.

(This is joint work with Anuj Dawar and Stephan Kreutzer)

Monadic Datalog on Trees

Martin Grohe

University of Edinburgh

Abstract

Semi-structured data, best-known in the syntax of XML, have caused a signifi
cant paradigm shift in the field of database systems, and have also been one of the
central research topics in database theory over the last five years. While classical
relational databases can be described as relational structures, XML-documents are
best modelled by unranked trees. We study the problem of evaluating unary, or
node-selecting, queries on trees. Node-selecting queries are not only of interest as
basic queries in their own right, but are also an important building block for more
complex queries. In particular, the node-selecting path query language XPath is
at the core of several major XML-related technologies, such as XML Query, XML
Schema, and XSLT, the principal query language, schema definition formalism, and
stylesheet language for XML, respectively.

Even though undoubtedly very important in practice, from a theoretical per
spective XPath seems to be a very ad-hoc language that leaves a lot to be desired.
Monadic second-order logic (MSO) on trees, on the other hand, is well-known to
have beautiful theoretical properties. In particular, it has well-balanced expressive
power in that it is expressive enough for most purposes, but on the other hand still
has good algorithmic properties due to its connection with tree automata. Indeed,
MSO has been proposed as a “benchmark” for the expressive power of node-selecting
XML query languages (Neven and Schwentick 2000). Nevertheless, MSO itself is
not suitable as a practical query language because it allows to express very complex
queries very concisely, which makes the query evaluation problem highly intractable.
But there are nice languages which have the same expressive power as MSO on trees,
but admit much more efficient query evaluation. The modal mu-calculus may be
seen as an example of such a language (at least on ranked trees). In the context of
querying XML, the most promising such language is monadic datalog. It has the
same expressive power as MSO, but admits query evaluation in time linear in both
the size of the datalog program and the size of the tree (Gottlob and Koch 2002).

In this talk, I will present recent results on the expressiveness and complexity
of monadic datalog and related languages. Even though monadic datalog does have
the same expressive power as MSO (on trees), there is no elementary translation
from MSO into monadic datalog - we may say that MSO is non-elementarily more
concise. We will look at such “conciseness” results more closely and place logics such
as monadic least-fixed point logic and stratified monadic datalog into the picture.
On the algorithmic side, we will show that the containment problem for monadic
datalog on trees is in EXPTIME (and thus EXPTIME-complete). Furthermore, we

will discuss a new automata based algorithm for evaluating unary monadic datalog
queries which has the nice property that it has to read the input tree only twice
(in postorder), which is of great advantage when evaluating queries on documents
that are too large to fit into main memory. Indeed, a recent implementation of this
algorithm by Christoph Koch turns out to be highly efficient in practice.

This is joint work with Markus Frick, Christoph Koch, and Nicole Schweikardt.

Monadic fusion of functional programs

Claus Jurgensen*t

Faculty of Computer Science
Dresden University of Technology

D-01062 Dresden, Germany

March 17, 2003

We present a new fusion technique to transform functional programs and prove
its correctness. Instead of the catamorphism (i.e. the unique algebra morphism from
an initial algebra) which is used in the ‘acid rain theorem’ we rather use the unique
monad morphism from a free monad. Moreover we demonstrate how to use our fu
sion theorem to compose classes of tree transducers.

This paper is a shortened version of [JurO2l where more details and all the proofs can be found.

1 Introduction

This paper is about a program transformation of functional programs called fusion. Consider

three algebraic types A, B, and C and two recursive programs f and g with typing C B 2. A.
We call a program h C — A a fusion of the consumer f and the producer g if two conditions
are satisfied:

(i) lfl lgl hl, and

(ii) the intermediate data-structure B does not occur in h.

The condition (i) is the correctness of the fusion w.r.t. the denotational semantics
.

If the
semantics is compositional it can be trivially satisfied by setting h = f. g = Ax —* f(g x). The
essential point is condition (ii): the elimination of the intermediate data-structure.

Various fusion techniques are known, e.g: deforestation EWad9Oj, short cut fusion IGLP93,
TM95, Gil96, JohOl], or syntactic composition of tree transducers (and attribute gram
mars) (Eng75, Eng8O, Fu181, CF82, EV85, Gie88, CDPR97b, CDPR97a, Küh98, Fy98, KVOIJ. Each
of these has its own advantages and disadvantages.

We combine the ‘syntactic composition of tree transducers’ [KVO1] on the one hand side and
‘short cut fusion’ IGLP93J on the other hand side.

Short cut fusion is based on the ‘cata/build-rule’ or ‘cata/augment-rule’ iJohOll or ‘acid rain
theorem’ FTM95]. Therefore it is necessary to represent the recursive functions as catamor
phisms. A catamorphism is a generalization of the well known list-function foldr for arbitrary

• Email: Claus. Juergensenclnf . TU—Drasden . DE
tsupported by the postgraduate program ‘Specification of discrete processes and systems of processes by operational

models and logics’ (GRK 334/2) of the German Research Community (DFG)

algebraic data types. In terms of category theory a catamorphism is the unique algebra mor
phism from an initial algebra.

We have invented a new fusion technique using monads: instead of a catamorphism we use
the unique monad morphism from a free monad.

Consider the small Haskell program:

data Nat = Zero Succ Nat
data Bool = False I True

even Zero = True
even (Succ n) = odd n
odd Zero = False
odd (Succ n) = even n

The latter four equations define the two mutually recursive functions even and odd. We can view
this system of equations as a function1:

TA(QX) .— Q(ZX),

7hie even Zero,

odd n even(Succ n),

False ÷- odd Zero,

even n odd(Succ n)

where X = {n} is the set of variables. The endofunctors E, , and Q describe the application of
ranked symbols from {Zero°, SuccW}, { 7ue10,Falset°)}, and {even(’), oddt11}, respectively, to
a set (e.g. ZX = {Zero} U {Succ xix E X}). The functor TA constructs all &trees over a set X:
TAX UkEN,,

AkX X + (TAX).
It is possible to show that the function Ox is natural in X and thus we have a natural transfor

mation:
Q: T. Q -- Q .

which we call the rule of the functional program. Using some category theory magic like adjoint
functors we can equivalently transform this rule into the form:

p’: 1HTAI --

where TA = (Ta, ,) denotes the free monad over , H is an endofunctor, and I. the forgetful
functor mapping a monad onto its underlying endofunctor. A rule in the latter form is the main
ingredient of a so called monadic transducer which we introduce in Definition 5.1.1.

Using the universal property of a free monad we can define a denotational semantics for
monadic transducers. Moreover, we have proved a new fusion theorem for monadic transducers
(Theorem 5.2.2) similar to the ‘acid rain theorem

Our construction depends on the syntactic structure of the functional programs f and g we
want to compose. We use syntactic classes of tree transducers to describe the necessary syntactic
form of the programs. A tree transducer tRou68] is a finite tree automaton with in- and output.
Its integral part is a set of rules. Some classes of tree transducers can be viewed as syntactic
fragments of functional programming languages. Our example Haskell program is a top-down
tree transducer which has the two states even and odd.

The composition of top-down tree transducers is an instance of short cut fusion [JVO1I. But for
more complicated tree transducers we have not been able to apply short cut fusion, and that is
why we invented the monadic transducer.

‘Please forgwe us for drawing all arrows from right to left. In Subsection 2.1 we explain why we prefer it this way.

Moreover, we are interested in the question, whether syntactic classes of tree transducers are
closed under fusion. This question has been answered (positively or negatively) for many classes
of tree transducers. The constructions and proofs of the classical results differ depending on the
specific class of tree transducers investigated. Using our monadic transducer we can describe
many kinds of tree transducers in a uniform way. Once modeled as a monadic transducer, it is
easy to do a fusion and then inspect whether the result is a tree transducer of a specific class.

We will show how to compose homomorphism top-down, top-down, and macro tree transduc
ers with our new approach. In lJürO2l we show how it is possible to extend our new approach
to the fusion of high-level tree transducers, top-down tree-series transducers, and bottom-up tree
transducers. Even though we use some esoteric category theory, our results will be down-to-earth
constructions which are applicable to transform real functional programs (see Figure 4).

2 Preliminaries

2.1 Functions and arrows

We denote the fact that a function f maps to a set A from a set B by B = dom f and A = cod f
or by the relation f : A — B. We will use this notation for a morphism f to an object A from an
object B as well. A function is nothing else than a morphism in the category Set. In order to avoid
parentheses we will use the conventions fx = f(s) and Ffs = (Ff)x for function applications.
Thecomposition f g : A — Coftwofunctionsf : A B andg B Cisdefinedby
Vs E C. (f . g)z = f(gs). This is the reason why all our arrows point to the left2:

A B’ C

f.g

We assume that function application binds stronger than function composition.

2.2 Category theory

We will use the following notions from category-theory: (bilendo)functor, natural transforma
tion, horizontal/vertical composition, initiaufinal object, (co)product, projection, injection, expo
nent, (initial) F-algebra, universalarrow, (semi-)concretecategoiy,freeobject, adjunction, monad,
monadic, and varietor.

If possible and appropriate we will use the following fonts: A, B, C,... for objects; f, g, h,..
for morphisms; F, G, H,... for functors; o r, p,... for natural transformations; C, V, i,... for
categories; and T, T’,... for monads.

We refer to objects and morphisms of some category C as C-objects and C-morphisms and
denote the classes of all objects and all morphisms of C by Ob C and Mor C. The subclass of all
C-morphisms to A from B is denoted by C(A, B).3

We denote the meta-category of all categories (with functors as morphisms) by CAT and the
meta-category of all functors to C from V (with natural transformations as morphisms) by CD
(called functor category). We will almost always omit the word meta since it will make no differ
ence for what we are doing. For the endofunctor category we use the abbreviations End C = Cc
and End2C = End(EndC).

2Arrows pointing to the right are Consistent with the commuted composition g ; f = f g.
3Notice, that this is more often denoted by C(B, A) or Homc (B, A). Our notation is consistent with arrows poinung to

the left which we use.

For every object A we denote the identity morphism by idA or just id. The composition in a
category is usually denoted by f g. The only exception will be the vertical composition of natural
transformations denoted by * r in order to distinguish it from the horizontal composition u r.

FF’ GG’
For all C ‘ and all F -- F’ and r G G’ we write (uG)x = aGX and

(Fr) = F(rx). Then the vertical composition of the natural transformations and r is given
by * r = . F’r = Fr . crG’. We denote the meta-category of all categories with all natural
transformations as morphisms and composition * by CAT where CAT(C, V) = Mor CD. The
class of all natural transformations with horizontal and vertical composition is a 2-category

We denote coproducts by A + B or ll A, products by A x B or fl, A, and exponents by A B
or AB. If a category has finite coproducts we call it a cocartesian category

The symbols for (co)products and exponents will also be used for the related functors (e.g
C C x C°”) where we write the bifunctors +, x, and as infix binary operators. We will denote
the pointwise lifting of these bifunctors to the functor category by the same symbol (e.g. (F +
G)f = Ff + Gf). We use the following names for classes of functors defined from +, x and . by
gramars: cocartesian functors:

FX::=X F1X+F2X,

bicartesian functors:
FX ::= X F1X + F2X F1X x F2X,

and polynomial functors: FX

A X F1X+F2X F1XxF2X F1.=A.

