\Zoltan Esik

[University of Szeged, Hungary
lgor Walukiewicz

'Bordeaux University, France

'ETAPS 2003 April 5-13, Warsaw, Poland

FICS03 - FIXED POINTS IN COMPUTER SCIENCE

EUROPEAN JOINT CONFERENCES
ON THEORY AND PRACTICE
OF SOFTWARE 2003

APRIL 5-13, WARSAW, POLAND

Fixed Points in Computer Science

Proceedings of an International Workshop

EDITORS:
ZOLTAN ESIK
IGOR WALUKIEWICZ

Warszawa, 2003

Druk i oprawa: Zaktad Graficzny UW, zam. 248/2003

Table of Contents

Andreas Abel, Ralph Matthes
Primitive Recursion for Rank-2 Inductive Typesc...o.....

André Arnold, Luigi Santocanale

On Ambiguous Classes in the y-calculus Hierarchy of Tree Languages ...

Vincent Danos, Josée Desharnais
A Fixpoint Logic for Labeled Markov Processes

Luis Dominguez
A Bisimilarity Logical Relation for the Object Calculus S

Neil Ghani, Tarmo Uustalu
Coproducts of Ideal Monadscoooviiiiiiiiiiieiiinaa.,

Erich Grédel
Inflationary and Deflationary Fixed Points

Martin Grohe
Monadic Datalog on Treescoviiiiineeiiineiineerennennnn..

Claus Jiirgensen
Monadic Fusion of Functional Programsc..ooaaa..

Eugenio Moggi, Amr Sabry

An Abstract Monadic Semantics for Value Recursion
Damian Niwinski

Hierarchies in p~calculus i

Tarmo Uustalu, Varmo Vene
An Alternative Characterization for Complete Iterativeness

Primitive Recursion for Rank-2 Inductive Types

Andreas Abel* and Ralph Matthes**

Department of Computer Science
University of Munich

Recently, higher-rank datatypes have drawn interest in the functional pro-
gramming community {Oka99,0ka96,Hin01]. Rank-2 non-regular types, so-called
nested datatypes, have been investigated in the context of Haskell. To define total
functions which traverse nested datastructures, Bird et al. [BP99] have developed
generalized folds which implement an iteration scheme and are strong enough to
encode most of the known algorithms for nested datatypes. In this note, we in-
vestigate a scheme to overcome some limitations of iteration which we expound
in the following.

Since the work of Béhm et al. [BB85] it is well-known that iteration for rank-
1 datatypes can be simulated in typed lambda-calculi. The easiest examples are
iterative definitions of addition and multiplication for Church numerals. The
iterative definition of the predecessor, however, is inefficient: It traverses the
whole numeral in order to remove one constructor. Surely, taking the predecessor
should run in constant time.

Primitive recursion is the combination of iteration and efficient predecessor.
A typical example for a prim. rec. algorithm is the natural definition of the
factorial function. It is common belief that prim. rec. cannot be reduced to it-
eration in a computationally faithful manner. This is because no encoding of
natural numbers in the polymorphic lambda-calculus (System F) seems possible
which supports a constant-time predecessor operation (see Splawski and Urzy-
czyn [SU99]). Mendler extended System F by a scheme of prim. rec. for rank-1
datatypes and proved strong normalization {Men87]. Mendler’s formulation does
not follow the usual category-theoretic approach with initial recursive algebras
(see Geuvers [Geu92]).

For rank-2 datatypes there are also examples of functions which can most
naturally be implemented with prim. rec. One is redecoration for triangular ma-
trices which is presented below. These examples are not instances of generalized
folds a la Bird et al., which remain within the realm of iteration but hardwire
Kan extensions into the recursion scheme. Rank-2 prim. rec., which we propose
in this work, seeks to extend rank-2 iteration in the same way that prim. rec.
extends rank-1 iteration. We achieve this by lifting Mendler’s scheme of prim.
rec. to rank 2. The decision for Mendler-style and against the traditional way
roots in the following observation: Experiments with formulations according to
the traditional style showed unnecessary but unavoidable traversals of the whole
data structures in our examples. Mendler’s style, however, yielded precisely the

* The first author is supported by the Graduiertenkolleg “Logik in der Informatik” of
the Deutsche Forschungsgemeinschaft.
** Both authors acknowledge financial support by ETAPS 2003.

desired efficient reduction behavior. This was crucial since the only reason to
incorporate prim. rec. is operational efficiency as opposed to denotational ex-
pressiveness.

We work within the framework System F“ of higher-order parametric poly-
morphism formulated in Curry-style, i.e., as a type assignment system for the
pure lambda-calculus. For type transformers X,Y : * — x we abbreviate the
type of natural transformations VA. XA — YA from X to Y by X C Y. Let
id = Az.z denote the identity function.

We extend the framework by a new constructor constant g and two term
constants in and MRec and a new reduction rule as follows.

Formation. M ((x2)2 x o x) > x %

Introduction. in (YR R (uF) C uF

Elimination. MRec : VF(*—#)aeyGe—s (YX*=* X C uF o
XCG-oFXCG)-uFCG

Reduction. MRecs (int) —g s id (MRecs) ¢

The type transfomer uF : * — * is the least fixed-point of the constructor
F : (x = %) = * = * and denotes a simultaneously defined family of types
of well-founded trees, their shape depending on F. For instance, using F =
AXAA.1+4 A x X A the well-known type of polymorphic lists is recovered. The
term in is the general constructor, which, in case of lists, codes together nil
and cons. The term MRec establishes a scheme of primitive recursion in the
style of Mendler. Typical for this style is the universally quantified constructor
variable X in the type of the step term s which ensures termination without any
positivity restrictions on F. During reduction, X is instantiated by pF, and the
first parameter, i : X C uF, by id. The presence of a transformation i from the
blank type X back into the fixed-point pF is what distinguishes Mendler-style
prim. rec. from Mendler-style iteration.

AEEE...
AEE...
AE...
A...

ny bl

An example of a non-regular datatype is TriA = (uTriF) A with TriF =
AXAA.Ax(1+ X (E x A)), the type of triangular matrices over a given entry type
E but with type A on the diagonal. For these matrices, we define a redecoration
operation

redec : VAVB. TriA = (TriA - B) = Tri B.

The call redec t f replaces each diagonal element a of ¢ with the result of applying
f to the sub-triangle whose upper-left corner is a. Redecoration is a natural
example for primitive recursion and is no instance of a generalized fold.

System F“, extended by Mendler-style primitive recursion, is still confluent
and strongly normalizing. A dual construction can be carried out to obtain
coinductive families with primitive corecursion.

Acknowledgement. We thank Tarmo Uustalu for communicating the example of
triangular matrices to us.

References

[BB85] Corrado Bshm and Alessandro Berarducci. Automatic synthesis of typed A-
programs on term algebras. Theoretical Computer Science, 39:135-154, 1985.

[BP99] Richard Bird and Ross Paterson. Generalised folds for nested datatypes. For-
mal Aspects of Computing, 11(2):200-222, 1999.

[Geu92] Herman Geuvers. Inductive and coinductive types with iteration and re-
cursion. In Bengt Nordstrdm, Kent Pettersson, and Gordon Plotkin, edi-
tors, Proceedings of the 1992 Workshop on Types for Proofs and Programs,
Bastad, Sweden, June 1999, pages 193-217, 1992. Electronically available via
ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/proc.dvi.Z2.

[Hin01] Ralf Hinze. Manufacturing datatypes. Journal of Functional Programming,
11(5):493-524, 2001.

[Men87) Nax P. Mendler. Recursive types and type constraints in second-order lambda
calculus. In Proceedings of the Second Annual IEEE Symposium on Logic in
Computer Science, Ithaca, N.Y., pages 30-36. IEEE Computer Society Press,
1987.

[Oka96] Chris Okasaki. Purely Functional Dats Structures. PhD thesis, Carnegie
Mellon University, 1996.

[Oka99] Chris Okasaki. From Fast Exponentiation to Square Matrices: An Adventure
in Types. In International Conference on Functional Programming, pages 28—
35, September 1999.

[SU99] Zdzistaw Splawski and Pawel Urzyczyn. Type fixpoints: Iteration vs. recursion.
SIGPLAN Notices, 34(9):102-113, 1999. Proceedings of the 1999 International
Conference on Functional Programming (ICFP), Paris, France.

On ambiguous classes in the p-calculus hierarchy
of tree languages

A. Arnold and L. Santocanale

LaBRI, Université Bordeaux I and CNRS (UMR 5800)

Abstract. Rabin has proved that if both a set of trees and its complement
are Biichi definable in the monadic second order logic then these sets are
weakly definable. In terms of p-calculus, this theorem reads as I, N 22 =
comp(ITy, Z1).

It is natural to ask whether the equality ITn N £, = comp(Tn—1, Zn-1) still
holds for higher levels of the hierarchy. In this paper we prove that it is NOT

the case.
We also show that Rabin’s result can be generalized as follows, taking into

account that any Biichi definable set is recognized by a nondeterministic
Biichi automaton: If a language and its complement are recognized by non-
deterministic /T, automata then they are in comp(ITn—1, Zn-1).

1 Introduction

It has been proved by Rabin [11] that if a tree language is both Biichi and co-Biichi
then it is weakly definable. In terms of u-calculus, a Biichi set is a set recognized by a
nondeterministic automaton in IT;, while a weakly definable set is a set recognizable
by an alternating automaton in comp(IT;, 1) [10,9].

Since a set is in IT, if and only if its complement is in X and since every set
in IT; is a Biichi definable set [2, 8, 4], Rabin’s result can be stated as: [T, N 2, =
comP(Hly El) [3]

Therefore a natural question is whether the equality I1,NE,, = comp(ITy-1, Zn_1)
still holds for n > 2.

In [5], this equality has been proved for the u-calculus over non-distributive
lattices. In this paper, we prove that it does not hold for the u-calculus of tree
languages (this implies that it does not hold for the modal u-calculus). The proof of
this result is quite similar to the proof of the strictness of the u-calculus hierarchy
[1,4] and uses the same diagonalization argument.

But then a new question arises: why this equality is true for n = 27 What is the
specific property of IT; (or £2) which makes the property to hold? Indeed II; is the
only class (with I7; and Z) which has the property that a term is equivalent to a
“disjunctive” term in the same class [4]. !

Therefore another possible generalization of IIo N 23 = comp(I, &1) is: if L
and its complement are recognized by nondeterministic /I, automata, they are in
comp(IT,_1, Zn-1). Indeed, we show a stronger separation result: If .A and B are
two nondeterministic automata in IT,, such that L(A) N L(B) = @ then there is an
alternating automaton C in comp(IT,—1, Zn—1) such that L(A) C L{C) € L(B).
We prove this result in case of (binary) tree automata. The same proof also works
for modal automata introduced in [7). It combines a technique used in [5] with the
construction of an alternating automata of [9].

In the next section of the paper we introduce some definitions. The definition of
an automaton that we give is not the most general one, but every automaton can

! “Djsjunctivity” is a notion introduced in {7) to generalize the notion of nondeterminism.

be transformed into an equivalent one having this restricted form, without affecting
its position in the alternating depth hierarchy.

Sectior 3 contains the definition of a language which is in IT,, N 2, and not in
comp(II,—1, Zy,_1). The proofs of this section are not more difficult than the proof
of the strictness of the u-calculus hierarchy. Thus, they are only sketched.

Section 4 contains the proof of the separation theorem. This proof is more de-
tailed and also self-contained, excepted for the proposition characterizing the emp-
tyness of the intersection of two automata, which is also almost obvious. Then we
show how to extend this proof to the modal u-calculus.

2 Preliminary definitions

2.1 Tree automata

For simplicity, we consider only the case of binary trees. Let F be a set of binary
symbols, and recall that an F-tree is a mapping ¢t from {I,r}" to F.
An alternating tree automaton is a tuple A = (X, A, p) where:

— X is a finite set of states (note that there are not initial states).

— For each z € X and each f € F, A(z, f) is a positive boolean combination of
elements of X x {l,r}. By using the distibutivity laws and grouping together
pairs with the same direction, A(z, f) can also be written as a set of rules,
where each rule r is a pair (X7, X}) of subsets of X.

~ p is a mapping from X to N.

An automaton is nondeterministic if for each rule r the sets X; and X are
singletons.

An automaton is in IT,, (resp. X,) if there is an even (resp. odd) integer m > n-1
such that p(X) C{m -n+1,...,m}.

An automaton is in I, = comp(IT,, L) if there is a preorder > on X such that:

~ for any z and f, for any rule r = (X!, X}') € A(z, f) and any 2’ € X U X},
zx=z,

— for any equivalence class X’ of X induced by > (z is equivalent to z’ if z » =’
and z’ > z), there exists m > n — 1 such that p(X’) C {m—-n+1,...,m} or
XY {m-n,.... m—-1}.

2.2 Tree languages

Let A be an automaton and ¢ be a tree. We define the parity game G(A,t) as
follows.

— Eva’s positions are the pairs (z,u) with z € X and v € {I,r}"*. The rank of
(z,u) is p(z).

— Adam’s positions are all the pairs (r, u) where r is a rule. The rank of an Adam’s
position is always 0.

— There is an Eva's move from (z,u) to (r,u) if and only if r € A(z, t(u)).

— If r = (X', X") there is an Adam’s move from (r,u) to (z',ul) for any z’ € X’
and to (z”,ur) for any " € X".

We say that ¢ is recognized by A from state z if the position (z, ¢) is winning.
We denote by L.(A) the set of trees recognized by A from z.

We say that a tree language is in IT,, (resp. X, I3,) if there is an automaton A
in IT, (resp. Zn, I';) and a state = such that L = L. (A).

The following results can be proved using the notion of a dual automaton (see

(4])-

Proposition 1 L is in IT, if and only if L is in Z,.
L isin I, if and only if L is in I,.

It is also known that
Proposition 2 If L eI}, then L € Iy N X0y,

3 The inequality theorem

We are going to show:

Theorem 3 For any n > 2 there is a tree language in II, N X, which is not in
Tnoa-

3.1 Some tree languages

Let n > 2 and let A, be the set of binary symbols {¢;,d; | 1 < i < n}.

Let K, be the set of all trees over A, such that on each branch the set of
symbols which occur infinitely often is included in {¢;,d; |1 <i < n—1}orin
{ciydi | 2 < i < n}. This set is in X5 since its complement K, is in IT,, because the
condition that a tree has at least one branch belonging to a given regular w-language
is a Biichi condition.

Let W, be the (nondeterministic) automaton (in II, if n is even and in Ty
otherwise) whose set of states is {g; | 1 < i < n} U{qT}, where the rank of ¢; is
and the rank of gt is 2, and whose transition function A is defined as follows:

— for any %, A(qu C‘) = A(qudi) = {(qu QT)}y
— for any i and j, A(gj, ;) = {(gs, %)} and A(gs, d:i) = {(g,97), (g7, @)}

Let My, be the (nondeterministic) automaton (in L, if n is even and in II,
otherwise) whose set of states is {g; | 2 < i <n}U{q! |3 <i<n+1}uU{gT}, where
the rank of ¢; and of ¢/ is ¢ and the rank of g is 2, and whose transition function
A is defined as follows:

— for any i, A(gT, ;) = Agr, di) = {(g7,q7)},
— for any 7 and any s # gr , A(s,a) = {(s 4,5 1)}, and A(s,di) =
{(3*":1 qT)r(qTrs*i)}l

where s x 1 is defined as a function of s and 7 by the following table

1 2 i —n-1n
@2 |3 @2 G *** Gn-1 Gn

g (g5 G2 - @ Q-1 Gn

Gn {93 @2 " G - Gn-1 Gn
G |%B 9 G2 Gng On

‘I_{i 9 94 Qg2 Gng1 Gn

Gns1|93 94~ Ghaot Gny) Gn

Let Wy, = Ly, (Wh) and M, = Lg,(M,). One of them is in II, and the other
one in 2.

Proposition 4 W, N K, = M, NK,.

Proof A strategy o in the games G(W,,t) and G(M,,t} consists in selecting one
successor (left or right) at each node labelled by some d;. Let ¢, be the (partial)
tree obtained by cutting out the non-selected successors. With each branch b of ¢,
we associate the infinite word & € {1,.. .,n}* by substituting ¢ for d; or ¢;. The
strategy o is winning if for each branch b of ¢,

Wh : the largest number that occurs infinitely often in b is even,
M, + b is recognized by the parity word automaton whose transitions are given in
the previous table (with g2 as initial state).

It is easy to check that if b is in {1,....2}*({1,...,n~1}¥U{2,...,n}*) then
these two conditions are equivalent. QED

An immediate consequence of this proposition is that W, UK, = M, UK,.
Since K, € II; C IT, N Ty, we get

Proposition 5 W, UK, = MUK, € I, N5, and W, N K, € II, N Z,.

3.2 The diagonal argument

Let us assume that W, N K, is in [_y C [T, N Z,.

There is an automaton A such that W, N K, = L. (A), and for each >-
equivalence class X', p(X’) is included in {1,...,n ~ 1} orin {2,...,n}.

With each tree ¢ over A, and each state z of A we associate the tree G (t) over
A defined as follows. Let ¢ be the rank of z, and let ¢t = f(¢/,t") with f € A,. Let
Az, f) = {(X1, X7), ..., (Xk, X})}. Then

Gu(t) = di(ci(Gx; (¢'), G (£")),
dt(ct(Glxé (t,)r G‘Xé' (t”))r Tt
di(es(C (¢), Gy (), (G (£), Gl (E))))

where, for all ¢, ¢, and Y = {z1,...,zs},
GY (t) = &i(Gz, (), (o (t), - -~ i(Cimy (£), G (1))).
It is proved in (1] (or in [4]) that this mapping has the following property:

Proposition 6 t € L;(A) if and only if G;(t) € W,,.
Each mapping G has a unique fized point t..

Moreover, because A is in I',_;, we have the additional property:
Proposition 7 For any t and eny z, G(t) is in K,.

It follows that t,, € W, N K, if and only t;, € W,. Since t;, € Kp, t;, €
W, N K, if and only ¢, € W,, a contradiction.

To extend this result to the modal u calculus, let us consider the set of all
directed graphs in which each vertex is labelled by a subset of A, and each edge is
labelled by £ or 7. Let us consider the modal automaton W/, having the same states
as W, and whose rules are

A(g;) = /n\(ci = ((O)a A (r)a)) A (di = (((O)as A (r)ar) v ((OgT A (Na))).

i=1

It is easy to see that the set of binary trees accepted by this automaton is
exactly W,,. More generally, with every tree automaton A one can associate a modal
automaton A’ in the same class, such that L(A) is exactly the set of binary trees
accepted by A’. In a similar way, a modal automaton K}, which accepts the language
K, is constructed. It is then proved that the modal automaton corresponding to the
logical formula ~W, A K, is equivalent both to a modal automaton in the class IT,,
and to a modal automaton in X',,. Observe that the equivalence that we consider —
and which is required for the argument - is now up to arbitrary transition systems,
and not only up to the binary complete trees.

Now, if W, N K, is the set of trees accepted by a modal automaton 5’ in
comp(Il,_y, Xn_1) one can use the same diagonalisation technique: there exists G
such that for any ¢, G(t) € K, and t € W,, N K,, if and only if G(t) € W,.

4 The separation theorem

We say that a language L is in ndl,, if there is a nondeterministic automaton A in

11, and a state x such that L = Lz(A).
Although IT,, = ndll, for n = 2 [2, 4] this equality is no longer true for n > 2.
We are going to show:

Theorem 8 Let L and L' be two disjoint tree languages over an alphabet F. If both
are in ndll, (withn > 2) then there exists K € I',_) such that LC K C L'

We give the proof when the alphabet F' has only binary symbols. The general-
ization to any alphabet is straightforward.

4.1 Run of an automaton

Given a nondeterministic automaton A = (X, A, p) and a tree t a run of A from
state z on ¢ is a mapping @ : {I,7}* — X such that 6(¢) = z and for any u € {I,7}",
(6(ul), 6(ur)) € A(6(u), t(u)).

We say that a run 6 on ¢ accepts ¢ if for every b= dydy---d; - € {I,7}*,
limsup; p(8(d, - - - &;)) is even.

A tree t belongs to Lz(A) if and only if there is a run 6 from z on ¢t which
accepts &.

4.2 A game for deciding nonemptiness

Let A= (X,A4,p) and A’ = (¥, 4, p’) be two nondeterministic automata over an

alphabet F' of binary symbols.
Let us consider the (biparity) game G(A, A’} defined as follows.

— Eva’s position are all the triples (z,y,d) € X x Y x {I,r}.

— Adam’s position are all the triples (r,7’, f) where r is a rule of A, r' a rule of
B,and f€ F.

— There is a move from (z,y,d) to (r,7, f) if and only if r € A(z, f) and ¥’ €
Ay,).

-If £y=f()z’,z”) and r’ = (y',y") then from (r,7’, f) there is a move to (z',y',1)
and a move to (z”,y",r).

Because A(z, f) and A’(y, f) are never empty, all maximal plays in this game
are infinite. A play is winning for Eva if the sequence (z1,%,d1), (z2,¥2,d2),-- .,
(i, yi, di), . .. of Eva's positions along this play is such that both limsup p(z;) and
limsup p’(y:) are even.

The proof of the following result is quite easy and can be found in [6].

Proposition 9 L.(A)NL,(A") is not empty if and only if for some d the position
(z,y,d) is winning for Eva.

Note that the sets of plays from (z,y,!) and (z,y,) are the same (except, of course,
for the first position). Therefore one of these positions is winning if and only if the
other is.

By the previous proposition, for any two states z and y, Lz(A) N Ly(A') = @
if and only if the position (z,y,!) in G(A, A’) is not winning for Eva. In this case
Adam has a winning (winning for him!) strategy with finite-memory H, i.e., in any
position (r,7/, f) he chooses either the left or the right direction.

This strategy yields a finite graph G whose nodes have the form (z,y,d, k) or
(ry7', f,h). If (z,y,d, k) is a2 node of G then for any f € F, any r € A(z, f), any
' € A'(y, f), there is an h’ such that (r, 7', f, h') is a successor of (z,y,d, k) in G.
If (r,7', f, k) is a node of G and if r = (7, %), 7 = (y1, %) then this node has a
unique successor (Zq, ya,d, h”) for some d € {I,r} and some h” € H. We denote
by succ(s,r,7’, f) the pair (s, d’) where s’ is the unique successor of the successor
(r,7, f,h') of s and where d' is the direction of s’.

Let S be the set of nodes of G of the form (z,y, d, k). For any s = (z,y,d,h) € §
we set mx(s) =z, ny(s) =y, and 7p(s) = d.

Proposition 10 For any infinite path p in G, the projection sy, 52, ..., 8i,... of p
on S is such that limsup; p(nx (s:)) is odd or limsup; o’ (my (s:)) is odd.

Moreover, let s = (z,y,d,h) be in S, let t be any tree, 8 be any run of A from
z ont and 6 be any run of A’ from y on t. These four data define a unigue
path in G. We denote by b(t,s,0,8) the projection s = s1,82,...,8i,... on S of
this unique path. Then for any i, wx(s;) = 6(np(s1)---7p(si—1)) and 7y (s;) =
0’(1!’1_')(81) e 1rD(s.~_1)).

It follows that for any z and y, there exist d and h such that s = (z,y,d, h) is
in S, if and only if Lo(A)N L, (A') = 0.

4.3 The separation property

Let A and A’ be two nondeterministic automata in J7,41. Without loss of generality,
we may assume that there is an even m such that p(X) and p'(Y') are both included
in{m-n,...,m}.

Let us consider the subgraph G of G(A, A’) induced by a winning strategy of
Adam, defined in the previous section Let us define the preorder > on S by s > s’
if and only if there is a path from s to s'. It is easy to see that s is equivalent to
s’ (with espect to the equivalence induced by the preorder) if and only if they
belongs to the same strongly connected component of G.

We define a new mapping p” : S — N as follows. Let C be a strongly connected
component in G, which contains at least one node of S. If C is trivial (it contains
only one s) then we set p”(s) = m — 1. If C is nontrivial there cannot be in C
an s and an s’ with p(mx(s)) = p’(ny(s')) = m. Therefore either p never has the
value m on mx(C) or p’ never has the value m on 7y (C). In the first case we set
p"(s) = p(wx(s)). In the second case we set p”(s) = p/(my(s)) + 1.

Proposition 11 Let sy,s2,...,5;,... be the projection on S of an infinite path in

G. Then
limsup; p(7x (s:)) is even = limsup; p”(s;) is even = limsup; p'(7y (s;)) is odd .

Proof Let k = limsup; p(7x(s;)), k' = limsup; p'(7y(s:)), and k” = limsup; p”(s;)
Since from some n, the set {s; | ¢ > n} is included in a nontrivial strongly
connected component of G, either £/ = k, or ¥ = k' + 1. If k is even, then by

Proposition 10, &’ is odd, thus k” is always even. If k' is even, then k is odd, thus

k" is always odd.
QED

We define two alternating automata C1 = (S, Af, p”) and C; = (S, 43, p") by

= A:I:(s, F) = Vieawmxo)p Nereariny (s, 1) S2ce(s, 7,7, f).
- Ag(s, f) b /\,.leAl("Y(,)‘f) VTGA(ﬂ'x(a).f) SuCC(S, T, T,, f)

Proposition 12 C; and C; are in comp(Il,,, Zy,).
For any s, Ls(C1) € Ls(C2).