For every category C we denote the identity functor by dc or just Id.
For every object A we denote the constant functor which maps onto idA by 4. Notice that the

function is a functor .. End C C defined on C-morphisms f an C-objects X by f = f.
We denote a semi-concrete category built upon C by (V, U) where U : C — V. If U is ithful we

call (V U) a concrete category and U its forgetful functor. A semi-concrete functor F (V, U) -
(V’, U’) is a functor F : V — V’ such that U . F = U’ holds. If (D, U) is concrete then we call F
a concrete functor. Notice, that concrete functors are uniquely determined by their values on
objects.

WedenoteanadjunctionbyQ7,e): F -I G : C — VorjustbyF -1 GwhereF C — V, G : V —C,
,: G F - Id,andr : Id - F. G.

If a concrete category (D, U) has free objects, i.e. the forgetful functor is right adjoint, then we
call the left adjoint of U the free-functor.

3 Tree transducers

A tree transducer [Rou68) is a finite tree automaton with input and output. We consider tree
transducers for two main reasons:

(i) We view tree transducers as a syntactic fragment of a functional programming language.
Then we can use the nomenclature of the theory of tree transducers for functional pro
grams.

(ii) It turns out that our monadic fusion theorem (Theorem 5.2.2) has a form which makes it
possible to reason about the fusion of classes of functions. This is one of the problems
investigated in the theory of tree transducers.

We Will only consider deterministic total tree transducers, i.e. the rules of the tree transducers
are functions.

3.1 The rule of a tree transducer

We have seen in the introduction how to describe the defining equations of a functional pro
grams as one function which we called the rule of the program. The type of the rule describes
the syntactic structure of the program. In the case that the functional program is a tree trans
ducer, we have the following:

3.1.1 Proposition (tree transducer rules are natural transformations). Every tree transducer
rule can be uniquely extended to a natural transformation, and vice versa every natural transfor
mation of the appropriate type can be restricted to a tree transducer rule. 0

And thus we can define tree transducers simply by giving the types of natural transformations.
Before we can do so we need one more definition in order to express applicative

terms [Dam82J, i.e. terms, where some subterms are treated as functions which can be applied
to other terms.

3.1.2 Definition. Let C be a cartesian closed category and I e ObC. We define the functor A1
End C — C by

Vf,g E MorC.Ajfg=(g4=id,) x f
Obviously A1 is polynomial.

For every pair of objects X, V E Ob C we have A1XY = V’ x X. For C = Set and k E N0 we
define AkXY = {xy1 -yi xE X A y E Y} yk x x A11 k)XY. 0

We will not give a precise definition of a tree transducer. We will rather define some classes of
tree transducers (and the respective classes of computable functions) by stating the type of their
rule in Table 1 where Z, z are polynomial Set-endofunctors; Q is a cocartesian Set-endofunctor;
X (recursion variables), Y (context variables) are sets; k E N; A is a complete semiring; and l1 is

the boolean semiring. According to Proposition 3.1.1 the latter is an equivalent representation of
a tree transducer.

syntactic class class of computable functions type of rules

homomorphism HOM Ta X *—

top-down TOP Ta (QX) +— Q(ZX)
simple basic macro sb-MAC Ta(Y+Ak(QX) V 4—Ak Q(X) V
basicmacro b-MAC Ta(TaY+Ak(QX)(TaY) 4—Ak Q(ZX) Y

macro MAC TT+Ak(QX)Y 4—Ak Q(ZX) Y

top-down tree-series TOPA A((Ta(QX))) Q(ZX)

nondeterministic top-down TOPB B((T(QX))) — Q(ZX)

bottom-up BOT Q(TaX) — Z(QX)

Table 1: Some classes of tree transducers

3.1.3 Example (macro tree transducer). Consider the Haskell program:

data Nat = Zero) Succ Nat
data [a) = [) a: [a)

reverse x = let
rev)) ys= ys
rev (x : zs)ys = rev zs (x : ys)

inrevxj]

expo E = let
ezp(Succx)y= expx(ezpxy)
exp Zero y = Succ y

in erp x Zero

append x = let
app (x : xs)ys = z (app xs ys)
app] ys= ys

in app x

Then the program reverse is a non-simple basic macro tree transducer, the program ezpo is a
simple non-basic macro tree transducer (This one is not in Table 1.), and the program append is
a simple basic macro tree transducer.

4 Monads and monad transformers

A monad T = (T,j, p) on C is a triple consisting of an endofunctor T and two natural transfor
mations 71: T -- Id and p T - T2 such that p T,7 = idT = p . 71T and p• Tp = p jiT holds. The
intuition of a monad, that we will need, is that it can be viewed as a description of a recursive
data structure together with a notion of substitution.

4.1 Tree monads and free monads

The easiest example for a monad is the trivial monad lDc = (ld, idId, idId) on a category C.
As an other example we give the monad of all trees over a ranked alphabet t. The endo

functor T is given by TX = TzX, where TX denotes the set of s-trees over the set of vari
ables X. Then ‘lx TX — X describes the embedding of variables into trees X ç TzX and

TX — TE(TZX) describes substitution in the following way: For an interpretation of van
ablesi TY — Xthe substitution operatoris given byp •Ti TY - TX. In the special
case {x1 xk} ç X = Ywhereiisdefinedusingsometl,...,tk E TEXbyix, = tk (andiy = y
otherwise) we have py Ti [ti/xi tk/xkj.

An endofunctor Z : C — C is called a varietor if the concrete category of Z-algebras (CZ, I . I)
has free objects. It is a well known fact that polynomial Set-endofunctors are varietors and that
the free monads over these endofunctors describes free term-algebras together with the common
term-substitution.

4.1.1 Definition (monad morphism, free monad). Let T = ,, p) and T’ = (T’, ‘, p’) be mon
ads over C.

(I) A natural transformation h : T i-- T’ such that = h . i’ and p. (h * h) = h
. p’ is called a

monad morphism to T from T’ and we write h: T T’.
(ii) It is easy to see that (i) gives rise to a category which we will denote by Mnd C. Moreover

this is a concrete category (Mnd C, I . I) built upon End C where the forgetful functor I . I
maps a monad (T,,1,i) E Ob(Mnd C) onto the underlying endofunctor T.

(iii) Let Z C — C be an endofunctor. A free object over Z in (Mnd C, I .) is called a free monad
over E. We denote a free monad over Z by T and its underlying functor by Tt. 0

It is well known that varietors have free monads:

4.1.2 Theorem (IAHS9OI Theorem 20.56). If Z : C — C is a vanietor, then (CZ, I. I) is monadic
over C and the associated monad is a free monad generated by t. 0

4.2 Monad transformers

One part of the monadic transducer, which we define later in Definition 5.1.1, is an endofunctor
on a category of all monads over some category. Such a functor is sometimes called a monad
transformer [MogeOl.

Many different definitions of a monad transformer edst in the literature. In (HinOO[a monad
transformer (H, ir, w) is an endofunctor H mapping monads onto monads together with two nat
ural transformations r H -- Id (called promote or lift) and w Id -- H (called observe). We
will need a natural transformation w: I .

‘-- H to observe the final result of the monadic
computation (see Definition 4.4.3). However, this function will not be part of our definition of
a monad transformer.

In lJVOI[we have used an algebra transformer (cf lFok92[) to formulate a generalized version
of the acid-rain-theorem’. The role of this algebra transformer will be taken by an endofunctor
mapping monads onto monads in our new fusion Theorem 5.2.2.

4.2.1 Definition. A pointed functor (F, ir) on a category C is a pair consisting of a C-endofunctor
F and a natural transformation ir F -- Idc. A monad transformer (H, ir) on C is a pointed
functor on Mnd C. o

In the following two subsections we will see how to construct monad transformers from ad-
junctions or coproducts of monads:

4.3 Monad transformers from adjunctions

4.3.1 Lemma (composition of an adjunction andamonad). Let(,e) : Q H U : C - Dbean
adjunction and T = (T, i,) be a monad on V. Then T’ = (U T - Q, UQ i, U(ji - TeT)Q) is a
monadonC. o

We have just seen the function U T Q T. For the following it will be useful to give it a name:

4.3.2 Definition. Let C, V, , and Y be categories. We define the binary operator —o for every
a E Mor CD and fi E Mor t’ by

VH E ObVe.(a4_o8)H = a*idH *13.

It is easy to see that —o is a bifunctor

4o. :(CF) 4_CD xe’

where the value of -o applied to a pair of objects F e Ob C’ and G E Ob C7 is given by

V E M0rVE. (F -o G) = FG

where F o G is a functor
F +-o G : C7 +- V8

given on objects H E Ob V8 by
(F —o G)H = F - H - G.

Notice, that the latter makes -o to a bifunctor

.÷-o.:CAT-CATx CAT°”.

4.3.3 Lemma. The binary operator —c is a functor

.4-v. :CAT’—CATxCAT°

which is given on objects by

VC,D E ObCAT.C 4—0V = CD.

4.3.4 Definition. Let Q : C — V be a left adjoint endofunctor. We use the construction from
Lemma 4.3.1 to define a functor : Mnd V — Mnd C by

V(T,,u) E Ob(MndC).(T,z) = (U -T-Q,UQ .,U(-TeT)Q),

Vh E Mor(MndC).h = UhQ

where (, e) : Q - U is an adjunction. Moreover is a concrete functor

: (MndV,I.I) (MndC,(U’—oQ)-I.I).

4.3.5 Lemma. The function 7 from Definition 4.3.4 is a functor

7: CAT LeftAdj°’

where LeftAdj denotes the subcategory of CAT where the morphisms are all left adjoint func
torS. 0

4.3.6 Lemma. The bifunctor -o preserves adjunctions: Let Q, U, Q’, and U’ be functors. Then

Q-IU A Q’-IU’ (Q—oU’)-l(IJoQ’). V

4.3.7 Proposition. Let C be a category. The bifunctor

i—c : End2C i— End C x End C

can be extended to a concrete bifunctor:

—o • : (Mnd(EndC),I.I)—(MndC,I.I) x (MndC,I.I)

Proof We define —o on monads (T, i,) and (t, , j) on C by

(T,7)4—o(t,JL) =

and have to verify that it maps monads onto monads and monad morphisms onto monad mor
phisms.