Proof Using the preorder > on §, and the definition of p”, it is easy to see that C;
and C, are in comp(IT,, Z,,).
Since the boolean formula

suce(s,r, 7, f)
r€A(nx(s),f)r’ €l (wy (s).f)

logically implies
suec(s, 7,7, f),
€A (my (9).f) r€A(mx (s).f)

we obviously have L,(C,) C L,(Cs). QED

Note that if we exchange the roles of A and A’ in the above construction we get
two automata C] and Cj. The dual automaton Cz of Cz, which satisfies L,(C2) =

L,(C,), is the automaton (S, Z'g', p'{1) where pYf,(s) = p”(s) + 1 and

als, =\ N sueels, 7, f).

€A (ny(s),f)r€A(nx(s).f)

It is easy to see that C; is equivalent to C}. Similarly, C; is equivalent to Cj.
Therefore, the following proposition achieves the proof of the Separation Theo-
rem.

Proposition 13 For any s € §, Ly (s)(A) € Ls(C1).

Proof If t € Ly, (s)(A) there exists an accepting run 6 from wx (s) on t. For any run
¢’ from 7y (s) let b(t,s,8,8') = s1,..., i, ... By Proposition 10, limsup, p(mx (s:))
is even, hence, by Proposition 11, limsup; p”(s;) is even. In the game G(C,t), an
Eva’s strategy consists in selecting r € A(mx(s),t(u)) at each node (s,u). If Eva
chooses the rule r that 6 uses at node u, then, by the previous remark, this strategy

is winning at (s, €). Hence, t € L,(C1).
QED

4.4 The case of modal p-calculus

If instead of tree automata we consider modal automata, we get the same result

using a similar proof.
The modal automata we are considering are intended to accepts Kripke struc-
tures over a set of local properties. Edges are not labelled: The case of labelled edges

10

can be treated in exactly the same way. One can assume without loss of generaliy
that each node u of a Kripke structure K has a unique label A(u) taken from the
powerset F' of local properties. Finally, instead of using the usual modalities () and
[, we use the unique modality —, introduced in (7], whose argument is a set, pos-
sibly empty, of variables (for nondeterministic automata) or a set, possibly empty,
of boolean combinations of variables (for alternating automata) with the following
interpretation: a vertex v of a labelled graph satisfies — E if for any successor v’ of
v there is an e € E such that v’ satisfies e, and for any e € E there is a successor v’
of v such that v’ satisfies e. It should be noted that the conjunction — EA — E' is
equivalent to the disjunction of the terms — {eAe’ | (e,e’) € R} for all RC E x E'
such that the first and second projections of R are respectively E and E'.

Therefore, a nondeterministic modal automaton associates with each state z € X
and each symbol f € F a set A(z, f) of rules, possibly empty, where each rule r is
— X, where X, is a subset of X.

The game G(A, A’) for deciding emptyness is defined as follows:

— In position (z,y) Eva chooses a symbol f, a rule r in A(z, f) and a rule r’ in
A'(y, f) and moves to (r, 7', f).

— In position (r, 7/, f) Eva chooses a relation R C X, x Y, such that its projections
are X, and Y;» and moves to R. Note that if X, = Y;» = @ there exists only one
such relation, the empty one. If only one of these two sets is empty, there is no
such relation, therefore the position (r,r’, f) is loosing for Eva.

— In position R, Adam moves to (z’,y’) € R. If R is the empty relation, this
position is loosing for Adam.

Let G be the subgraph of G(A, A’') induced by a winning strategy of Adam.
For any s, any f, any r € A(nx(s), f), any 7' € A'(my(s), f), there exists in G a
unique successor (7,7, f, k') of s. Note that G does not contain any node (r,7’, f, h)
with X = Y.+ = @ because this node has a unique successor which is a loosing
Adam’s position. Let suce(s, 7,7/, f) be the set of successors of (r,7, f,h’). This
set is empty if one of the two sets X, or Y; is empty. Otherwise, this set has the
following property:

Proposition 14 Let R C X, x Yy« be {(mx(s'), 7y (s")) | 8’ € succ(s,r, 7, f)}.
There exists in X, such that for any y in Y, (z,y) € R or there exists y in Y
such that for any z in X, (z,y) € R.

Proof Assume that it is not true. Then the projections of the relation (X, x Y;/)— R
are X, and Y;+. Therefore succ(s, 7,7/, f) must contain s’ such that (7x (s'), 7y (s')) ¢
R, a contradiction. QED

Let us add to the set S two fresh elements T and L. For each node s of G and
for each node (r, 7', f, h) which is a successor of s, we define the modal expression
M(s,r, 7, f) as follows.

— If X, and Y+ are not empty and if succ(s, r, 7/, f) satisfies the first condition
of Proposition 14 (for some z) then M(s,r,7’, f} = () A{s’ € suce(s,r, 7, f) |
mx(s') =z}.

— If X, and Y, are not empty and if succ(s,r,r’, f) satisfies the second condi-
tion (for some y) then M(s,r,7’, f) is equal to the (dual) modal expression
[V{s" € succ(s,r, 7',) | my (s') = y}.

— If X, =0 then M(s,r, 7', f) =[|L.

— If v =0 then M(s,r,7, f) = ()T.

11

As in the case for trees, we define p” : § — N. We define the alternating
automata C; = (', AY,p") and Ca = (', A%, 0") in comp(IT,,, Ty), where S’ =
SuU{L, T}, as follows.

— 1 is a state which accepts nothing: its rank p”(L) is any value and for any f,
AL,) = (L, f) =0,

— T is a state which accepts everything: its rank p"(T) is the even number m — 2
and for any f, AY(T, f) = AY(T, f) ={|T.

- Alll(sr f) = VrEA(rx(a),f) /\r’EA’(ny(a),f) M(S, nr, f)v

= 8%(s, f) = Aveariay (o)1) Vreamx o).y M8,).

Note that in the above definition, a union over an empty set is equal to L and
an intersection over an emptyset is equal to T.

Here again, the dual of C; is the automaton C] obtained as C; but exchanging
the role of A and A’. Hence, for proving the Separation Theorem, it is enough to
prove Proposition 13. Indeed Proposition 11 still holds. As to Proposition 10, we
have to substitute the notion of (winning) strategy of a nondeterministic modal
automaton A (or A’) on a Kripke structure K for the notion of (accepting) run on
a tree.

Let K be a Kripke structure. For any node u of K, we denote by ux* the set of
successors of u, which is possibly empty. A (positional) strategy o is a mapping
which associate with every pair (z,u) a rule r € A(z, AM(u)) (this implies that
A(z, A(u)) is not empty) and with every pair (X,, u) a relation in the set X, < u*
of all relations included in X, x ux whose first and second projection are X, and
u* (this implies that X, is empty if and only if ux is empty).

For any (z, u), this strategy defines a set P,(z,u) of paths (z, u) = (z1, w1)(z2, u2)
(z3,u3) . - - such that its projection 74 (P,(z,u)) on K is the set of all maximal paths
in K starting in u. The strategy is winning if all infinite sequences in 7 x (P, (z,u))
satisfy the parity condition with respect to p.

Let us assume that o is a strategy for A winning at (7 x (s), u). We construct a
strategy for Eva in the game G(C,, K) winning at (s, u).

Let us assume that Adam plays according to a given arbitrary strategy in the
game G(Cy, K) and the play consistent with the two strategies has reached a position
(84, us)-

Eva selects r; in the nonempty set A(mx(s:), A(u;)) and a relation R; € Xy, «
ug*. If A'(my (s3), Mu;)) = 0 then AY(si, A(u;)) = T and Eva wins. Otherwise Adam
chooses % € A'(my(s:), M(u;)). Next:

— If X,, is empty (and also u;*) then M(s;, 7,7}, AM(ui)) = []L and Eva wins,
since u;* is empty.

— If X,, is not empty and Y,-; is empty, then M(s;, i, 7}, A(w;)) = ()T and Eva
wins, since u;* is not empty.

= If M(si,rioth, Mw)) = OA{s' € succ(si,ri, 75, AMwi)) | nx(s’) = z}, Eva
chooses ui+1 € u;x such that (z,u;+1) € R; and Adam chooses si+1 (note
that 1l'x(s"+1) = :l:).

- If M(s,r, 7", f) = | V{s' € succ(si,ri, 7}, M(w;)) | my(s’) = y}, Adam chooses
ui+1 € ug* and Eva chooses s;+1 such that (mx (si+1), ui+1) € Ri.

By construction the play (s,u) = (s1,u1), (52, u2), . .. satisfies
(mx(s1),m), (wx(s2),u2), ... € Fo(mx(s) u).

Thus, by Proposition 11, it is won by Eva.

12

References

1

10.

11.

- A. Arnold. The p-calculus alternation-depth hierarchy is strict on binary trees.
RAIRO-Theoretical Informatics and Applications, 33:329-339, 1999.

. A. Arnold and D. Niwiiiski. Fixed point characterization of Biichi automata on infinite

trees. J. Inf. Process. Cybern. EIK, 26:453-461, 1990.

A. Arnold and D. Niwirski. Fixed point characterization of weak monadic logic defin-

able sets of trees. In M. Nivat and A. Podelski, editors, Tree automata and Languages,

pages 159-188. Elsevier, 1992.

. A. Arnold and D. Niwiriski. Rudiments of p-calculus. Number 146 in Studies in logic
and the foundations of mathematics. Elsevier, North-Holland, 2002.

. A. Arnold and L. Santocanale. Ambiguous classes in the games p-calculus hierarchy.
In FOSSACS 2008 (to appear).

. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. Theoretical Computer Science, to appear, 2002.

. D. Janin and I. Walukiewicz. Automata for the modal u-calculus and related results.
Lecture Notes in Computer Science, 969:552-562, 1995.

. R. Kaivola. On modal mu-calculus and Biichi tree automata. Information Processing
Letters, 54:17-22, 1995.

. O. Kupferman and M. Y. Vardi. The weakness of self-compl tation. Lecture Notes

in Computer Science, 1563:455-466, 1999.

D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak monadic

theory of trees and its complexity. Theoretical Computer Science, 97:233-244, 1992.

M. O. Rabin. Weakly definable relations and special automata. In Y. Bar-Hillel,

editor, Mathematical Logic and Foundation of Set Theory, pages 1-23. North-Holland,

Amsterdam, 1990.

13

A Fixpoint Logic for
Labeled Markov Processes

Vincent Danos* Josée Desharnais
CNRS & Université Paris 7 Université Laval, Québec

March 18, 2003

We develop in this abstract a probabilistic fixpoint logic for Labeled
Markov Processes (LMPs). One reason for doing this comes from (2, 3].
There, it was shown that the LMP logic characterizing bisimulation can be
used to define in a natural way finite-state approximants of LMPs. An ex-
tension of this logic with fixpoints such as the one we propose allows for
stronger notions of approximants. Steady properties, i.e. properties related
to infinite behaviours, can be obtained in finite approximations.

Our logic only deals with greatest fixpoints. In a probabilistic setting,
one has a the pending constraint that all logical terms denote measurable
sets. Since measurability is preserved by countable boolean operations, only
continuous or cocontinuous operators are meaningful. Least fixpoints are
trivial in our case (more about this below) so we're left with greatest fixpoints.

As an illustration of the descriptive power of the logic, we provide an
explicit construction of the coarsest probabilistic simulation of a given finite
LMP by an arbitrary one. This construction is interesting in its own right.
Finally a continuous state space example is given.

An LMP can be described as a family of probabilities (p(s))ses indexed by
the state space S, p(s)(A) representing the probability that the process will
jump from s to A a measurable subset of S. In some special circumstances
(when all the p(s) are mutually absolutely continuous, i.e. define the same
negligible events) the Radon-Nikodym theorem makes it possible to extend
the o-algebra of events into a complete boolean algebra and therefore a logic
with both fixpoints and arbitrary monotone operators seems possible. We
might pursue this option in the future.

* Corresponding author: Equipe PPS, Université Paris 7 Denis Diderot, Case 7014, 2
Place Jussieu 75251 PARIS Cedex 05, Vincent.Danos@pps.jussieu.fr

1 Preliminaries

Definition 1 (LMP) S = (S,5,h : L x S x & — [0,1]) 4s a Labelled
Markov Process (LMP) if (S,X) is a measurable space, foralla € L, A€ X,
h(a,s, A) is X-measurable as a function of s and for all s € S, h(a, s, A) is
a subprobability as a function of A.

Some particular cases: 1) when S is finite and © = 25 we have the familiar
probabilistic automaton, 2) when k(a, s, A) doesn’t depend on s or on a we
have the familiar (sub)probability triple. An example of the latter situa-
tion is ([0, 1], B, h) with h(a, s)(B) = A(B) with X the Lebesgue measure on
Borelians.

Definition 2 (shifts) Fora € L, r € [0,1], one defines endomaps of T,
shifts and strict shifts as:

(@)r(4) = {s | h(a,s)(4) 27} {a}:(A) = {s] h(a,5)(A) > r}

Shifts are cocontinuous and strict shifts are continuous, but they have the
empty set as least fixpoint: {a},(&) = @. Strict shifts are not co-continuous,
neither are shifts continuous.

As an example, consider again ([0, 1], B, k) as above:

{a}o(L (0,1/n]=@)=2 C | {a}o((0,1/n]) =[0,1]
Tah((0,1-1/n))=2 C {(ahi(1(0,1~-1/n]=(0,1]) = [0,1]
2 Fixpoint logic

Syntax. Let a countable set of variables z, y, etc. be given. Fixpoint terms
are given by the following grammar:

t=z|T|tNt|tUt|(a)t]| (2, ..., 1) |mt|vat

Examples of (closed) terms: vz.(a)sz, vz.((a)sm2z, (a) smiz). There is an
evident typing discipline and we will assume that all terms are well-typed
over a base type o. Types will be written as [0",0™]. Also, terms will be
considered up to the usual product equations.

Interpretation. Let Ccpo stand for the Cartesian category of w-cocontinuous
functions between w-cocomplete pointed partial orders.

15

For any LMP § = (S5,Z,h) we denote by Cs the full subcategory of
Ccpo generated by £. Given a term ¢ of type [0™, 0™] one defines inductively
[tls € Cs[x™ ™). All clauses are trivial, except:

[vy™.t]s(z™) = lp(Aym'IIt]]S(x’ (S, .., S).

The notation |, X, means that the sequence X, is decreasing in ™ (equipped
with the product ordering). We observe that the fixpoint used here is the
ambient greatest fixpoint of Ccpo which is a simple example of an iteration
operator (as defined in [1]) and is uniform with respect to costrict maps (as
defined in [4]).

Finite LMPs as terms. Given a subprobabilistic automaton A = (I, 2/, k)
with states I = {1,...,n}, we define t;(A) and t(A) both of type [o™, o"}:

Ti(81(A)) = Njer e (W ki (in (%5)
mi(t(A)) = nng,aeL<a)k(a,i,J)(UjeJ ;)

By construction, for any S: [t(A)]s < [t1(A)]s (for pointwise ordering), be-
cause there are more terms in the intersection defining m;(t(A)); and therefore
their respective fixpoints will be in the same order. Intermediate approxima-
tions where J is varying in a subset of £ make perfect sense.

3 Simulations

If R is a binary relation over S, and s € S, we write R(s) for {¢ | (s,t) € R}.
Likewise if A C S, R(A) = U,eaR(s).

Definition 3 (probabilistic simulation) Let two LMPs S and S, be given,
one says a relation R C Sy x S is a simulation of S| by S; when:

V(Sl,Sz) €ERaceL A€l
EH(Al) € 22 = hl(a, S1, Al) S hz(a, Sz,m(Al)).

The empty relation is a simulation, so the mere existence of a simulation is
not conclusive. What matters is if a given state s; € S is simulated by a
state s, € Sy, that is to say, if there is a simulation R with (s, s2) € R.

Proposition 4 For any LMP S and finite LMP A, there is a coarsest prob-
abilistic simulation 6(A,8) CI xS of A by S and it is given by:

(5,5) € 6(A4,8) :=s € mvz.t(A)]s.

The corresponding relation was defined with ¢ in [2] and shown to yield the
coarsest non-deterministic simulation. Of course both relations will coincide
when for each a, A has at most one non-zero a transition from each state.
The difference only shows when there are correlations between transitions
from a same state as in the following example.

A simple example. Suppose L = {a} andlet S =gy — ¢, and A = ¢ —
q1,95 with all transitions having probability .5. In the non-deterministic
interpretation given by t; of type [03, 03] we have:

[mot1 (A)]s(S, S, S) = (a).5(S) N (a).5(S) = {g0} N {g0} = {20}
vzt:(A)]s = [t1(A)]s(S, S, S) = ({40}, S, S)-

Now with the refined probabilistic interpretation of ¢:

[mot(A)]s(S, S, S) = (a).5(S) N {a)5(S) N (a)10(SUS) = &,
[vz.t(A)ls = (2, 8, S).

Hence, by the proposition above, no state of S simulates ¢, (in the sense
of definition 3). This can be seen directly: ¢} in A has probability 1 to
do something, while no state in S has probability more than .5 of doing
something.

A continuous state example. Consider the continuous LMP, L = {a, b},
ha(s, A) = sA(A) and hy(s, A) = (1 — s)A(A). Small s tend to be insensitive
to as and hypersensitive to bs and conversely. We can compute the shifts
on segments: (a)a([z,¥]) = [fly — 2),1], (Bs([z,y]) = [0,9(y — z)] with
f(€) = /€, and g(¢) = 1 — B/, and we see the set of (rational) segments
is stable by (rational) shifts. Combining a and b in the temporal property
gives:

[(@)a(®)s- .. T] = [on, 1] . [(B)s(@)a... T] =1[0,1 - 5]

Brr = 5o~ omn =g

The a, sequence converges to a root of 22 + & — (1 + o —). If we set
a = f = 1/4—¢, with € > 0, a,, converges to 1/2+ /e when ¢ is small enough
to keep the sequences o, and f, within [0,1]. So we get two fixpoints, and
the smallest gives the biggest segment:

[vz.((@)a(maz), (b)a(mz))] = ([0,1/2 + V€, [1/2 ~ V&, 1))

Observe the symmetry in the solution. Our fixpoint does find a pair of
state sets in the right hand side implementing the two-state subprobabilistic
automaton (associated to the term) given in the lefthand side.

References

[1] S. Bloom and Z. Esik. Iteration theories. EATCS Monographs on Theoretical
Computer Science, 1993.

[2) Vincent Danos and Josée Desharnais. Labeled Markov processes: stronger and
faster approximations. Submitted, 2003.

[3] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating
continuous Markov processes. Information and Computation, 2003. To appear.
Available from http://www.ift.ulaval.ca/jodesharnais.

[4] Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-
point operators. In Proceedings of the 15th Annual IEEE Symposium on Logic
in Computer Science (LICS 2000), pages 30-41. IEEE, June 2000.

18

A Bisimilarity Logical Relation
for the Object Calculus S

Luis Dominguez*
Departamento de Matematica, Instituto Superior Tecnico
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
lald@math.ist.utl.pt

Abstract

In this paper I define a bisimilarity logical relation and prove it equal to
the axiomatic operational congruence of the primitive object calculus
S [1] of Abadi and Cardelli, observing termination at every type.
The paper also summarizes essential theory of the Galois operators un-
derlying the approach of Andrew Pitts adapted here. As in (3], I define
an open type indexed family of relators over closed term relations, in
terms of auxiliary relators returning closed value relations, and extend
them substitutively to logical relations between open terms.

1 Introduction

I have been developing a (co)inductive relational theory for reasoning, spec-
ifying and verifying typed applicative sequential object based programs
“desugared” as terms of a calculus.

Among the many such foundational calculi in the literature, modelling
applicative and imperative object oriented programming languages, I pre-
ferred those studied by Abadi and Cardelli in their book [1] for their better
understood type systems and meta theory. Abadi and Cardelli studied a
number of object calculi, with increasingly expressive and complex type sys-
tems, namely: “first-order” (at most recursive types), “second-order” (with
type quantifiers) and “higher-order” calculi (with type operators). Due to
the shortcomings of the first-order calculi [1] and the syntactical and meta-
theoretic complexity of the higher-order calculi and subtyping systems (for
example involving type conversion), I eventually concentrated on second-
order primitive object calculi. From these, quite expressive albeit with
heavier syntax and (sub)typing rules than standard typed lambda calculi,
I chose the largest Sy [2]. This may be seen as a combination of two sub-
calculi: Sy and Sg,. Sy extends the smallest subcalculus S with subtype

"Thanks to Anténio Ravara for supervision, feedback and discussions on this subject.

bounded polymorphism. I call S, the extension of S with call by value
functions. Abadi and Cardelli introduced S as the essence of applicative
typed object-based programming, and its extension Sy also for class-based
and polymorphic programming. The inclusions between such subcalculi of
Sy may be drawn as follows.

Sy C S,
@] U
S C Scb,,

Gordon defined an experimental similarity relation and proved by Howe’s
method it to be preadequate (observing termination at every type), sub-
sumptive, compatible, substitutive and transitive. He added call by value
functions (obtaining Sgp, or Sy), so that experimental similarity equals not
only the calculus operational precongruence but also its contextual precon-
gruence; instead of being finer grained than the latter.

Inspired by Gordon’s coincidence between the contextual precongruence
and the experimental similarity for S, I first solved the problem of find-
ing a logical relation provably equal to the operational congruence for S,.
Such type indexed family of relations constitutes a relational parametric
model of the calculus and gives further insight on the meta theory of S,.
This extensionality result expands the calculus theory in a richer relational
framework, allowing practical reasoning about term and stack relations to
prove behavioural properties, as illustrated by Pitts [4].

To prove the extensionality theorem, I adopt the approach of Andrew
Pitts, first explicit in [4] and (5] for call by name calculi, and tailored in
(3] for a call by value counterpart of PCF with let, record, polymorphic
and existential types. As in (3], I define an open type indexed family of
relators over closed term relations, in terms of auxiliary relators returning
closed value relations, and extend them substitutively to logical relations
between open terms. Subtyping and recursive object types are novel aspects
relatively to the referred work of Pitts, for which I had to adapt his method
and needed to introduce meta notions and notation, such as “bond”.

In order to reveal the method and essence of the extensionality proof in a
shorter and more clear way, this paper is confined to the simplest subcalculus
S of Sy, which happens to keep most interesting proof cases. Despite its
few primitives it is Turing complete, as PCF could be encoded in it based
on function and fixpoint encodings in [1] which also shows how to regard
it as a kernel applicative typed object-based programming language. But
unlike for Sy, it is not known if its bisimilarity is equal or contained in its
contextual congruence. If value and type substitution is representable by
contexts of S the encodings are probably too intrincate to be useful.

The contributions in this paper are:

(1) adaptation of Pitts’ approach, namely meta notions and notation, to

20

cope with the novel aspects of subtyping and primitive covariant self (recur-
sive) object types;

(2) a synopsis of essential theory of the Galois operators underlying Pitts’
approach [4];

(3) definitions of value bisimilarity, and (term) bisimilarity, logical relations
which use maximum fixed points of non trivial typed relators, namely for
each object type constructor;

(4) proof that bisimilarity is equal to the operational congruence of S.

2 Notation

We use an isomorphic variant of S whose syntax is given by the following
grammar.

variance ¥ = o+ |-
typet = u|O0b(u)(jersv;:t;)
terme u= vlel|er
valuev u= z|o
object 0 = ob(u = t)(jeLj = sm;)
redefine frame r = (l:=(u<:t,z: u)sm)
method m = (z:u)e

top abbreviates Ob(u)() in this calculus with only object types.
The next grammar defines the syntax of some meta notation.

frame f == |~
frame stack s = €| fs
baseI' = ¢|Tu<:it|T,z:¢

substitution o elot/u]o,v/z

bond § == €]4,9/z|4,(E : {)/u

€ is the empty sequence. ¢ abbreviates tuple (;t;). Uppercase metavariables
(except T'), e.g. F, stand for relations, e.g. of term tuples &, usually pairs.
Write rv V for the reverse of a binary value relation V. Write (ftv) fv for
the usual definition of the free (type) variables of a phrase. (dtv) dv stands
for the declared (type) variables of a substitution or a base.