4.3.8 Lemma. Let (e, ij) : Q -1 U : C i— V be an adjunction where Q is a cocartesian endofunctor.
Then is a monad transformer.

Proof Since Q is cocartesian we have a product (Q *-.-- ld), where Q is a finite set. We claim
that (, r) isa pointed functor where for every monad T = (T, ,) we define irT = U[TLq]qEQ I7T
where m = [TLqIqEQ denotes the unique mediating morphism satisfying Vq c Q. m = Tq. We
have to verify that ir is natural in T and that r is a monad morphism.

4.4 Monad transformers from coproducts of monads

The coproduct of monads on a category C is just the usual coproduct in the category Mnd C.
Colimits of monads have been studied in [Ke180]. Coproducts of monads have been used in

[LGO2a, LGO2b] to construct monad transformers.

4.4.1 Lemma (coproduct of free monads). Let C be a cocartesian category and Z and be C
varietors. Then:

T + T TZ+A

Proof The free-functor mapping a varietor onto its free monad is left adjoint and thus preserves
coproducts.

4.4.2 Definition and Lemma. Let C be a cocartesian category with initial object 0 and A a C-
object. Let us denote the left and right injections of binary coproducts by 1 and 1, respectively.

(i) A = ((A + .),4 [1, id]) is a monad on C. (In particular 0 ID.)

(ii) The monad A is free over A (i.e. A TA).

(iii) The function (.) is a functor
MndC —C

defined on C-morphisms f by f = f + id. o

4.4.3 Definition. Let C be a category and I E Ob C.

(i) We define the functor A1 : C — End C by

VT E Ob(End C). A1T = TI and

Vh E Mor(EndC). Ajh = h1.

(ii) We define the functor C — Mnd C by A1
. 1.1 where (Mnd C, 1.1) is the concrete

category of monads on C and I .
End C — Mnd C the default forgetful functor mapping

a monad onto its underlying endofunctor.

4.4.4 Corollary. Let C be a category such that Mnd C is cocartesian. Then:

(i)
(Mnd(MndC),I.I.I.IID) (MndCj.I)

is a semi-concrete functor.

(ii) For every monad T on C the functor (T + .) = IT is a monad transformer: ((T + .), 1)
where I denotes a right injections into the coproduct of two monads.

(iii) For every C-object A we have a concrete functor

(A + .) : (MndC,I.I) 4— (MndC, (Id *—o(A + .)) .i.i).

5 Monadic transducers

A monadic transducer is a generalization of a tree transducer described in terms of category the
ory. The advantage of monadic transducers is a higher level of abstraction which leads to much
more elegant proofs and enables us to treat different kinds of tree transducers (homomorphism,
top-down, high-level, tree-series, ...) in a unified framework. Monadic transducers can be used
to give denotational semantics to fragments of functional programs. We will use this denota
tional semantics to prove the correctness of our monadic fusion.

5.1 Syntax and semantics of monadic transducers

5.1.1 Definition (monadic transducer). Let C be a category which has an initial object 0. M =
(H, Z, , ,) is called a monadic transducer on C if

(i) H Mnd C — Mnd C (called pattern) is an endofunctor,

(ii) , : C C are varietors,

(iii) w I .
—

. H (called observe), and

(iv) : HT I Z (called rule) are natural transformations. o

The intuition behind this definition is as follows: A monadic transducer is a particular func
tional program (or tree transducer) where: The two varietors describe the input and output data
type, respectively. The pattern describes the syntactic structure or recursion pattern. The rule
defines the program by a set of equations. And finally, the observe picks the desired value from
the result of a mutual recursion.

We define the semantics of a monadic transducer in two phases:

5.1.2 Definition (generalized semantics of a monadic transducer). Let M = (H, , , w, o) be a
monadic transducer over C. Since Tt is free over Z, there exists a universal arrow Ut : Tt +- Z.
Then there exists a unique monad morphism 4M) : HT — T such that 4M) u = p holds:

‘ I4MNIHT,,I4 Tt

HT Tt

The underlying natural transformation

-- T

is called the generalized semantics of M. The generalized semantics is independent from .

However, it depends on the choice of the universal arrow Ut. To make things simpler, we choose
for every varietor Z a universal arrow u from (to the free monad over Z) and use this choice
implicitly for the generalized semantics of every monadic transducer. To simplify our notation
we will sometimes omit the forgetful functor on morphisms. o

It is worth mentioning that ‘being a monad morphism’ is a natural property for the generalized
semantics M}:

(i) ,i = ,‘ means that variables will be throughput and

(ii) P (M * 11MJ) = 4M
.
p’ states that is compositional (or syntax directed).

5.1.3 Definition (semantics of a monadic transducer). Let M = (H, t, , w, p) be a monadic
transducer over C which has an initial object 0. The semantics IM : TO - TtO of M is defined
by

5.2 Fusion of monadic transducers

5.2.1 Definition (fusion of monadic transducers). Let M = (H, , r, w,) and M =

(H’, Z, , w’, p’) be monadic transducers over C which has an initial object 0. The fusion M
of M and M’ is the monadic transducer over C defined by

MM’ = (H’.H,z,r,w’*w,H’4M.’)

where * denotes the vertical composition operator of natural transformations. Moreover we de
fine for every C-varietor E the identity monadic transducer by

= (ld,E,E,id,u).

5.2.2 Theorem. Let M = (H, , r,w, g) and M’ = (H’, Z, , w’, p’) be monadic transducers over C
which has an initial object 0. Then the following holds:

(i) 4ID = id, and

(ii) 4M M’s, = H’4M

(iii) The monadic transducers over C are the morphisms of a category MT C where composi
tion is fusion and the objects are the class of all C-varietors.

(iv) The semantics 1.1 is a functor

1.1: C — MTC.

Proof Ci) Consider the following diagram:

ut

IldTtI
E T

idTE

The outside triangle around 00 commutes trivially and 0 commutes by definition of 4.
(Definition 5.1.2). Thus 0 also commutes, because ut is universal.

(ii) Let = H’4M o’• Consider the diagram in Figure 1.

(iii) We define the category MT C by

Ob(MTC) = {Z : C i—C isavarietor}

MTC(,Z) = {M M = (H,t,,w,p)isamonadictransducer}

where the identity for every E E Ob(MTC) is the monadic transducer IDt and composi
tion is fusion. That the identities are neutral elements w.r.t. fusion is obvious. It remains
to show that fusion is associative: Let M” = (H”, r, e, ,J’, a”), M’ = (H’, ., r, w’, p’), and

0

I(H’H)Tr14
H’M

IH’TH
4M’ .

The outside triangle around 000 and the triangle 0 commute by definition (Defini
tion 5.1.2). Obviously 0 commutes by definition of . Thus 0 also commutes, because
uz is universal.

Figure 1: Fusion of monadic transducers (generalized semantics)

M = (H, Z, A,c, p) be monadic transducers over C. Then:

=(M.M’).M”

= (H”. (H’. H), E, e, w”* (S *w), H”(M M’
= (H”.(H’.H), t, e, w”*(w’*w),

= ((H”. H’). H, , e, (5’ *5) ., (H”. H’)4M . H”4M’
.

=M.(H”.H’, 1, r, S’’, H”4M’.”)
= M (M’ . M”)

(iv) With Definition 5.1.3 and (i) we calculate IIDtJ = idT
. = idTo. Consider the

diagram in Figure 2. Altogether we have that
.

: C — MT C is a functor. •

5.3 Monadic transducer homomorphisms

In order to interpret the results of fusions in Subsection 7.2 we will have to compare monadic
transducers. We have two obvious notions of equivalence: Monadic transducers M and M’ may
be syntacticly equivalent (M = M’) or they may be semanticly equivalent ((MI = (M’). Artlessly,
the former implies the latter.

It will become apparent (in Theorem 7.2.7) that a more subtle relation between monadic trans
ducers is of use:

5.3.1 Definition. LetM = (H,E,,w,)andM’ = (H’, be monadic transducers. A
natural transformation T: H - H’ such that

and L’7’rQ’

holds is called a monadic transducer homomorphism to M from M’ and we write it

T : M — M’.

Obviously, ‘being homomorphic’ is a preorder on the class of monadic transducers, moreover
it implies semantic equivalence as demonstrated in the following:

11MM’N0

(H’ H)Trl04 ° H’TO ° TO

/ I

HTt 0

14MN0
(‘*w)T • T

IMI

TrO

The triangles 0 and 0 commute by definition and the square 0 because w’ :

10 H’ is natural. The triangle 0 is just an instance of (ii)0. The triangle 0 and the
outside triangle around 0-0 commute by definition. Thus 0 also commutes.

Figure 2: Fusion of monadic transducers (semantics)

5.3.2 Theorem (monadic transducer homomorphisms preserve semantics). Let M =

(H, Z, ,w,) and M’ = (H’, Z, ,w’, ‘) be monadic transducers. If there exists a monadic trans
ducer homomorphism r : M — M’ then =

Proof Consider the diagrams in Figure 3. Finally we calculate: IMI = .

=
c4 . M’I0 =

M’J. .

6 Tree transducers as monadic transducers

We have already seen, that a tree transducer can be described by its rule. But for the different
classes of tree transducers the types of these differ. A monadic transducer provides a uniform
description for all classes of tree transducers.

6.1 Homomorphism tree transducers as monadic transducers

We start with the easiest case: the homomorphism tree transducer. The rule of a homomorphism

tree transducer has the form TAX -— tX which can be abstracted from X (using Proposi

tion 3.1.1) yielding the natural transformation: TA -- Z. This is already the desired rule of the
monadic transducer where the pattern and the observe are both trivial, i.e. identity functions.

6.1.1 Proposition. The homomorphism tree transducers are precisely the monadic transducers

M= (Id,Z,,id,p)

IH’TIO

7
TO 7’Fâ € T*

-

IHTIO IHTAj,,/

The triangles 0 and 0 commute by definition and the triangle around 00€) commutes according
to the precondition. Thus the square around 00 also commutes and since uz is universal 0
commutes. The triangle 0 commutes according to the precondition.

Figure 3: Monadic transducer homomorphisms preserve semantics

over Set where Z and are polynomial. o

6.2 Top-down tree transducers as monadic transducers

The rule of a top-down tree transducer has the form TA(QX) --- Q(ZX) where Q is cocarte
sian. This rule can be understood as a definition for a couple of functions (e.g. even and odd
from the introduction). Alternatively we could define just one function whose results are tuples
(e.g f x = (even z, odd x)). Let us describe the tupling by U, i.e. UA is the set of all tuples with
elements in A. Than the new rule would have the form

U(Ta(QX)) — ZX,

(Thue, FaLse) Zero,

(odd n, even n) Succ n.