Definition 2.1 (Base Formation) I' Base

baseV oid baseAddV al baseAddTyp
- 't Type I'> t Type
€ Base (T'yz:t) Base 2g vl (T'yu<:t) Base ugdiwl

21

Definition 2.2 (Type Formation [2]) T'o t Type

typeVar
(T',u<:t,I') Base
I,u<:it, T > u Type

typeObj
typeObjV oid foralljeL
T Base I,u<:top b t; Type
Tooe(w) Tipe ** “F tylut]
T'p> Ob('u.)(jeLj‘ﬁj : tj) Type

Definition 2.3 (Subtyping) T o t<:t/

L#0

subtyTrans
o t<:it/
o t'<:t”
Lo t<:t!

subtyVar subtyRefl
(T, u<:t,I’) Base vt Type
T u<t, IV b u<it I'>t<it

8 « «
. t: 2 0b(w) {ser, 30 : ty) (i = 1,2)
t = 0b(u)(jerid; : t;) subtyObj
subtyObjV oid I >ty Type
't Type forallj € Ly
—_—————ugdtvT
e t<:0b(u)() u ¢ div Tu<it o 191jt1j<:’l92jt2j

2
> ti1<ity L _Lz;é@

Definition 2.4 (Subtyping under variances) I' > 9 t<:9' ¢/

subtylnv subtyCovar subtyContrav
o>t Type Lo t<it! | S
I'> ot<:ot I‘l>19t<:+t’19€{o’+} I‘l>19t<:-—t'19€{o’_}

Definition 2.5 (Typing)

subsum

Tpe:t
I t<:t/
Tve:t

termVar
',z : t,I") Base
Lz:t, Vb 2:¢

t 2 0b() (jeL79; : t;) t 2 0b(u) L5 : ¢))
termObj termInvo
foraljelL I've:t
T,z : t > est/u] : tj[t/u) o t<:t! lelL
T > ob(u =t){jerd =<(zj : u)e;) : t Toel:t)ft/u] 9)€{o,+}

22

t 2 06(u)(jeL?; : 1))
termRedef
I've:t
o t<:t!
Nou<it,z:u,2 :up et lel
o eli=(u<:t, 2 : u)s(2 1 u)e’) : t 9] € {o,~}

We consider throughout only phrases and phrase relations well formed ac-
cording to the rules for that phrase sort (e.g. subtyping rules for types, or
typing rules for terms). Stack formation s : ¢t < ¢’ is easily defined from
typing as Tollows.

Dyz:tp zs:t

————2¢fvs

I'bs:tSt #
CallT > t a face when I b ¢t. Write E :: when E is a term relation between
the types in t. Val, Tm, Sk are the sets of (well formed) resp. values, terms
and stacks. E,q abbreviates EN (Val?)

Definition 2.6 (Bond formation) novel notion with formation rules:

6:T
6:T /
I'v ¢t Type EDE L
€€ i (v @ t6; (
V; (v; : t6;) 2@ dvd Vi (B < t'6;)

ugdtvd

(6,9/2) : (T, z : 1) (6,(E = t)/u) : (T,u<: t)

We may separate any ¢ : T in its relation substitution &y as well as type and
value substitutions §; for each 1.
The operational semantics of .S is given by the next closed relation ~».

Definition 2.7 (Evaluation) e ~ v of closed term e to a value v is
derived by the next rules.

0 Z ob(u = t)(jers = s(z; : u)e;)

evallnvo
evalVal Rt
v ~ v elt/u,0/z] ~ v leL
el ~ v

0 Z ob(u = t)(jeLj = sm;)
o' 2 ob(u = e\ = smj,
l=¢(2 : u)e'[o/z2])
evalRedef
e ~ o0
e(b=(u<:t',z : u)s(2' : u)e!) ~ o

lel

23

Write | for the set of evaluating terms e such that e |}, and 1} for noneval-
uating terms e f}. Non evaluating well typed closed terms must perpetuate.

Abbreviate Eyz £ EN(42) and Epz £ EN(#2) and Egy £ EN(f x §) and
. Eyy £ BN (U x 7). Note that

Tm? MU Ut x U x 1) (1)
E = Eﬂ2UEu2UEﬁx3UEuXﬂ (2)

E is said adequate iff its closed term restriction E. C (2 U {2); and com-
pletely adequate if also 12C E. E is said subsumptive iff it is closed under
the subsumption rule. E is said substitutive iff it is closed under the type
and the value substitutivity rules. (These rules appear in respective sections
below.) E is said compatible iff it is closed under the compatibility rules of

2]

Operational congruence Zr,; is the face indexed family of largest ad-
equate substitutive subsumptive congruence (ie compatible transitive sym-
metric) binary term relations.

3 Pitts’ operators
Define E | S & (ES C (12U ?) & V(e € E,5 € S)&s € (12 U §2) . From
this and the evaluation definition one can prove the following.
Proposition 3.1 1. Ep2 [S iff ((rv ~)oEgpeo~) 1S

2. Eqy 1 S iff (Bgyo~) 18

3. By IS iff (rv ~)oEyy) 1S

4. ECFE S 2SS impliesE]S

Define | E as the largest suitably typed stack relation S such that E [S
and | S as the largest suitably typed term relation F such that E] S.

Proposition 3.2 1. #?=] Sk? and Sk? =] (#2)
2. (YU 1?) =1 {&} and {e} =T (W U1?)
3. If X C X' are both either term or stack relations then | X D] X'

Call 12 E d=fI (I E) the Pitts’ closure of E; and similarly for stacks
125S1(19).

A term relation F is said Pitts’ closed iff E =]? E which is tantamount
to £ =12 E' or to E =] S. Similarly S is said Pitts’ closed iff S =]2 § iff
S=128'iff S=] E.

24

Lemma 3.3 If E is Pitts’ closed then (£ oEo Z) = E

The backward inclusion (o=p oFo o=p) 2 E holds trivially by reflexivity of Z
and monotonicity of o. The forward inclusion may be proved as in lemma
3.14 of [5].

V is said Pitts’ value closed when (] V), = V. E is said value Pitts
closed when {2 E,,; = E. From the lemma and previous propositions we
also have the following.

Corollary 3.4
1.
12E=¢%u
2 2]

(~ 0 =ygo(rv ~)o Ey20~s 0 =g o(rv ~))U

(~o o:”va, o(rv ~»)o Eypo o=p)U

(o__p OEﬂ.uO ~4 O o—.—p.val O(T‘U M))
2 PPV=Iz(Zoved)
8. E is value Pitts closed iff E,q s Pitts value closed.
4. 'V is Pitts value closed iff {2V is value Pitts closed.
5. If V is Pitts’ value closed then V = (°=pva[oVo °=pval).

6. If E is value Pitts’ closed then E =127 (g‘ual oE, 0 °=pval).

4 Open bisimilarity from relators
Let ¢ g Db(u)(je[,j’ﬁj : tj) in

V(j € Lt)(iv:.5) € B, (0,Efu) = (it36:)
U € obiyg, E o (;16;)

V(j € Li_V(r:t >t aD)(uirs;) €]2 E
U € obrysr F i (;t6;)

oby s.r,u(F) 4 (obigsu E) N (obrysr E) i (;t6;)

The obr relator experiments with bisimilar instantiations (:76;) of an open
redefinition frame r, thus with same outmost constructor; not just identical
closed frames (;7) as in [2].

Since evaluation is call-by-value as in [3], we need one relator for each
value constructor of the language.

23

Definition 4.1 (open type indexed relators) AssumingT' > t and § :
T', the open type indexed family of relators V; and By over § are defined as
follows.

[]=3

B d
Va6

12 (V% 9)
(5() u)va[o (iéi u)
v(X)obesru X i (:00(u)(jeLid; : t6:)))

Notice the maximum fixed point for each object type constructor. Note that
B 6 :: (,'t(S-,') and (Vt (5) i (,-té,-).

Definition 4.2 (Bisimilar bond)

&

&

vﬂb(u) (jel,j‘l?j:tj) 6

81T §iT
v € (B d) E C (By 67)

ele (6,5/2z) : (T,z: t) G (E =D /u): T,u<: t)
(6,5/2)] (T,2:1) G (E =D/] Tiu<:t)

Lemma 4.3 If§ [T and T > t Type then (B; 6)uat = (12 Vi 0))va = Vi 6.

Definition 4.4 (Bisimilarity) V and B is the face indexed family Bry
of open term binary relations defined as follows:

V6 1T) V(@ 1T)
(iviéi) eV é (,-eié,-) €B;é
U € Vl"bt g€ Bl"bt

Note that Vrst = (Brot)va

5 Adequacy

Lemma 5.1 B is adequate.

Proof: Consider any & € Br,:. Then & € (Bry) iff for every ¢ we have
>e;:tandforall § T, 86 =& € (B; §) = By €. Thus (Brot)e = Bepe. If
(ftv t) # {} then B, = {} which is trivially adequate. If >¢ Type then by
definition B; € =]2? V for some V :: (;t). As V | (,¢), that is (c,¢) €] V,
then by definition (]2 V)] (g,€); so B e C (f2 U §2). O

6 Subsumptiveness

E is said subsumptive iff it is closed under type subsumption.

éeEFDt
'vt<:t/
€€ Erpy

26

Write (B = 8) <:: (E' :: ') iff (1) t; <: ¢, for every i and (2) E = f and
(3) E'::t' and (4) EC E'.

Lemma 6.1 (Subsumption lemma) IfT' > t <:t then V(6 [T)(B, 6 ::
t6) <:: (By 6 :: ¢6)

(1) Proved by induction on the subtyping derivation, as § I T implies §; : T
for every 4. (2) and (3) hold by the definition of B; §. (4) follows by the
monotonicity of {2 from V; § € Vy 6 which comes from (v obysru) C
oby sru(V obgsr). This holds because & td; <: ¢'8; implies (obesra X) C
(Obt’,é,l",u X).

Proposition 6.2 B is subsumptive.

Proof: Goal: & € Bryy. Assume (H1) & € Bryp; and (H2) ' > ¢t <: . By
the subsumption lemma, the latter implies V(6 | I')(B; 6) C (By 8). As
(H1) stands for V(6 | T)(;e:d;) € B; 4, then V(8 | I')(;e:6;) € By & which is
nothing but the goal. O

7 Substitutivity

A term relation F is said substitutive iff E[I;,U(E)ya/] C E; that is when
closed under the next rules

€€ Eryct ot €€ Er iy
st<:t U E Vrot
Geilt/u]) € Elt/ur riju)s vrji/u) (i€ifvi/z]) € E[V/z : tIrrp e

Lemma 7.1 (Type substitution lemma) If (5,(B; ¢ :: (it&;))/u,8') :

Tyu<:t, M) andT,u <: ¥, T"pe; : t" andTvt <: t' then (:€i(0;,t6;/u,8))) €
Bt"(éi B 6/“" 6/) iff (iei[t/u] (51,6:)) € Bl."[l./u] (5, 6’)

Provable by induction on the structure of term e;.

Lemma 7.2 (Value substitution lemma) If T,z : t,I' > ¢; : ¢ and
Fvow:tandd:T and & : IV then (seivi/z)(6,8')) = (:ei(6;, vidi/2,0L)) €

By (8,6")

Provable by induction on the structure of term e;.

Proposition 7.3 B is substitutive.

Proof:

27

Closure under type substitution Goal: (;e;[t/u]) € Br,rvji/ujo vr(t/u)- As-

sume H £ ¢ € Bryco o and H LT 6 ¢ <: . From H, the

subsumption lemma and given any § [T’ we have (B; §) C (By 6).
Then, from H, V((6,B; 6/,8") I (T,u <: ¢,T))(;ei(;,t8:/u,8!) €
By (8, B; 6/u,8'). By the type substitution lemma, this is tantamount
to V((4,8") T (T, T'[t/«]))eslt/u)(8;, 6)) € Btu[t/u](é, ') which is what
the goal stands for.

Closure under value substitution Goal: (;evi/z]) € Brrvpy. Assume

HE: € Br::rev and H S ¥ € Bry;. The latter means V(4 |

T)(ivié;) € B; 6. By this and H one has V((6, (;v:6;)/2,8) [(T,z :
t,I"))(ei(6;,vi6:/2,8%)) € By(8,8'). This is equivalent by the value
substitution lemma to V(4,8') [(T,I")(iei[vi/2](6:,68})) € By(d,d)
which is the definition of the goal.

O

8 Compatibility

A term relation is said compatible iff it is closed under the next compatibility
rules.

¢ 2 0b(u)(jeid; : t;)

compatVar 0; e ob(u = t){jers = s(z; : u)ei;)
(T,z:t,I'’) Base compatObj
(i2) € Brzt,ro 2t V(j € L) (ieit/u]) € Br.jtot;1t/u)

(:0:) € Bry:

sy .
t' = 0b(u)(jeLid; : t))

sy .
t' = 0b(u)(jeLsd : t7) i 2 (l=(u<it, 2 : w)es(2' : u)el)
compatInvo compatRede f
ec Brbt e e Br‘pt
T t<it! lel o t<it/
(iei-l) € BFD t[t/u] 79; € {07 +} S BF,u<:t,z:u,z’:u> t; lel

(i€:7:) € Brot 9; € {o,—}
Proposition 8.1 B is compatible.

Proof: I show the full backward proof tree just once for the easier case of
variable compatibility. In the remaining cases I only hint on non routine
proof aspects.

variable Let H & (T, z:t,I') Base

28

L. (:2) € Braerot 1 H
V(8,9/2,8') T (T, z: £, T")(;2[6s,v:/2,0l)) € Be § HH
(iz[vi/2]) € By 6 4 H,(6,9/2,8') | (T,z:¢,I’)
VeEB6HH, T, 0eB 6,8 T

invocation provable using the subsumption lemma and routine applica-
tions of other previous lemmas.

object the hard aspect is to find a bisimulation relation O C obg s O such
that (;0;8;) € O.

redefinition key in the proof is a methodwise object bisimilarity relation
2, defined as follows.

t = 0b(u)(jeLsv;:t;)
0; = ob(u=t) (jeLd = Cméj)
deZis B V(G € L)oA miyltdi/ul) € MBe 6, By)

]

9 Transitivity and Symmetry

Note that adequacy is an equivalence and that the subsumption, compati-
bility, type and value substitution rules preserve transitivity and symmetry.
Transitivity and symmetry are provable directly as hinted next.

9.1 Transitivity

Lemma 9.1 (V; &) o (Vi &) C Vi (8p 0 8})
(Bt 60) [*] (Bt (56) - Bt ((50] (5(/))

Lemma 9.2 V(3 [T)3(&,6" [T)do = (6ho8y) A & =8y A Gh=o A & =
02

Proposition 9.3 B is transitive.

This may be proved from the preceeding lemmas.

9.2 Symmetry

Lemma 9.4 (rv ¢') [T whenever §' | T
Lemma 9.5 rv(]? E)=]? (rv E)
Lemma 9.6 v (V; 6) = Vi(rv §)
Lemma 9.7 B is symmetric.

This may be proved from the preceeding lemmas.

29

10 Operational congruence equals bisimilarity
Theorem 10.1 °=pp>¢= Bro:

Proof:

Right to left inclusion (o=pp‘> :2 Bry:) Bry: is adequate, subsumptive, sub-
stitutive, compatible, transitive and symmetric, as proved above. °=pp,> t
is by definition the family of largest relations with precisely such prop-
erties. So the inclusion holds.

Left to right inclusion (°=pr\,>¢§ Br,:) Assume any (;e;) €Zr,;. Given
any 0 such that 6 [I' we want to prove (;e;0;) € B; 6. Note that
(e191,€161) €o=ptal as this is reflexive since it is compatible by definition.
Also (e101,€162) € (B: §) which follows from § [T by induction on the
structure of e;.And (e162, e202) €°=p¢52 by substitutivity of Z. Thus
(i€:6;) € (Zis, 0By 60 Zy5,). As B, 6 =2 V, § is trivially Pitts closed,
the inclusion holds by lemma 3.3.

O

11 Further work

I conjecture that the extensionality result also holds for S, and Sy.

As for the relation between bisimilarity and contextual congruence, I
conjecture that: they coincide for Se, with only closed types (as for full
S); but that for S bisimilarity is fined grained than contextual congruence
(as discussed by Gordon for Sy).

I have been generalizing the calculus theory for preorders (dropping sym-
metry), roughly replacing symmetric notions and notation by preorder coun-
terparts, for instance: adequate by preadequate, closure by preclosure, etc.

I have investigated a first-order mu logic for S,, distilled years ago
from case studies on specification and verification of object oriented pro-
grams. I am considering alternative semantics, developing proof systems and
analysing practically relevant meta theory, namely soundness. A higher-level
logic over such (positive) core logic is also envisaged.

Finally I intend to identify object specification and verification tech-
niques and patterns, explore semantical relators for specification (generaliz-
ing the grammatical ones already used) and revisit such practice as appli-
cation of the developed theory.

References

(1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

30

[2] A. Gordon. Operational equivalences for untyped and polymorphic ob-
Ject calculi. In A. Pitts and A. Gordon, editors, Higher-Order Opera-
tional Techniques in Semantics. Cambridge University Press, 1997.

[3] A. M. Pitts. Existential types: Logical relations and operational equiv-
alence. Number 1443. Springer-Verlag, 1998.

[4] A. M. Pitts. Parametric polymorphism and operational equivalence.
Electronic Notes in Theoretical Computer Science, 10, 1998.

[5) A. M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science, 10, 2000.

31

Coproducts of Ideal Monads
(Extended Abstract)

Neil Ghani Tarmo Uustalu
Dept. of Math. and Comp. Sci. Institute of Cybernetics
University of Leicester Tallinn Technical University
University Road Akadeemia tee 21
Leicester LE1 7RH, UK EE-12618 Tallinn, Estonia
ngl3@mcs.le.ac.uk tarmo@cs.ioc.ee
Abstract

The development of a calculus of monad combinators has been a subject of much recent
research. Although a general construction exists, its generality is reflected in its complexity
which limits the applicability of this construction. Following our own research [12], and
that of Hyland, Plotkin and Power (8], we are looking for specific situations when simpler
constructions are available. This paper uses fixed points to give a simple construction of the
coproduct of two ideal monads.

A Brief Reminder on Monads A monad T = (T,n,m) on a category C is given by an
endofunctor T : C — C, called the action, and two natural transformations, n: 1 — T, called
the unit, and m : TT — T, called the multiplication of the monad, satisfying the monad laws:
mTn=T=mnT, and m-T = m-mT. We write m for the multiplication rather than the usual
1 since we reserve p for least fixed points and free monads.

The canonical example of monads is that of term algebras. Every signature ¥ defines a monad
Tg : Set —— Set whose action maps a set to the term algebra over this set. The unit maps
a variable to the associated term, while the multiplication describes the process of substitution.
The monad laws ensure that substitution behaves correctly, i.e. substitution is associative and the
variables are left and right units. Monads also model a number of other important structures in
computer science, such as (many-sorted) algebraic theories, non-well-founded syntax [15, 1, 6], term
graphs [7], calculi with variable binders [5], term rewriting systems [11], and, via computational
monads [13], state-based computations, exceptions, continuations etc. These applications involve
base categories other than Set and the desire for a uniform treatment underpins their monadic
axiomatisation.

Combining Monads A prerequisite for modular reasoning is an understanding of how individ-
ual components of a large system interact with each other. In particular, if different components
of a system are modelled by different monads, how do we combine these monads to represent the
overall system. Concretely, if two term rewriting systems R and R' are modelled by monads T
and T g how can we reason about the combined system R+ R’ via its representing monad T g4 r:?
Alternatively, given a monad modelling exceptions and a monad modelling state transformations,
can we derive a monad modelling computations which can either raise exceptions or modify the

state? One possible answer to these questions is given by the theory of monad transformers [14).
Although the concept of a monad transformer is rather elegant, in our opinion the definition is too
general to support an adequate meta-theory. For example, given a monad it is not clear whether
it is possible and, if so, how to define an associated monad transformer.

This paper is based upon the thesis that colimits of monads provide an appropriate framework
for combining monads. A construction of the colimit of monads was given by Kelly [9] but
the generality of the construction is reflected in its complexity which can be deterring even for
experienced category theorists and which certainly limits its applicability. Consequently, recent
research has focussed on i) coproducts of monads which model combinations of systems where
there is no sharing as in the examples above; ii) providing alternative constructions which, by
restricting to special cases, are significantly simpler and hence easier to apply in practice; and iii)
although the existence of the coproduct of two monads usually follows from general categorical
considerations, it is often unclear what the action of this monad is. Hence we seek alternative
functorial and fixed point characterisations of the coproduct of monads which make explicit the

action.

The rest of this paper recalls what is known for free monads and then tackles the question of com-
posing ideal moneds. Our results are similar to those in [12] but our proofs are much simpler and
hence more useful in practice. This is because we have used fixed points to hide the construction
of various cocones etc. Given a functor F: C — C, we denote (the carrier of) its initial algebra

by uF.

Coproducts of Free Monads Monad morphisms between monads T and H are natural trans-
formations h : T —— H which preserve the unit and multiplication of the monads. Given a
fixed base category C, monads and monad morphisms on C form a category Mon(C). To achieve
abstraction we follow the standard practice of replacing a signature ¥ with the associated polyno-
mial functor Fx. : Set — Set. Given an endofunctor F : C — C, the free monad on F is written
F*# and is defined as the universal arrow from F to the forgetful functor U : Mon(C) — [C,C).
The first important connection between fixed points and monads is:

Proposition 1 [4]: Given a functor F : C — C, the free monad is the initial 1+ F o _ :
[C,C] — [C,C] algebra.

Note that the term algebra monad is such a free monad. We could formalise free monads as left
adjoint to the forgetful functor by using lfp-categories and finitariness [10, 3] but in this paper we
want to work without such technical assumptions. There are a number of other simple connections
between fixed points and monads. For example, the free completely iterative monad [1] arises as the
final 14+ Fo_:[C,C] —= [C,C] coalgebra while the term graph monad and rational monads (7, 2]
are also 1+ F o _ fixed points. Coproducts of free monads are easy to construct and understand.

Proposition 2: Let F and G be functors. Then F¥ + G* = (F+G)* = u(1+ Fo_+Go.).

In general, this proposition indicates the sort of analysis we want, that is a reduction of the
construction of the coproduct monads to a fixed point formula involving endofunctors. A more
general result [8] shows that if S is any monad and F* a free monad, then S + F* = S(FS)~.
This is a significant improvement as it reduces the coproduct of any monad with a free monad
to functorial composition. Furthermore, this functorial formula can be reduced to a fixed point
formula: S(FS)* = S(u(1+ FSo)} = u(S(1 + Fo.)). The last equality is an application of the
rolling lemma for fixed points.

Coproducts of Ideal Monads The core of this abstract is the use of fixed points to calculate
the coproduct of a large variety of monads—the so-called ideal monads [1]. These were introduced
to describe those monads which can be decomposed into their variable and non-variable parts.

33

Formally, a monad (7,57, m) is ideal iff there is a functor Tp such that T = 1 + Tp, the unit is the
left injection and there is a natural transformation mg : ToT' —— T} such that

ingT
Tor 225 17

no| |

To T

na

We write ideal monads in the form 1 + Tp for simplicity and leave the restricted form of multipli-
cation mp implicit. A monad morphism f : 1 + Tp —— R whose source is an ideal monad has
its action on 1 forced by the monad laws and is hence of the form [n%, fo] where fo : Tp — R.
Examples of ideal monads include free monads, free completely iterative monads etc. The funda-
mental observation behind the construction of the coproduct R + S of ideal monads R = 1+ Ry
and S =1+ Sp is that i) R + S should contain as submonads R and S; and ii) R+ S should be
closed under the application of Ry and Sy. Hence R + S should consist of alternating sequences
beginning from Rp or So. Thus we ask for least fixed points

T E’Ro(l'i-Tz) T2“="So(1+T1)

and write ¢1, ¢, for the structure maps. Intuitively T consists of elements in R+ S whose top layer
is a non-variable R-layer (captured by the use of Ry) and whose next layers are either variables or
a non-variable S layer etc. We henceforth assume T3 and T: exist, for example, we may require C
to have w-colimits and for Ry and Sp preserve them.

Proposition 3: The action of the coproduct of ideal monads 1+ Ry and 1+ Sy is the functor
T=1+(T)+T,).

Functoriality of T is obvious. The unit 7 is the injection 1 LIV +(Th+T;) =T. The
multiplication m is [T, ina - (m) + my)] where m; : T — T} and my : 75T —— T can be
constructed by generalized mutual iteration:

0T
R +T)T 2 77 5T 2L s+ T)T
Ro(T + m3) m my So(T +my)
Ro(T+T2) Ty T o So(T+T1)

where p,, p, denote the composites

Ro((14+T2)+¢7") mP1+Ty)
ST Mo 7772

Ro(T + Ty) — Ro(1+T3) + T3) RoR(1+Ty) Ro1+T3) 2+ T
- o
So(T+Th) — So((1+T) + Tp) 8T) g g1 4 1y) M) g 14 7y) 2 T

The unit laws are satisfied trivially. For the associativity of multiplication one explicitly constructs
m§3) =NTT — T, and mgs) = ThTT —— T, by generalized mutual iteration to then show

that both m - Tm and m - mT equal m® = [m, ing - (m{® + m®)] . TTT — T.