Let us formalize what we have done so far:

6.2.1 Lemma. Let C be a bicartesian category and Q : C Ca cocartesian functor. Then Q is left
adjoint. o

6.2.2 Lemma (flip rule type). Let C, D, and é be categories, T C — £, Z : D — E, and
Q H U C — V. Then

Ce(T,Q.)De(U
. T,Z).

We start again with the rule T(QX) _2-. Q(X). Abstraction from X (according to Proposi
tion 3.1.1) yields the natural transformation: TA .

.L Q. t. The Lemmas 6.2.1 and 6.2.2 tell us

that we can equivalently describe this rule by a natural transformation U . TA . Q -— E where

Q H U. The latter is equal to TA .L_ Z by Definition 4.3.4. This is already the desired rule of the
monadic transducer with parern Q.

Finally we have to decide which value the monadic transducer should output. In our example
this means whether we want to compute the function even or odd. We do this with a projection

Id — U witch picks the desired value. Using QO = Owe can define the observe of the monadic
transducer by u = in .

Altogether we get the following:

6.2.3 Proposition. The top-down tree transducers are precisely the monadic transducers

M = (Q,E,,w,p)

over Set where Q is a cocartesian Set-endofunctor, Z and are polynomial, and w = in
where in is a projection. 0

We have no room in this paper to describe the following in detail. The proofs and the precise
constructions can be found in [JurO2J. In particular we will just ignore the observe of the monadic
transducers.

The rule of a simple basic macro tree transducer has the form T(Y +A1(QX)Y)
Aj(Q(X))Y where A1 is the functor from Definition 3.1.2. As before in the top-down tree trans
ducer case, we use adjunctions to move the functors Q and A1. But this time the pattern is more
complicated: We describe this by the functor —o from Definition 4.3.2 and (.) from Defini
tion 4.4.2 using Corollary 4.4.4.

6.2.4 Lemma. Let C be a category which has function spaces. Then

A1 -IA1 :EndC’—C

where A1 C — End C is the functor from Definition 4.4.3. o

6.2.5 Note. Let us illustrate the above theorem in the category Set: We use AkXY = {x Yi I
XE X A y € Y} Y1 x XandAkT = {A1...k.t t E T{1 k}} T{1,...,k}. Then we
have an adjunction:

(‘ia e) : A1 -1 A1 End Set i— Set

where ?lxx = (idj x) and (ET)y(f, t) = T ft. Moreover, the function i and r describe ,i
conversion:

Ak(AkX)={A1..-k.t t€AkX{1,..., k)}

‘i: Ak-Ak — Id
Al. - - k. xl - - . k z (‘i-conversion)

and 13-reduction:

Ak(AkT)Y={(Al---k.t)yl---yk I tET{1 k} A y,€Y}

e: Id — Ak-Ak
(ET)y : [y/i]1t 4— (Al.- -k.t)yi ---Ilk- C6-reduction)

0

6.2.6 Proposition. The simple basic macro tree transducers are precisely the monadic transduc
ers

M (7-(ld+ .)-(. olD),Z,,c,e)

over Set where I is a finite set, Q is a cocartesian Set-endofunctor, and Z and are polynomial.
0

The basic macro tree transducer case is just a little more complicated than the simple basic
macro tree transducer: The only difference to Proposition 6.2.6 is that we have to replace the
functor (. .—o ID) by the functor (4_O) defined by Vh. (4—o)h = h .—o h.

6.2.7 Proposition. The basic macro tree transducers are precisely the monadic transducers

M
=

(ld + .).
over Set where I is a finite set, Q is a cocartesian Set-endofunctor, and Z and are polynomial.

0

In order to describe arbitrary macro tree transducers we need the adjunction F -II. I where F
is the free-functor F T —‘ Z mapping a varietor onto its free monad.

6.2.8 Proposition. The macro tree transducers are precisely the monadic transducers

over Set where I is a finite set, Q is a cocartesian Set-endofunctor, and Z and are polynomial.
0

7 Fusion of tree transducers

In Section 6 we have seen how particular functional programs can be equivalently transformed
into monadic transducers. Now we are ready to apply the monadic fusion Theorem 5.2.2 to func
tional programs:

7.1 Fusion of individual tree transducers

Given algebraic types A, B, and C and functional programs C B A we construct a new

program C —- A such that

TrO IJ TO (TO

where the initial term-algebras Tt, T, andTr are supposed to be the semantics of the types A,
B, and C, respectively. The construction of h is shown in Figure 4. The rule of h is constructed
according to Definition 5.2.1. The correctness of the fusion transformation w.r.t. the denotational
semantics 1.1 follows from Theorem 5.2.2. Notice, that there occurs no in the rule of the fusion,
and thus the intermediate data structure has indeed been removed.

This algorithm works for all functional programs which can be written as monadic transducers
(and more as outlined in Subsection 8.1). In particular it works for the classes of tree transducers
from Section 6.

7.2 Fusion of classes of tree transducers

Our new fusion theorem makes it possible to fuse classes of tree transducers (or more precisely:
classes of functions computable by a class of tree transducers). We have already seen the follow
ing classes: HOM ç TOP ç sb-MAC b-MAC ç MAC. From the theory of tree transducer it is
known that all the above inclusions are proper.

Let ID be the class of all identity functions. For all classes of functions A and B we define the
composition

A.B={a.b aEA A beB A domacodb}.

functional
program

some category
theory magic

rule

universal
property

generalized
semantics

restriction
& observation

semantics

Obviously ID ç HOM because IRDE] = idT. Moreover, if ID B then A ç A . B n B . A.
According to Definition 5.1.1 and Theorem 5.2.2 it suffices to compose the patterns of the ac

cording monadic transducers from Section 6 in order to compose two of the classes HOM, TOP,
sb-MAC, b-MAC, or MAC.

It is obvious that all classes of monadic transducers are closed under composition with HOM
from either side, because the pattern of a homomorphism transducer is the identity functor Id.

7.2.1 Theorem (fusion of top-down tree transducers [Eng751).

TOPTOP=TOP. o

Proof Let and be the pattern of the two top-down tree transducers where Q and Q’ are co
cartesian Set-endofunctors according to Proposition 6.2.3. We just have to compose the patterns
and use Lemma 4.3.5: Q’ . Q = Since cocartesian functors are closed under composition
the latter is again the pattern of a top-down tree transducer. .

7.2.2 Theorem (fusion of a ((simple) basic) macro and a top-down tree transducer [Eng8l}).

sb-MAC TOP = sb-MAC

b-MAC TOP= b-MAC

MAC•TOP= MAC.

Proof The pattern of a top-down tree transducer is and the pattern of any of the above macro
tree transducers has the form Q.. where Q and Q’ are cocartesian Set-endofunctors according
to the Propositions 6.2.3.6.2.6, 6.2.7, and 6.2.8. As in the proof of Theorem 7.2.1 we calculate the
pattern of the fusion: Q . Q’..... .

The following lemmas help us to calculate with patterns of monadic transducers:

7.2.3 Lemma. Let C be a category which has function spaces, I be a C object, and Q -I U : C — C.
Then the following holds:

Figure 4: Monadic fusion algorithm

AQJ (Id 4—0 U). A1.

7.2.4 Lemma. Let C be a bicartesian closed category I be a C-object, and Q a cocartesian Cendofunctor. Then the following holds:

A1.Q(Qold).Aj. o

7.2.5 Corollary. Let C be a bicartesian closed category which has function spaces, I be a C object, and Q a cocartesian C-endofunctor with right adjoint U. Putting together the Lemmas 7.2.3and 7.2.4 and with a little help from Definition 4.3.2, Lemmas 4.3.6 and 6.2.4 we get:

Q.A7.Qi-oU. 0

7.2.6 Lemma. Let Q -1 U C — V be an adjunction and T and T’ be monads on C. Then:

Q-oU(T.-oT’)T4-oT’.

For the following theorem we will need Corollary 4.4.4, Corollary 7.2.5, and Lemma 7.2.6 tocompose the patterns. Then we have to use Lemma 4.3.8 and Corollary 4.4.4 to construct amonadic transducer homomorphism from the composed pattern to the wanted pattern of thefusion (as they are not necessarily equal). Finally we use Theorem 5.3.2 to show the equivalenceof the two semantics and thus of the respective classes of tree transducers:

7.2.7 Theorem (fusion of a top-down and a ((simple) basic) macro tree transducer 1EV85)).

TOP. sb-MAC = sb-MAC
TOP. b-MAC= b-MAC
TOP. MAC= MAC. o

8 Generalizations and future work
Finally we outline some topics for further research:

The monadic fusion theorem (Theorem 5.2.2) works in arbitrary categories (which have aninitial object). We want to investigate applications of the monadic fusion in other categoriesthan Set, e.g: bottom-up tree transducers or functional programs with infinite data structures.
The monadic fusion guarantees the elimination of the intermediate data structure. However,this does not necessarily imply that the resulting program will be more efficient. We want tocompare the efficency of the programs before and after the monadic fusion.
We would like to extend our monadic fusion to tree to tree-series transducers which will bepossible with the following generalization:

8.1 Using arbitrary monads

Consider the rule p : IHT . Z of a monadic transducers according to Definition 5.1.1. It is
easy to see that (I) and (ii) of Theorem 5.2.2 make no use of the fact that T is afree monad over
E. Hence we can define a generalized version of a monadic transducer where the rule has the
form p: HTI -- t where T is an arbitrary monad. Then we can still apply our fusion theorem
(Theorem 5.2.2 (ii)) even if the consuming monadic transducer is generalized.

References

IAHS9O] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories. Pure
and Applied Mathematics. John Wiley & Sons, 1990.

ICDPR97aJ L. Correnson, E. Duris, D. Parigot, and G. Roussel. Attribute grammars and func
tional programming deforestation. In 4th International StaticAnalysis Symposium—
Poster Session, Paris (F), 1997.

ICDPR97bJ L Correnson, E. Duris, D. Parigot, and G. Roussel. Symbolic composition. Technical
Report 3348, INRIA, January 1997.

ICF82I B. Courcelle and P Franchi—Zannettacci. Attribute grammars and recursive program
schemes. Theoret. Cornput. Sci., 17:163—191, 235—257, 1982.

[Dam82] W. Damm. The JO- and 01-hierarchies. Theoretical Computer Science, 20:95—206,
1982.

lEng75l J. Engeifriet. Bottom-up and top-down tree transformations—a comparison. Math.
Systems Theory, 9(3):198—231, 1975.

FEng8Ol J. Engeifriet. Some open questions and recent results on tree transducers and tree
languages. In R.V. Book, editor, Formal language theory: perspectives and open prob
lems, pages 24 1—286. New York, Academic Press, 1980.

{Eng8l] J. Engeifriet. Tree transducers and syntax-directed semantics. Technical Report
Memorandum 363, Technische Hogeschool Twente, March 1981. also in: Pro
ceedings of the Colloquium on Trees in Algebra and Programming (CAAP’92), Lille,
France 1992.

IEV85J J. Engelfriet and H. Vogler. Macro tree transducers. I. Comput. System Sci., 31:71—146,
1985.

lFok92] M. M. Fokkinga. Law and Order in Algorithrnics. PhD thesis, University of IWente,
Dept INF, Enschede, The Netherlands, 1992.

IFul8lJ Z. Fulöp. On attributed tree transducers. Acta Cybernet., 5:261—279, 1981.

IFV98] Z. FuLop and H. Vogler. Syntax-directed semantics—Formal models based on tree
transducers. Monographs in Theoretical Computer Science, An EATCS Series.
Springer-Verlag, 1998.

lGie88I R. Giegerich. Composition and evaluation of attribute coupled grammars. Acta In
form., 25:355—423, 1988.

[Gi196l A. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD thesis, De
partment of Computing Science, Glasgow University January 1996.

IGLP93I A. Gill, J. Launchburry, and S. L. Peyton-Jones. A short cut to deforestation. In Pro
ceedings ofFunctional ProgrammingLanguagesan CornputerArchitecture (FPCA’93),
pages 223—232, Copenhagen, Denmark, June 1993. ACM Press.

[HinOOJ R. Hinze. Deriving backtracking monad transformers. In P. Wadler, editor, Pro
ceedings of the 2000 International Conference on Functional Programming (ICFP’03),
Montreal, Canada, sep 2000.

IJohOll P Johann. Short cut fusion: Proved and improved. In W Taha, editor, Proceedings
of the 2nd International Workshop on Semantics, Applications, and Implementation
ofProgram Generation (SAIG’Ol), volume 2196 of LNCS, pages 47—71, Florence, Italy,
September 2001. Springer.

(JurO2J C. Jurgensen. Monadic fusion of functional programs. Technical Report TUD-F102-
12, Technische Universität Dresden, Fakultät Informatik, D-01062 Dresden, Ger
many, December 2002.

(JV01J C. Jurgensen and H. Vogler. Syntactic composition of top-down tree transducers is
short cut fusion. Technical Report TIJD-FI01-10, Technische Universität Dresden,
Fakultät Informatik, D-01 062 Dresden, Germany, November 2001. Acceptedfor pub
lication in Math. Struct. in Cornp. Science.

(Ke180] G. M. Kelly. A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves and so on. Bulletins of the Australian Mathe
matical Society, 22: 1—83, 1980.

[KUh98j A. Kühnemann. Benefits of tree transducers for optimizing functional programs.
In V. Arvind and R. Ramanujam, editors, Proceedings of the 18th INternational
Conference on Foundations of Software Technology & Theoretical Computer Science
(FST&TCS’98), volume 1530 of LJ”JCS, pages 146—157, Chennai, India, dec 1998.
Springer-Verlag.

[KVO1I A. ICuhnemann and J. Voigtlander. ‘Thee transducer composition as deforestation
method for functional programs. Technical Report TUD-FI01-07, Technische Uni
versitat Dresden, Fakultät Informatik, D-01062 Dresden, Germany, August 2001.

(LGO2aI Ch. Lüth and N. Ghani. Composing monads using coproducts. In International Con
ference on Functional Programming (ICFP’02), pages 133— 144. ACM Press, Septem
ber2002.

lLGO2bl Ch. Lüth and N. Ghani. Monads and modularity. In Alessandro Armando, editor,
Frontiers of Combining Systems FroCos 2002, 4th International Workshop, number
2309 in Lecture Notes in Artificial Intelligence, pages 18—32. Springer Verlag, 2002.

[Mog9Ol E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS
90-113, LFCS, 1990.

[Rou68J W. C. Rounds. T?’ees, transducers and transformations. PhD thesis, Stanford Univer
sity, 1968.

(TM951 A. Takano and E. Meijer. Shortcut deforestation in calculational form. In Proceedings
of the Conference on Functional Programing Languages and ComputerArchitecture,
pages 306—313, La Jolla, CA, June 1995. ACM Press.

{Wad9OJ P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science, 73(2):231—248, 1990.

An Abstract Monadic Semantics for
Value Recursion

Eugenio Moggi* Amr Sabry
DISI Dept. of Computer Science

Univ. di Genova Indiana University
moggi@disi .unige . it sabrycindiana. edu

Abstract

This paper proposes an operational semantics for value recursion
in the context of monadic metalanguages. Our technique for combin
ing value recursion with computational effects works uniformly for all
monads. The operational nature of our approach is related to the im
plementation of recursion in Scheme arid its monadic version proposed
by Friedman and Sabry, but it defines a different semantics and does
not rely on assignments. When contrasted to the axiomatic approach
proposed by Erkök and Launchbury, our semantics for the continua
tion monad invalidates one of the axioms, adding to the evidence that
this axiom is problematic in the presence of continuations.

1 Introduction

How should recursive definitions interact with computational effects like
assignments and jumps? Consider a term fix x.e where fix is some fixed point
operator and e is an expression whose evaluation has side-effects. There are

at least two natural meanings for the term:

1. the term is equivalent to the unfolding e{x = fix x.e}Fand the side-

effects are duplicated by the unfolding.

2. the side-effects are performed the first time e is evaluated to a value v

and then the term becomes equivalent to the unfolding v{x = fix x.v}.

The first meaning corresponds to the standard mathematical view [Bar84].

The second meaning corresponds to the standard operational view defined

Supported by MIUR project NAPOLI and EU project DART IST-2001-33477.
tTjüs material is based upon work supported by the NSF under Grants No. CCR

0196063 and CCR 0204389.

since the SECD machine ILan64} and as implemented in Scheme for ex
ample [KCE98]. The two meanings are observationally equivalent in a
pure functional language. When the computational effects are expressed
using monadsF Erkök and Launchbury [ErkO2F ELOOF ELMO2} introduced
the phrase value recursion in monadic computations for the second mean
ing and the name mfix for the corresponding fixed-point operator. Since
we also work in the context of monadic metalanguagesFwe adopt the same
terminology but use the capitalized name Mfix to distinguish our approach.
We propose a simple uniform operational technique for combining monadic
effects with value recursion. Computing the result of Mfix x.e requires three
rules:

1. A rule to initiate the computation of e. Since this computation hap
pens under a binderrcare must be taken to rename any other bound
instance of x that we might later encounter.

2. If the computation of e returns a value vFall free occurrences of x are
replaced by fix x.v (where fix is the standard mathematical fixed-point
operator).

3. If the computation of e attempts to use xFwe signal an error.

The three rules above are robust in the sense that they can be uniformly
applied to a wide range of monads: we give examples for the monads of
stateFnon-determinismFparallelismFand continuations.

Our semantics is operational in nature but unlike the SECD and Scheme
semanticsPit doesn’t rely on assignments to realize the second rule. The
presence of assignments in the other operational approaches yields a different
semanticsFcomplicates reasoningPand invalidates some equational axioms.

In contrastFthe work by Erkök and Launchbury (ELOOFErkO2j advocates an
axiomatic approach to defining value recursion by proposing several desirable
axioms. In their approach one has to find for each given monad over some
category (or defined in Haskell [Jon99j) a fixed point operator that satisfy the
axioms (up to observational equivalence). The endeavor has to be repeated
for each monad individually. For the continuation monad there are no known
fixed point operators that satisfy all the desired axioms.

Summary. Sections 2 and 3 illustrate the technique by taking an existing
monadic metalanguage MMLS with ML-style references [MFO3rSec.3] and
extending it with value recursion. Section 4 recalls the equational axioms
for value recursion in [ErkO2JFand when they are known to fail. Section 5
shows that the addition of value recursion to MMLS is robust with respect
to the addition of other computational effectsFnamely non-determinism and
parallelism. FinallyFSection 6 explains the full subtleties of value recursion

65

in the presence of continuationsFoutlines a proof of type safetyFand discusses
counter-examples to equational axioms.

2 A Monadic Metalanguage with References

We introduce a monadic metalanguage MMLS for imperative computationsF
namely a subset of Haskell with the 10-monad. Its operational semantics is
given according to the general pattern proposed in [MFO3]Fi.e. we specify
a confluent simplification relation — (defined as the compatible closure
of a set of rewrite rules)F and a computation relation F—. describing
how the configurations of the (closed) system may evolve. This is possible
because in a monadic metalanguage there is a clear distinction between term-
constructors for building terms of computational typesrand the other term-
constructors that are computationally irrelevant (i.e. have no effects). For
computationally relevant term-constructors we give an operational semantics
that ensures the correct sequencing of computational effectsFe.g. by adopting
some well-established technique for specifying the operational semantics of
programming languages (see [WF94])Fwhile for computationally irrelevant
term-constructors it suffices to give local simplification rulesFthat can be
applied non-deterministically (because they are semantic preserving).

The syntax of MM LS is abstracted over basic types bFvariables x E XFand
locations 1 E L.

• Types I- E T ::= b In + T Mr I Ri-p

e E E : := x)z.e eie2 ret e do X — e1; e2
• Terms

new e get e set e1 e2

In addition to the basic typesF we have function types Ti —* T2F refer
ence types Rn for locations containing values of type rFand computational
types Mr for (effect-full) programs computing values of type T. The terms
do x — el; e2 and ret e are used to sequence and terminate computationsT
the other monadic operations are: new e which creates a new referenceFget e
which returns the contents of a referenceFand set e1 e2 which updates the
contents of reference e1 to be e2. In order to specify the semantics of the
languageFthe set of terms also includes locations I.

Table 1 gives the typing rules (for deriving judgments of the form F FE e: TI’

where F: X T is a type assignment for variables x: r and E: L T is a
signature for locations 1: RT.

The operational semantics is given by two relations (as outlined above): a
simplification relation for pure evaluation and a computation relation for
monadic evaluation. Simplification —? is given by /3-reductionFi.e. the
compatible closure of (Ax.e2)ej — e2{x: = e1}. The computation relation

66

F(x) = r F,x:r1 I—s e:r
x abs

PI-Ex:T FI-EAX.e:Tl—i.T2

FF-Eel:rl—*r2 FFEe2T1
app

F FE ele2: T2

FF-Ee:T TI-Eel:Mrl F,x:riF—Ee2:Mr2
ret do

f—s ret e: Mr F FE do x — e1; e2: Mr2

E(l)=Rr FF-Ee:r FI—Ee:Rr
new get

F FE 1: Rr F FE new e: M(Rr) F F get e: Mr

FFEe1:Rr FFEe2:r
set

F FE set e1 e2: M(RT)

Table 1: Type System for MMLS

Id Id’ done (see Table 2)is defined using the additional notions of
evaluation contextsFstores and configurations Id E Conf:

• Evaluation contexts E E EC : := EJ I E[do x ÷— 0; e]
(or equivalently E : := 0 I do x — E; e).