Next, we need monad morphisms R,S — T to play the role of injections. They are given by
the composites

Soi L
Ry 2% Ro(1+T,) == Ty So = Sp(1+Ty) —= Ty
These maps are natural as we work in a functor category, preservation of the unit is again trivial

while preservation of the multiplication is a short diagram chase.

34

Finally, we turn to the construction of copairing. Given monad morphisms f,g: R,S — H
induced by fo,g0 : Ro,So — H we construct maps h; : Ty —— Hand hy : T, — H by
mutual iteration:

¢ t
Ro(1+Tz) — i} T2 <—250(1+T1)
Ro(1 + k) hy hy So(1+ hq)
Ro(1+ H) H H —— Sy(l+ H)
a1 Q2

where gy, g2 are defined as the composites
H H H H
Ro(l+ H) 2B g S8 g ™ g o1+ i) 20H] oo oH g

By diagram chasing one shows that [, [hy, h;]] is a monad morphism, that it is a mediating
morphism and that it is the unique such. Intuitively, uniqueness should not be surprising since
any other monad morphism h : T —— H must equal 7, [h;, ho]] i) on variables because of the
laws on monad morphisms; ii) on Ry and S, because they both form cones; and iii) on all other
elements of T since they are essentially multiplications of Ry and S, which are preserved by monad
morphisms.

Acknowledgements The first author’s research was supported by EPSRC under grant
No. GR/M96230/01 Categorical Rewriting: Monads and Modularity. The second author’s research
was supported by the Estonian Science Foundation under grant No. 5567 and his participation
at ETAPS 2003 was made possible by a travel grant from the Estonian Information Technology
Foundation.

References

(1] P. Aczel, J. Addmek, and J. Velebil. A coalgebraic view of infinite trees and iteration. In
A. Corradini, M. Lenisa, and U. Montanari, editors, Proc. of CMCS’01, volume 44(1) of
Electronic Notes in Theoretical Computer Science. Elsevier, 2001.

[2] J. Adémek, S. Milius, and J. Velebil. Free iterative theories: a coalgebraic view. Accepted
for publication in Mathematical Structures in Computer Science, 2002.

[3] J. Adémek and J. Rosicky. Locally Presentable and Accessible Categories, volume 189 of
London Mathematical Society Lecture Notes. Cambridge University Press, 1994.

[4] M. Barr. Coequalizers and free triples. Math. Z., 116:307-322, 1970.

{5] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc. of LICS’99,
pages 193-202. IEEE CS Press, 1999.

[6] N. Ghani, C. Liith, F. de Marchi, and J. Power. Algebras, coalgebras, monads and comonads.
In A. Corradini, M. Lenisa, and U. Montanari, editors, Proc. of CMCS’01, volume 44(1) of
Electronic Notes in Theoretical Computer Science. 2001.

[7] N. Ghani, C. Liith, and F. De Marchi. Coalgebraic monads. In L. S. Moss, editor, Proc. of
CMCS°02, volume 65(1) of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

35

(8] M. Hyland, G. Plotkin, and J. Power. Combining computational effects: Commutativity and
sum. In A. Baeza-Yates, U. Montanari, and N. Santoro, editors, Proc. of IFIP 17th World
Computer Congress, TC1 Stream / TCS 2002, volume 223 of IFIP Conference Proceedings,
pages 474-484. Kluwer Academic Publishers, 2002.

(9] G. M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids,
colimits, associated sheaves and so on. Bull. of Australian Mathematical Society, 22:1-83,
1980.

[10] G. M. Kelly and J. Power. Adjunctions whose counits are equalizers, and presentations of
finitary monads. Journal of Pure and Applied Algebra, 89:163-179, 1993.

[11] C. Liith. Categorical Term Rewriting: Monads and Modularity. PhD thesis, University of
Edinburgh, 1998.

[12] C. Liith and N. Ghani. Monads and modularity. In A. Armando, editor, Proc. of FroCoS'02,
number 2309 in Lecture Notes in Computer Science, pages 18-32. Springer Verlag, 2002.

[13] E. Moggi. Computational lambda-calculus and monads. In Proc. of LICS’89, pages 14~23.
IEEE CS Press, 1989.

[14] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-90-113,
LFCS, 1990.

[15] L. Moss. Parametric corecursion. Theoretical Computer Science, 260(1-2):139-163, 2001.

36

Inflationary and Deflationary Fixed Points

Erich Gradel
Aachen University
graedel@informatik.rwth-aachen.de

Fixed point logics extend a basic logical formalism (like first-order logic,
conjunctive queries, or propositional modal logic) by a constructor for form-
ing fired points of relational operators. The most influential fixed point for-
malisms in computer science have been concerned with least (and greatest)
fixed points of monotone operators.

¢ The modal p-calculus L, is the extension of propositional modal logic
by least and greatest fixed points. This logic has been extensively
studied, having acquired importance for a number of reasons. In terms
of expressive power, it subsumes a variety of modal and temporal logics
used in verification, in particular LTL, CTL, CTL*, PDL and also
many logics used in other areas of computer science. On the other
hand, L, has a rich theory, and is well-behaved in model-theoretic and
algorithmic terms.

o LFP, the extension of first-order logic by least fixed points is of crucial
importance in finite model theory and descriptive complexity, in par-
ticular due to its tight connection to polynomial-time computability.
It relates to first-order logic in much the same way as L, relates to
propositional modal logic.

In finite model theory and, to a lesser extent, in database theory, a num-
ber of other fixed point operators have been extensively studied, including
inflationary, partial, nondeterministic and alternating fixed points. All of
these have in common that they allow the construction of fixed points of
operators that are not necessarily monotone.

In this talk, we will focus on inflationary and deflationary fixed point
inductions and compare them to least and greatest fixed points. We will also

show a number of examples and scenarios in which inflationary and defla-
tionary fixed points arise in a natural way. Recall that in least fixed point
logic we can write formulae [IfpRZ . (R, Z)](a) expressing that @ is in the
least set R satisfying R = {Z : ¢(R,%)}. We can do this, provided that
the relation variable R appears only positively in ¢. This guarantees that,
on every structure, the operator F,, : R — {Z : ¢(R,Z)} is monotone and
therefore has a least (and a greatest) fixed point. Moreover, the fixed point
can be obtained by an iterative process. Starting with the empty set, we
repeatedly apply the operator F, and thus obtain an increasing (possibly
transfinite) series of stages which converges to the desired least fixed point.
A slightly different variant permits also simultaneous least fixed point induc-
tions over several formulae, but it can be shown that this does not provide
more expressive power.

Inflationary fixed points, on the other hand, can be built with formulae
(R, %) that need not be positive in R. Starting with the empty set, we can
still define an increasing sequence of stages by iteratively taking the union
of the current stage R with F,(R). Again this sequence must eventually
converge to a fixed point (not necessarily of F,, but of the operator R —
RU F,(R)), which we call the inflationary fixed point of . In IFP we build
formulae (ifp RZ. (R, Z)](@) saying that & is contained in the inflationary
fixed point of ¢. The deflationary fixed point of ¢(R,Z) is defined by a
dual process, starting with R = A* and iteratively applying the operator
R — RN F,(R). This defines a decreasing sequence converging to a fixed
point, called the deflationary fixed point of ¢, which is also definable in IFP.

We review some of the known results on the logics LFP and IFP.

(1) Gurevich and Shelah have shown that on finite structures, LFP and
IFP have the same expressive power. A recent result due to Kreutzer
shows that this equivalence of LFP and IFP also extends to infinite
structures.

(2) On ordered finite structures, LFP and IFP express precisely the prop-
erties that are decidable in polynomial time.

(3) Simultaneous least or inflationary inductions do not provide more ex-
pressive power than simple inductions.

(4) The complexity of evaluating a formula 1 in LFP or IFP on a given fi-
nite structure is polynomial in the size of the structure, but exponential

38

in the length of the formula. For formulae with a bounded number k& of
variables, the evaluation problem is PSPACE-complete, even for k = 2
and on fixed (and very small) structures. If, in addition to bounding
the number of variables one also forbids parameters in fixed point for-
mulae, the evaluation problem for LFP is computationally equivalent
to the model checking problem for L, which is known to be in NP N
Co-NP, in fact in UP N Co-UP, and hard for PTIME. It is an open
problem whether this problem can be solved in polynomial time.

We also note that even though IFP does not provide more expressive
power than LFP on finite structures, it is often more convenient to use infla-
tionary inductions in explicit constructions. The advantage of using IFP is
that one is not restricted to inductions over positive formulae. A non-trivial
case in point is the formula defining an order on the k-variable types in a
finite structure, an essential ingredient of the proof of the Abiteboul-Vianu
Theorem, saying that least and partial fixed point logics coincide if and only
if PTIME = PSPACE. Furthermore, IFP is more robust, in the sense that
inflationary fixed points are well-defined, even when other, non-monotone,
operators are added to the language.

Inflationary Inductions in Modal Logic. Given the close relationship
between LFP and IFP on finite structures, and the importance of the u-
caleulus, it is natural to study also the properties and expressive power
of inflationary fixed points in modal logic. We define a modal iteration
calculus, MIC, by extending basic multi-modal logic with simultaneous in-
flationary inductions. Given formulae ¢,..., v, we can build formulae
ifp Xi 0 [Xh — o1,..., X — k] that construct sets by a simultaneous
inflationary induction. At each stage o, we have a tuple of sets XT, . o XR
Substituting these into the formulae ¢, . .., i we obtain a new tuple of sets,
which we add to the existing sets X&,..., X £, to obtain the next stage.

It is clear that MIC is a modal logic in the sense that it is invariant under
bisimulation. In fact, on every class of bounded cardinality, inflationary fixed
points can be unwound to obtain equivalent infinitary modal formulae. As a
consequence, MIC has the tree model property. It is also clear that MIC is
at least as expressive as L,. The following natural questions now arise.

(1) Is MIC more expressive than L,?

(2) Does MIC have the finite model property?

39

(3) What are the algorithmic properties of MIC? Is the satisfiability prob-
lem decidable? Can model checking be performed efficiently (as effi-
ciently as for L,)7

(4) Can we eliminate, as in the p-calculus and as in IFP, simultaneous
inductions without losing expressive power?

(5) What is the relationship of MIC with monadic second-order logic (MSO)
and with finite automata? Or more generally, what are the ‘right’ au-
tomata for MIC?

(6) Is MIC the bisimulation-invariant fragment of any natural logic (as L,
is the bisimulation-invariant fragment of MSQ?)

We provide answers to most of these questions. Although IFP and LFP
have equal expressive power, the situation for fixed point extensions of modal
logic is quite different. The modal iteration calculus MIC has much greater
expressive power than the p-calculus. Greater expressive power comes at a
cost: the calculus is algorithmically much less manageable. In particular, we
establish the following results:

(1) There exist MIC-definable languages that are not regular. Hence MIC is
more expressive than the u-calculus, and does not translate to monadic
second-order logic.

(2) MIC does not have the finite model property.

(3) The satisfiability problem for MIC is undecidable. In fact, it is not
even in the arithmetic hierarchy.

(4) The model checking problem for MIC is PSPACE-complete.

(5) Simultaneous inflationary inductions do provide more expressive power
than simple inflationary inductions. Nevertheless the algorithmic in-
tractability results for MIC apply also to MIC without simultaneous
inductions.

(6) There are bisimulation-invariant polynomial time properties that are
not expressible in MIC.

(7) All languages in DTIME(O(n)) are MIC-definable.

40

No doubt, these properties exclude MIC as a candidate logic for hardware
verification. On the other hand, the present study is an investigation into the
structure of the inflationary fixed point operator and may suggest tractable
fragments of the logic MIC, which involve crucial use of an inflationary op-
erator, just as logics like CTL and alternation-free L, carve out efficiently
tractable fragments of L,,. In any case, it delineates the differences between
inflationary and least fixed point constructs in the context of modal logic.

(This is joint work with Anuj Dawar and Stephan Kreutzer)

4]

Monadic Datalog on Trees

Martin Grohe

University of Edinburgh

Abstract

Semi-structured data, best-known in the syntax of XML, have caused a signifi-
cant paradigm shift in the field of database systems, and have also been one of the
central research topics in database theory over the last five years. While classical
relational databases can be described as relational structures, XML-documents are
best modelled by unranked trees. We study the problem of evaluating unary, or
node-selecting, queries on trees. Node-selecting queries are not only of interest as
basic queries in their own right, but are also an important building block for more
complex queries. In particular, the node-selecting path query language XPath is
at the core of several major XML-related technologies, such as XML Query, XML
Schema, and XSLT, the principal query language, schema definition formalism, and
stylesheet language for XML, respectively.