• Stores e S L E map locations to their contents.

• Configurations (jL, e, E) E Conf S xE x EC consist of the current store
tF the program fragment e under considerationF and its evaluation
context E.

3 Extension with Value Recursion

We now describe the monadic metalanguage MML obtained by extend

ing MMLS with two fixed point constructs: fix xe for ordinary recursionF
and Mfix x.e for value recursion. The expression fix xe simplifies to its
unfolding. For computing the value of Mfix x.eFthe subexpression e is first
evaluated to a monadic value ret e’. This evaluation might perform compu
tational effects but cannot use x. Then all occurrences of x in e’ are bound
to the monadic value itself using fix so that any unfolding will not redo the
computational effects.

The extension MMLL is an instance of a general pattern (only the extension

of the computation relation is non-trivial)Fthat will become clearer after
considering other monadic metalanguages.

67

Administrative steps

(A.O) (, ret e, D) done

(A.1) (ji,do x —e1;e2,E) i—? (p,ej,E[do x — O;e2])

(A.2) (,ret ei,E[do x — cJ;e2]) —> (,e2{x:= ei},E)

Imperative steps

(new) (it, new e, E) F— (u{1: e}, ret 1, E) where I dom(p)

(get) (ji, get 1, E) i— (, ret e, E) with e = IL(l)

(set) (,set 1 e,E) i—? (j41 = e},ret l,E) with 1 E dom()

Table 2: Computation Relation for MMLS

• TermsleEE+=fixx.eIMfixx.eI

• Evaluation contexts E E EC += E[Mfix xfl]

• Configurations (XI,e,E) e Conf Pfl(X) x S x E x EC The
additional component X is a set which records the recursive variables
generated so farrthus X grows as the computation progresses.

Despite their different semanticsr the two fixed points have similar typing
rules:

r,x:MrI-Ee:Mr F,z:MrI-Ee:Mr

fix xe:Mr rI-EMfixz.e:Mr

The simplification relation is extended with the rule fix x.e — e{x: =

fix x.e} for fix-unfolding.

The computation relation Id F— Id’ I done err may now raise an error
and is defined by the following rules:

• the rules in Table 2Fmodified to propagate the set X unchangedFand

• the following new rules for evaluating recursive bindings Mflx x.e:

(Ml) (XI,Mfix x.e,E) i— (X,xI,e,E[Mflx x.D]) with x renamed
to avoid clashes with X

(M.2) (XI,ret e,E[Mflx xJ]) i— (XIl, ret where i stands for
•{x: = fix x.ret e}

68

(err) (XI#, x, E) p—> err where x e X (attempt to use an unresolved
recursive variable)

In the context Mfix x.D the hole is within the scope of a binderFthus it
requires evaluation of open terms:

• The rule (M.1) behaves like gensymF it ensures freshness of z. As
the computation progresses x may leak anywhere in the configuration
(depending on the computational effects available in the language).

• The rule (M.2) does the reversel’it replaces all free occurrences of x
in the configuration with the term fix x.ret eFin which x is not free.
This rule is quite subtleFbecause of E{x: = e} (see Definition 6.5).

In special cases [AFMZO2] it is possible to simplify (M.2) by treating X
as a stack and enforcing the invariant that FV(E) = OF but our aim is
an operational semantics that works with arbitrary computational effects.
Indeed in the case of continuations (Section 6)Fneither of these invariants
holds.

4 Axioms for Value Recursion

In [ErkO2] the fixed point constructs have a slightly different typing:

F,x:rFEe:Mr
• where x is of type 7.

1’ F infix x.e: Mr

This rule allows the use of x at type r before the recursion is resolvedF
as in (mfix x.set x 0): M(R int). In [ErkO2l this premature attempt to
use x is identified with divergenceFwhile but we consider it a monadic
errorFwhich should be statically prevented by more refined type sys
tems [BouOl]. The difference of typing reflects this desire and is not
an intrinsic limitation of our approach.

r x: r FE e:
• requires recursive definitions at all types; we only

F FE fix x.e: r
require them at computational types.

Two of the important axioms for defining vahie recursion in [ErkO2] are:

(Purity) mfix z.ret e = ret (fix x.e)
(Left-shrinking) infix x.(do x1 — e1; e2) = do x1 i— e1; infix x.e2

when x 0 FV(ei)

The purity axiom requires that infix coincides with fix for pure computa
tions. Because of the differences in typingP the purity axiom in our case
becomes:

(Purity) Mfixx.rete fix x.rete
69

Left-shrinking states that computations which do not refer to the recursive
variable can be moved outside the recursive definition. This rewriting how
ever is known to be incorrect in Scheme [Baw881 but it was argued [ErkO2]
that the failure of left-shrinking is due to the idiosyncrasies of Scheme. In
fact left-shrinking is invalidated by our semantics and in other known com
binations of value recursion and continuations FSOOFCarO3]. Indeed if one
captures the continuation in e1 then on the left-hand side this continuation
has access to free occurrences of x in e2 but not on the right-hand side. As
Section 6.2 illustrates this can be exploited to write a counterexample to
left-shrinking.

5 Non-Determinism and Parallelism

We consider two extensions to MMLS (and MML): the first introduces non-
deterministic choice ei ore2Pthe second introduces a construct spawn e1 e2
to spawn a thread of computation ei in parallel with the continuation e2 of
the current thread.

Non-determinism. The typing rule for non-deterministic choice is:

FF—Eel:Mr I’F-Ee2:Mr

rF—EeI ore2:Mr

The configurations for MMLS and MMLL are unchanged. The computation
relations are modified to become non-deterministic. More specificallyr

• for MMLPwe add the computation rules (, e1 or e2, E) i— (p, e, E)
for i = 1,2;

• for MMLLFwe add the rules (XIu,ei ore2,E) F— (XIj,e,E) for
i = 1,2.

Parallelism. The typing rule for spawn is:

F HE ei: Mr1 r e2: Mr2

r FE spawn e1 e2: MT2

In this case a configuration consists of a (finite) multi-set of parallel threads
sharing the store pFwhere each thread is represented by a pair (e, E).

For MMLS the configurations become (au, N) € Conf S x Mfl(E x EC)Fi.e.
instead of a thread (e, E) one has a multi-set of threadsFand the computation
relation Id i—? Id’ done is defined by the following rules:

70

• Administrative steps: threads act independentlyFtermination occurs
when all threads have completed

(done) (,O) i— done

(A.O) (au, (ret e, C) W N) F—> (it, N)

(A.1) (ji, (do x i— e1; e2, E) W N) i—> (ii, (ei, E[do x ÷— C; e2J) w N)

(A2) (, (ret e1, E[do x — 0; e21) w N) p—> (, (e{x: = e1), E) W N)

• Imperative steps: each thread can operate on the shared store

(new) (, (new e, E)WN) I—> ({l: e}, (ret 1, E)N) where 1 g dom()

(get) (, (get 1, E) L±J N) i—> (, (ret e, E) W N) with e = L(l)

(set) (, (set 1 e, E)WN) i—> (jt{l = e}, (ret 1, E)WN) with 1 E dom()

• Step for spawning a new thread

(spawn) (, (spawn e e2, E) w N) i—> (, (e1, 0) w (e2,E) w N)

For M MLZ the configurations become (XIt, N) E Conf (X) X S X4u(E x
EC)Fi.e. the threads share the set X which records the recursive variables
generated so farF and the computation relation Id i—> Id’ I done err is
defined by the rules above (modified to propagate the set X unchanged) and
the following rules for recursive monadic bindings:

(MJ) (XI, (Mfix x.e, E) W N) F—> (X, x4u, (e, E[Mfix x.[]]) W N) with x
renamed to avoid clashes with X

(M.2) (XI, (ret e,E[Mfix x.Dj) W N) i—> (XI7i, (ret ,E) WN) where i

stands for .{x: = fix x.ret e}

(err) (XI.t, (x, E) Lii N) i—> err where x E X

When a thread resolves a recursive variable x (M.2)Fthe value of x is prop
agated to all other threads. When an error occurs in a thread (err)Fthe
whole computation crashes.

6 References and Continuations

In this section we consider in full detail the monadic metalanguage MM LF

obtained from MMLi by adding continuations. Section 6.1 outlines a proof
of type safetyFand Section 6.2 shows the failure of the left-shrinking axiom
and discusses some differences with Scheme. The syntax of MM L’ is ab
stracted over basic types bFvariables x E Xflocations 1 e L and continuations
k E K:

71

F(x) = r F,x:Tj ‘E e:T2
x abs

FI-Ex:r FI—EAX.e:rl--4r2

T[-Eel:rl---*r2 TFEe2:rl F,x:MrF—Ee:Mr
app fix

F F—s ele2: r2 F fix x.e: Mr

Pf-Ee:T FI-Eel:Mrl F,x:T1F-Ee2:Mr2
ret do

F I—s ret e: Mr F FE do x — e; e2: Mr2

Mfix
F, x: Mr ‘E e: Mr

F FE Mfix x.e: Mr

(l)=Rr FI-Ee:r FF—Ee:Rr
1 new get

FFE1:Rr FFE new e:M(Rr) FI-E get e:Mr

Ff-e1:Rr FF-Ee2:r
se

I—s set ei e: M(Rr)

YD(k) = Kr F,x:Kr FE e:Mr
k callcc

FI—E k:Kr FF-E callccx.e:Mr

FF-Eel:Kr FFEe2:Mr
throw

FI-E throwe1e2:Mr’

Table 3: Type System for MMLX’

.TypesIrET::=bIrl—r2lMrlRrlKrI

e E E ::= x Ax•e I ee fixxe I
ret e do x — ei; e2 I Mfix x.e

• Terms
11 newel gete I sete1 e2 I
k I callcc x.e throw ele2

The type Kr is the type of continuations which can be invoked on arguments
of type Mr (invoking the continuation aborts the current context). The
expression callcc xe binds the current continuation to x; the expression
throw ele2 has the dual effect of aborting the current continuation and
using el instead as the current continuation. This effectively “jumps” to the
point where the continuation el was captured by callcc.

Table 3 gives the typing rules for deriving judgments of the form F FE e: rP

where F: X T is a type assignment for variables z: r and D: L U K T is
a signature for locations 1: Rr and continuations k: Kr.

72

The simplification relation — on terms is given by the compatible closure
of the following rewrite rules:

3))x.e2)e1— e2{x: = ei}

fix) fixx.e—>e{x:=fixx.e}

We write = for the equivalence induced by —. Fi.e. the refiexiveFsymmet
nc and transitive closure of — . We state the properties of simplification
relevant for our purposes.

Proposition 6.1 (Congr) The equivalence = induced by —> is a con
gruence.

Proposition 6.2 (CR) The simplification relation —> is confluent.

Proposition 6.3 (SR) If F FE e: r and e —> e’, then F FE e’: r.

To define the computation relation Id i—> Id’ I done err (see Table 4)F
we need the auxiliary notions of evaluation contextsF storesF continuation
environmentsFconfigurations Id e ConfFand computational redexes:

• Evaluation contexts E E EC : := D I E[do x — 0; e] I E[Mfix x.DJ
(orE::=0 I dox4—E;e I Mfixx.E)

• Stores u E S L E and continuation environments p e KE K
EC

• Configurations (XIp,p,e,E) E Conf Pfl(X)xSxKExExEC consist
of the current store u and continuation environment pFthe program
fragment e under consideration and its evaluation context E. The set
X records the recursive variables generated so farF thus X grows as
the computation progresses.

• Computational redexes

TER ::=retejdox—el;e2IMfixx.eI
new e get 11 set 1 e callcc x.e throw k e

Remark 6.4 In the absence of Mfix x.eFthe hole 0 of an evaluation context
E is never within the scope of a binder. Therefore one can represent E as
a A-abstraction Ax.E[xjrwhere x g FV(E). This is how continuations are
modeled in the A-calculusFin particular the operation .E[ej of replacing the
hole in E with a term e becomes simplification of the /3-redex (Ax.E[x]) e.
This representation of continuations is adopted also in the reduction seman
tics of functional languages with control operators [WF941. In such reduc
tion semantics there is no need keep a continuation environment pFbecause

73

a continuation k with p(k) = E is represented by the A-abstraction Ax.E(x].
In the presence of Mlix x.e (or when modeling partial evaluationFmulti-stage
programmingFand call-by-need [AF97I’AMO 95PM0W98])Fevaluation may
take place within the scope of a binderrand one can no longer represent an
evaluation context with a A-abstractionF because the operation E[e] may
capture free variables in e. In this caseFcontinuation environments are very
convenientrsince the subtle issues regarding variable capture are confined to
the level of configurationsFand do not percolate in terms and other syntactic
categories. I

In an evaluation context the hole LI can be within the scope of a binderFthus
an evaluation context E has not only a set of free variablesFbut also a set
of captured variables. MoreoverF the definition of E{x’: = e’} differs from
the capture-avoiding substitution e{x’: = e’} for termsF because captured
variables cannot be renamed.

Definition 6.5 The sets CV(E) and FV(E) of captured and free variables
and the substitution E{x’: = e’} are defined by induction on

• CV(D)4FV(D)40andD{x’:=e’}4D

• CV(dox E;e) 4 CV(E), FV(dox — E;e) 4 FV(E)U(FV(e)\{x})

and (do x — E; e){x’: = e’} 4 do z — = e’}; e{x’: = e’} (the
bound variable x can be renamed to be different from x’ and from any
of the free variables of e’).

• CV(Mfix x.E) 4 {x} U CV(E), FV(Mfix x.E) 4 FV(E) \ {x} and
I Mfixx.E ifx=x’

(Mfixx.E){x:=e}= ,
Mlix x.E{x = e } otherwzse

(the captured variable x cannot be renamed; free occurrences of x in e’
may be captured.)

The confluent simplification relation —> on terms extends in the obvious
way to a confluent relation (denoted —?) on storesFevaluation contextsF
computational redexes and configurations.

Lemma 6.6

.1. If (Xp,p,e,E) (X’p’,p’,e’,E’), then X = X’, dom(i’) =

dom(ji), dom(p’) = dom(p) and

• FV(e’) c FV(e), CV(E1)= CV(E) and FV(E’) c FV(E)

• FV(1? 1) c FV(1z 1) for 1 e dom(p)

• CV(p’ k) = CV(p k) and FV(p’ k) ç FV(p k) for Ic e dom(p)

74

Administrative steps

(A0) (X,p,ret e,[]) done

(A1) (XI,p,do x — ei;e2,E) i—. (XI,p,ei,E[do x *— D;e2])

(A.2) (X,p,rete1,Edo z i— D;e2]) i— (Xt,p,e2{x:=z ei},E)

Steps for recursive monadic binding

(M1) (XIu,p,Mflx x.e,E) i— (X,xI,p,e,E[Mflx x.I:1j) with z renamed
to avoid clashes with X

(M2) (Xjp,p,ret e,E(Mfix x01) i—? (XIji,, ret where istands for
•{x: = fix x.ret e}
(the free occurrences of the recursive variable x are replaced anywhere
in the configuration)

(err) (X,p,x,E) 1—> err where x e X (attempt to use an unresolved
recursive variable)

Imperative steps

(new) (XIp, p, new e, E) H— (XI{l: e}, p, ret 1, E) where 1 ‘ dom()

(get) (XIt, p, get 1, E) (XIp, p, ret e, E) with e = p(l)

(set) (Xj,p,set 1 e,E) i— (XI{l = e},p,ret l,E) with 1 E dom()

Control steps

(callcc) (XI,p,ca11cc x.e,E) I > (XIii,p{k:E},e{x:= k},E) where k
dom (p)

(throw) (XIjp, throw k e,E) i— (Xj,p,e,Ek) with Ek = p(k)

Table 4: Computation Relation for MMLV

(D)
/,D:Mr FE D:Mr

L,D:MrF-EE:Mrl 1,x:TlFEe:Mr2
(do)

,i:Mr FE do x — E;e:Mr2

f,D:Mr FE E:Mr’
(Mfix) z(x) = Mr

z, L: Mr FE Mfix x.E: Mr’

Table 5: Well-formed Evaluation Contexts for MM L’

2. If(XI,u, p, e, E) i—> (X’, p’, e’, E’) and FV(, p, e, E)UCV(p, E) c
X, then X X’, dom() c dom(il), dom(p) c dom(p’) and
FV(, p’, e’, E’) U CV(p’, E’) ç x’.

Theorem 6.7 (Bisim) If 1dm (Xj,p,e,E) with e E R and Id —- Id’,
then

1. Id i— D implies D’ s.t. Id’ &— D’ and D —-> D’

2. Id’ i— D’ implies D s.t. Id i—> D and D D’

where D and D’ range over Conf U {done,err}.

6.1. Type Safety

The definitions of well-formed configurations FE Id: r’ and evaluation
contexts Z, 0: Mr FE E: Mr’ must take into account the set X. Thus we
need a type assignment mapping x E X to computational types Mr.

Definition 6.8 z FE (XIv, p, e, E): r’ dom(E) = dom(i) W dom(p),

dom() = X and exists r such that

• Z FE e: Mr is derivable

• L, 0: Mr FE E: Mr’ is derivable (see Table 5)

• ej = p.(l) and Rrj = E(l) implies FE el: rj

• Ek = p(k) and Krk = E(k) implies 1,0:Mrk FE Ek:Mr’.

The formation rules of Table 5 for deriving , 0: Mr FE E: Mr’ ensure that
z assigns a computational type to all captured variables of E. We can now
formulate the SR and progress properties for MM

76

Theorem 6.9 (SR)

1. If ‘E 1d1:r’ and Id1 —> Id2, then FE 1d2:r’

2. If/ FE, 1d1:r’ and Id1 F—> Id2, then exists D2 E1 and/2
s.t. 2 FE2 Id2: TI.

Theorem 6.10 (Progress) If/i FE (XI,p,e,E):T’, then one of the fol
lowing holds

1. e R and e —>, or

2. e E R and (XI,p,e,E) —>

6.2 Counter-examples

The left-shrinking property states that:

Mfix x.(do x1 — e1;e2) = do x1 — e1; Mfix z.e2 when x ‘ FV(ei)

It is instructive to consider how this property fails in MML. Our example
(inspired by examples by Bawden and Carisson) uses continuations in a way
that requires recursive types which can be declared as follows in Haskell
syntax:

data XT in = XT (in (Int, XT in)) —— final result
data KT in = KT (K (RT in)) —— recursive continuations
data RT in = —— arguments to continuations

Final (XT in)

I Pair (Bool, KT in)

Now we consider the following instance of the left-hand side (again in Haskell
syntax):

ti =

Mfix (\x —>

do p <— callcc (\k —> return (Pair (True, KT k)))
case p of

Pair (b, KT k) —>

if b
then

do Final v <— callcc (\c —>

throw k (return (Pair (False, KT c))))
return (1,v)

else throw k (return (Final (XT x))))

In our semantics (extended with simplification rules for booleansF pairsr
etc) the example evaluates as follows. The pair p initially refers to a con
tinuation which re-binds p. In the then-branch which is initially takenF

77

this continuation is invoked with a new pair containing the continuation
c. This latter continuation expects a value v which it includes in the fi
nal result (1 , v). In the else-branch which is taken the second timerthat
value v is bound to Final (XT x). Hence the return value of the body
of the Mfix is (1 ,Final (XT x)) and the entire expression evaluates to
fix x. return (1, Final (XT x)) which is a recursive pair of ones. How
ever were we to move the first callcc-expression (which has no free occur
rences of x) outside the MfixI’the continuations k and c would have no access
to the variable x and the example would evaluate to return (1x) which
would cause an error if the second component is needed. The fact that this
result is an approximation of the left-hand side does not generalize: with a
slightly more complicated exampleFit is possible to get a different observable
value.

Our semantics also differs from the Scheme semantics. The difference in this
case is due to the nature of variables in both systems: in our setting variable
are bound to expressions and locations must be created and dereferenced ex
plicitly. In Scheme variables implicitly refer to locationsFwhich means that
continuations captured within the body of an Mfix not only have access to
the free occurrences of the recursive variable in the body of the recursive
definition but also to the location in which the result is to be stored: this
additional expressiveness for continuations invalidates even more transfor
mations like Mfix i.e = e when x FV(e) [Baw88]. Such transformations
should still be valid in our model.

Acknowledgments We would like to thank Levent Erkök and Magnus
Carlsson for very fruitful discussions and comments.

References

[AF97] Zena M. Ariola and Matthias Felleisen. The call-by-need lambda
calculus. Journal of Functional ProgramrningF 7(3):265 301F
May 1997.

[AFMZO2} D. AnconaFS. FagorziFE. MoggiFand E. Zucca. Mixin modules
and computational effects. SubmittedF2002.

[AMO95] Zena M. AriolaF John MaraistF Martin OderskyF Matthias
FelleisenFand Philip Wadler. A call-by-need lambda calculus. In
Conference record of POPL ‘95, nd ACM SIGPLAN-SIGA CT
Symposium on Principles of Programming Languages: papers
presented at the Symposium: San Francisco, California, Jan
uary P2-25, l995Fpages 233—246FNew YorkFNYFUSAF1995.
ACM Press.

78

[Bar84] H[endrikl P[ieter] Barendregt. The Lambda Calculus: Its Syntax
and Semantics. North-HollandFrevised editionFl984.

[Baw88] Alan Bawden. Letrec and callcc implement references. Message
to comp . lang. schemerl988.

[BouOl] Gerard Boudol. The recursive record semantics of objects revis
ited. Lecture Notes in Computer Sciencer2o28:269—283F2001.

[CarO3] Magnus Carlsson. Value recursion in the continuation monad.
Unpublished NoteFJanuary 2003.

[ELO0] Levent Erkök and John Launchbury. Recursive monadic bind
ings. In Proceedings of the ACM Sigplan International Con
ference on Functional Programming (ICFP-OO)rvolume 35.9 of
ACM Sigplan NoticesFpages 174—185r N.Y.FSeptember 18—21
2000. ACM Press.

[ELMO2] Levent ErkökFJohn LaunchburyFand Andrew Moran. Seman
tics of value recursion for monadic input/output. Journal of
Theoretical Informatics and ApplicationsF36(2): 155—180r2002.

[ErkO2] Levent Erkök. Value Recursion in Monadic Computations. PhD
thesisl’OGI School of Science and EngineeringrOHSUrPortlandr
Oregonr2002.

[FSOO] Daniel P. Friedman and Amr Sabry. Recursion is a computa
tional effect. Technical Report 546FComputer Science Depart
mentFlndiana UniversityrDecember 2000.

[Jon991 Report on the programming language Haskell 98FFebruary 1999.

[KCE98] Richard KelseyrWilliam ClingerFand Jonathan Rees (Editors).
Revised5report on the algorithmic language Scheme. ACM SIC-
PLAN NoticesF33(9) :26—76FSeptember 1998.

[Lan64] Peter J. Landin. The mechanical evaluation of expressions. The
Computer Journalr’6(4):308—320rJanuary 1964.

[MFO3] E. Moggi and S. Fagorzi. A monadic multi-stage metalanguage.
In FoSSaCS 2003FLNCS. Springer-VerlagF2003.

fM0W98] John MaraistFMartin OderskyFand Philip Wadler. The call
by-need lambda calculus. Journal of Functional ProgrammingP
8(3):275—3l7rMay 1998.

[WF94J Andrew K. Wright and Matthias Felleisen. A syntactic approach
to type soundness. Information and ComputationFll5(1):38—94F
1994.

79

Hierarchies in ,u-calculus

Damian Niwiñski

Institute of Informatics, Warsaw University

Abstract

Finite—state recognizability is obviously at the basic level of all reasonable com
plexity hierarchies, as far as computations of finite duration are considered (e.g.,
over integers). This property is no more true if we deal with infinite computations,
running over reals (i.e., in.finite words) or, more generally, over infinite trees. In
particular, it is well—known that a finite-state Rabin automaton can recognize the
set of (suitable encodings of) well-founded trees which is fl complete in terms of
projective hierarchy, and hence not arithmetical, and even not Borel.

An alternation hierarchy of the p-calculus seems to be well-suited for measuring
complexity of infinite computations. It also reconciles the finite-state recognizabil
ity and the classical (arithmetical/analytical) hierarchies via some apparent con
nections, notably between the class pv (of the alternation hierarchy) and fl. Yet
some deeper connections remain to be understood, in particular the refinement of
the alternation hierarchy by the Wadge equivalence.

One of the general principles illustrated by both arithmetical and analytical
hierarchies is the duality between separation and reduction property: a class C has
separation property if its dual (i has reduction property, but a class cannot enjoy
both properties. There are some evidences that the principle should also hold for
the fixed—point alternation hierarchy, in spite of the limited expressive power of the
p-calculus, not allowing for the diagonal argument.

In the talk I will outline the known connections between various hierarchies and
some challenging open problems.

An Alternative Characterization for Complete
Iterativeness

(Extended Abstract)

Tarmo Uustalu1 and Varmo Vene2

1 Inst. of Cybernetics, Tallinn Technical University
Akadeemia tee 21, EE-12618 Tallinn, Estonia

tarmocs . ioc . ee
2 Dept. of Computer Science, University of Tartu

J. Liivi 2, EE-50409 Tartu, Estonia
varmo®cs . ut. ee

Moss [4] and Aczel, Adámek et al. [1] have recently shown that the term
algebra of non-welifounded terms in a universal-algebraic signature gives rise to
a monad which is completely iterative in the sense of solvability of arbitrary
systems of guarded equations. Aczel, Adámek et al. [2] have moreover shown
that it is the free completely iterative monad generated by this signature.

Technically, complete iterativeness is defined for ideal monads as unique exis
tence of an operation on morphisms of a certain type. We show that the concept
admits an alternative definition where the criterion is unique existence of a nat
ural transformation, a restriction however being that this definition can only be
invoked under the existence of certain final coalgebras. We argue that reasoning
about complete iterativeness can sometimes be easier resorting to the alternative
definition, one of the reasons being that the diagram chase format is not ideally
suited for reasoning about operations on morphisms. The alternative definition is
especially useful, if the core of an argument has to be conducted in the category
of endofunctors on the base category, as is the case with arguments concerning
algebras of terms in binding signatures.

Ideal monads, completely iterative monads The concept of complete iterativeness
is defined for monads that are ideal. A monad (T, 77,) on C is said to be ideal,
if it comes together with an endofunctor T’ on C and natural transformations
r T’ —* T, p’ T’ . T —* T’ such that [77,T] : Id + T’ —* T is a natural
isomorphism and

T’ T T T

T’

An ideal monad (T,77,jL,T’,r,ji’) is said to be completely iterative, if for
any guarded equation system with unknowns in A and parameters in B, i.e., a
morphism f A -4 B + T’(A + B), there exists a unique morphism h : A —* TB

(notation solve(f)) that solves it, i.e., satisfies

B+T’(A+B)c A
inrA.B+idT7(A+B) 1

(A+B)+T’(A+B) h

4
T(A+B)

TIhI1B]

or, which is equivalent (because of the condition relating iz and p/),

B+T’(A+B)4 A (1)
id9+T’[h,,19]

B+T’TB h

Id9 +,4 +
B+T’B 1719 B I

The main result of [2] was that, if an endofunctor H on C is iteratable (in the
sense of existence of the final (A + H—)-coalgebra for every C-object A), then
the monad structure on the endofunctor T on C given by TA = v(A + H—) is
the free completely iterative monad generated by H. In [3], it was shown that
iteratability of H is necessary in order that the free H-generated completely
iterative monad exists.

An alternative definition Assume that the final (A + T’(— + A))-coalgebra exists
for every C-object A. Set (TA, WA) = (v(A + T’(— + A)), OUtA+T’(_+A)). Then
one can show that (T, i, u, T’,r, ‘) is a completely iterative monad if and only
if a unique natural transformation h: T°° —* T (notation i°°) exists such that

A + T’(T°°A + A)
WA

T°°A (2)
idA+T’1h,71A H’

A + T’TA
idA+14 +

A+T’A
[71A ,T4]

The definitions of solve(—) and p°° via each other are: = solve(WA) and
solve(f) = oColtB+T.(_+B) (f) (f : A — B + T’(A + B)). By Colt, we denote
coiteration: COItF takes a F-coalgebra structure map to the corresponding final
coalgebra homomorphism.

Notice that morphisms WA are guarded equation systems and the condi
tion asserts their unique solvability, so the alternative characterization replaces
the requirement of unique solvability of arbitrary guarded equation systems by
that of only some specific guarded equation systems which are representative
of all others. This makes the relationship between z°° and solve(—) analogous
to that between and _* (the Kleisli extension operation). While _* takes

any substitution rule to the corresponding substitution function, delivers
only those substitution functions that correspond to an identity substitution
rule, since /.LB = idTB*. Nevertheless i determines all substitution functions, as
f*=IBoTf(f:A_*TB)

Intuitively, the decomposition solve(f) = o COItB+T.(_÷B) (f) refers to
solving a guarded equation system with unknowns in A and parameters in B in
two stages: first, a “quasi-solution” is calculated which assigns to the elements
of A not terms over B (elements of TB), but elements of T°°B (“quasi-terms”
over B), and subsequently these quasi-terms are “flattened” into terms proper
yielding the real solution. (Compare this to calculating the result of substituting
a term for all occurences of a certain variable in a term by first naively replacing
the variable at these occurrences by the term in question and then flattening the
result into a term proper). To provide a contrast, let us note that a non-guarded
equation system with unknowns from A and parameters from B is a morphism
f : A —* T(A + B) and any such induces a morphism CoitT(_+B)(f) : A - TtB

where TB = v(T(— + B)), so non-guarded equation systems with parameters
from B are quasi-solvable in terms of elements of TB. But for T given by
TA = u(A + H—) (the algebra of non-wellfounded terms over A in signature H)
there can be no hope in general to construct a natural transformation T —* T.

Applications The alternative characterization can be used to prove that the
monad structure on T = v(Id + 71—) where 71 : (C,C —* [C,CJ is given by
lix = Xx X+X. (K + Id)) (the algebra of non-wellfounded de Bruijn notations)
is completely iterative by explicitly constructing a candidate for p°° and checking
that it verifies the required property of being the unique h satisfying (2).

Acknowledgements This research was supported by the Estonian Science Foun
dation under grant No. 5567. The participation of T. Uustalu and V. Vene at
ETAPS 2003 was made possible by a travel grant from the Estonian Information
Technology Foundation.

References

1. P. Aczel, J. Adámek, and J. Velebil. A coalgebraic view of infinite trees and iteration.
In A. Corradini, M. Lenisa, and U. Montanan, eds., Proc. of 4th mt. Wksh. on
Coalgebraic Methods in Comput. Sci., CMCS’Ol (Cenova, Apr. 2001), vol. 44(1) of
Electr. Notes in Theor. Comput. Sci.. Elsevier, 2001.

2. P. Aczel, J. Adámek, S. Milius, and J. Velebil. Infinite trees and completely iterative
theories: a coalgebraic view. Theor. Comput. Sci., to appear.

3. S. Milius. On iteratable endofunctors. In Proc. of 9th mt. Conf. on Category The
ory and Comput. Sci., CTCS 2002 (Ottawa, Aug. 2002), Electr. Notes in Theor.
Comput. Sci., Elsevier, to appear.

4. L. S. Moss. Parametric corecursion. Theor. Comput. Sci., 260(1—2):139--163, 2001.

EflSST
*111

LLLr

S

IIICII.LT-\ II S I[\TIFI(

Co\F I RI \U

0afl Jo,,,,

0
THEORY

AND

P RACTICE OF &
S OFTWAR

[141
Information Society

I,chncIogi

••,

MRearch

WARSZAWA

.t
PDLSKIE LINIE LOrNICZE