Even though undoubtedly very important in practice, from a theoretical per-
spective XPath seems to be a very ad-hoc language that leaves a lot to be desired.
Monadic second-order logic (MSO) on trees, on the other hand, is well-known to
have beautiful theoretical properties. In particular, it has well-balanced expressive
power in that it is expressive enough for most purposes, but on the other hand still
has good algorithmic properties due to its connection with tree automata. Indeed,
MSO has been proposed as a ”benchmark” for the expressive power of node-selecting
XML query languages (Neven and Schwentick 2000). Nevertheless, MSO itself is
not suitable as a practical query language because it allows to express very complex
queries very concisely, which makes the query evaluation problem highly intractable.
But there are nice languages which have the same expressive power as MSO on trees,
but admit much more efficient query evaluation. The modal mu-calculus may be
seen as an example of such a language (at least on ranked trees). In the context of
querying XML, the most promising such language is monadic datalog. It has the
same expressive power as MSO, but admits query evaluation in time linear in both
the size of the datalog program and the size of the tree (Gottlob and Koch 2002).

In this talk, I will present recent results on the expressiveness and complexity
of monadic datalog and related languages. Even though monadic datalog does have
the same expressive power as MSO (on trees), there is no elementary translation
from MSO into monadic datalog - we may say that MSO is non-elementarily more
concise. We will look at such ”conciseness” results more closely and place logics such
as monadic least-fixed point logic and stratified monadic datalog into the picture.
On the algorithmic side, we will show that the containment problem for monadic
datalog on trees is in EXPTIME (and thus EXPTIME-complete). Furthermore, we

will discuss a new automata based algorithm for evaluating unary monadic datalog
queries which has the nice property that it has to read the input tree only twice
(in postorder), which is of great advantage when evaluating queries on documents
that are too large to fit into main memory. Indeed, a recent implementation of this
algorithm by Christoph Koch turns out to be highly efficient in practice.

This is joint work with Markus Frick, Christoph Koch, and Nicole Schweikardt.

43

Monadic fusion of functional programs

Claus Jiirgensen* 1
Faculty of Computer Science
Dresden University of Technology
D-01062 Dresden, Germany

March 17, 2003

We present a new fusion technique to transform functional programs and prove
its correctness. Instead of the catamorphism (i.e. the unique algebra morphism from
an initial algebra) which is used in the 'acid rain theorem’ we rather use the unique
monad morphism from a free monad. Moreover we demonstrate how to use our fu-
sion theorem to compose classes of tree transducers.

This paper is a shortened version of (Jiir02] where more details and all the proofs can be found.

1 Introduction

This paper is about a program transformation of functional programs called fusion. Consider

three algebraic types A, B, and C and two recursive programs f and g with typing C J— B L A
We call a program k : C — A a fusion of the consumer f and the producer g if two conditions

are satisfied:
(i) {f] o] = [A], and

(ii) the intermediate data-structure B does not occurin h.

The condition (i) is the correctness of the fusion w.r.t. the denotational semantics [.]. If the
semantics is compositional it can be trivially satisfied by setting h = f- g= Az — f(gz). The
essential point is condition (ii): the elimination of the intermediate data-structure.

Various fusion techniques are known, e.g.: deforestation [Wad90], short cut fusion |[GLP93,
TM95, Gil96, JohOl), or syntactic composition of tree transducers (and attribute gram-
mars) [Eng75, Eng80, Fiil81, CF82, EV85, Gie88, CDPR97b, CDPR97a, Kiih98, FV98, KV01]. Each
of these has its own advantages and disadvantages.

We combine the ‘syntactic composition of tree transducers’ [KV01] on the one hand side and
‘short cut fusion’ [GLP93] on the other hand side.

Short cut fusion is based on the ‘cata/build-rule’ or ‘cata/augment-rule’ {Joh01] or 'acid rain
theorem' [TM95]. Therefore it is necessary to represent the recursive functions as catamor-
phisms. A catamorphism is a generalization of the well known list-function foldr for arbitrary

*Email: Claus. Juergensen®Inf . TU-Dresden.DE
tSupported by the postgraduate program 'Specification of discrete processes and systems of processes by operational

models and logics' (GRK 334/2) of the German Research Community (DFG)

algebraic data types. In terms of category theory a catamorphism is the unique algebra mor-
phism from an initial algebra.

We have invented a new fusion technique using monads: instead of a catamorphism we use
the unique monad morphism from a free monad.

Consider the small Haskell program:

data Nat Zero | Succ Nat
data Bool = False| True

even Zero = True
even (Succn) = odd n
odd Zero = False
odd (Succn) = evenn

The latter four equations define the two mutually recursive functions even and odd. We can view
this system of equations as a function!:

ox 1 Ta(QX) — Q(XX),
True «— even Zero,
odd n « even(Succ n),
False «— odd Zero,
even n — odd(Succn)

where X = {n} is the set of variables. The endofunctors £, A, and Q describe the application of
ranked symbols from { Zero(®, Succ}, { True'®, False!™}, and {even®, odd‘"}, respectively, to
aset(eg LX = {Zero} U {Succ z|z € X}). The functor Tx constructs all A-trees over a set X:
TaX = Ween, AX = X + A(TaX).

Itis possible to show that the function gx is natural in X and thus we have a natural transfor-
mation:

e:Ta-Qe-Q- X

which we call the rule of the functional program. Using some category theory magic like adjoint
functors we can equivalently transform this rule into the form:

g' : IHTAI T

where Ta = (Ta, 7, #) denotes the free monad over A, H is an endofunctor, and |. | the forgetful
functor mapping a monad onto its underlying endofunctor. A rule in the latter form is the main
ingredient of a so called monadic transducer which we introduce in Definition 5.1.1.

Using the universal property of a free monad we can define a denotational semantics for
monadic transducers. Moreover, we have proved a new fusion theorem for monadic transducers
(Theorem 5.2.2) similar to the 'acid rain theorem’.

Our construction depends on the syntactic structure of the functional programs f and g we
want to compose. We use syntactic classes of tree transducers to describe the necessary syntactic
form of the programs. A tree transducer [Rou68] is a finite tree automaton with in- and output.
Its integral part is a set of rules. Some classes of tree transducers can be viewed as syntactic
fragments of functional programming languages. Our example Haskell program is a top-down
tree transducer which has the two states even and odd.

The composition of top-down tree transducers is an instance of short cut fusion [JV01]. But for
more complicated tree transducers we have not been able to apply short cut fusion, and that is
why we invented the monadic transducer.

! Please forgive us for drawing all arrows from right to left. In Subsection 2.1 we explain why we prefer it this way.

45

Moreover, we are interested in the question, whether syntactic classes of tree transducers are
closed under fusion. This question has been answered (positively or negatively) for many classes
of tree transducers. The constructions and proofs of the classical results differ depending on the
specific class of tree transducers investigated. Using our monadic transducer we can describe
many kinds of tree transducers in a uniform way. Once modeled as a monadic transducer, it is
easy to do a fusion and then inspect whether the result is a tree transducer of a specific class.

We will show how to compose homomorphism top-down, top-down, and macro tree transduc-
ers with our new approach. In {Jiir02] we show how it is possible to extend our new approach
to the fusion of high-level tree transducers, top-down tree-series transducers, and bottom-up tree
transducers. Even though we use some esoteric category theory, our results will be down-to-earth
constructions which are applicable to transform real functional programs (see Figure 4).

2 Preliminaries

2.1 Functions and arrows

We denote the fact that a function f maps to a set A from a set Bby B = dom f and A = cod f
or by the relation f : A — B. We will use this notation for a morphism f to an object A from an
object B as well. A function is nothing else than a morphism in the category Set. In order to avoid
parentheses we will use the conventions fz = f(z) and Ffz = (Ff)z for function applications.
The composition f - g : A — C of two functions f : A «— Band g : B «— C is defined by
Vz € C.(f-g)z = f(gz). This is the reason why all our arrows point to the left?:

f g

A«——B<«~"—(C
f-g

We assume that function application binds stronger than function composition.

2.2 Category theory

We will use the following notions from category-theory: (bilendo)functor, natural transforma-
tion, horizontal/vertical composition, initial/final object, (co)product, projection, injection, expo-
nent, (initial) F-algebra, universal arrow, (semi-)concrete category, free object, adjunction, monad,
monadic, and varietor.

If possible and appropriate we will use the following fonts: A4, B, C, ... for objects; f,g,h,...
for morphisms; F,G,H,... for functors; a,7,¢,... for natural transformations; C,D, €, ... for
categories; and T, T, ... for monads.

We refer to objects and morphisms of some category C as C-objects and C-morphisms and
denote the classes of all objects and all morphisms of € by ObC and MorC. The subclass of all
C-morphisms to A from B is denoted by C(4, B).3

We denote the meta-category of all categories (with functors as morphisms) by CAT and the
meta-category of all functors to C from D (with natural transformations as morphisms) by ¢?
(called functor category). We will almost always omit the word meta since it will make no differ-
ence for what we are doing. For the endofunctor category we use the abbreviations End ¢ = ¢

and End®C = End(EndC).

2Arrows pointing to the right are consistent with the commuted compositiong; f = f - g.
3Notice, that this is more often denoted by C(B, A) or Hom¢ (B, A). Our notation is consistent with arrows pointing to

the left which we use.

For every object A we denote the identity morphism by id, or just id. The composition in a
category is usually denoted by f - g. The only exception will be the vertical composition of natural
transformations denoted by o » 7 in order to distinguish it from the horizontal composition ¢ - 7.

FF '
ForallC «——— 'D«G—’G— €andallo : F « Fandr : G « G’ we write (0G)x = ogx and

(FT)x = F(rx). Then the vertical composition of the natural transformations ¢ and 7 is given
byo* 7 = oG- Fr = Fr - ¢G'. We denote the meta-category of all categories with all natural
transformations as morphisms and composition * by CAT where CAT(C, D) = MorC®. The
class of all natural transformations with horizontal and vertical composition is a 2-category.

We denote coproducts by A+ B or [], A;, products by A x B or [], A;, and exponents by A< B
or AB. If a category has finite coproducts we call it a cocartesian category.

The symbols for (co)products and exponents will also be used for the related functors (e.g. < :
C « C x C°") where we write the bifunctors +, x, and <« as infix binary operators. We will denote
the pointwise lifting of these bifunctors to the functor category by the same symbol (e.g. (F +
G)f = Ff + Gf). We use the following names for classes of functors defined from +, x and « by
gramars: cocartesian functors:

FX =X I FiX + F2 X,

bicartesian functors:
FX o= X | FilX +F2X | F1X x FaX,

and polynomial functors: FX ::=
A | X I F1 X +FX I Fi1X x Fo X | Fi <= A

For every category C we denote the identity functor by Id¢ or just Id.

For every object A we denote the constant functor which maps onto id4 by A. Notice that the
function . is a functor . : End C « C defined on C-morphisms f an C-objects X by f_ = f.

We denote a semi-concrete category built upon C by (D, U) where U : ¢ — D. IfU is_f(aithful we
call (D, U) a concrete category and U its forgetful functor. A semi-concrete functor F : (D, U) —
(D',U’)isafunctor F : D « D’ such that U-F = U’ holds. If (D, U) is concrete then we call F
a concrete functor. Notice, that concrete functors are uniquely determined by their values on

objects.

We denote an adjunctionby (n,¢) : F 4G : C — DorjustbyF 4 GwhereF:C — D,G: D «C,
n:G-FeId,ande:Id «F.G.

If a concrete category (D, U) has free objects, i.e. the forgetful functor is right adjoint, then we
call the left adjoint of U the free-functor.

3 Tree transducers

A tree transducer [Rou68] is a finite tree automaton with input and output. We consider tree
transducers for two main reasons:

(i) We view tree transducers as a syntactic fragment of a functional programming language.
Then we can use the nomenclature of the theory of tree transducers for functional pro-
grams.

(ii) It turns out that our monadic fusion theorem (Theorem 5.2.2) has a form which makes it
possible to reason about the fusion of classes of functions. This is one of the problems
investigated in the theory of tree transducers.

We will only consider deterministic total tree transducers, i.e. the rules of the tree transducers
are functions.

47

3.1 The rule of a tree transducer

We have seen in the introduction how to describe the defining equations of a functional pro-
grams as one function which we called the rule of the program. The type of the rule describes
the syntactic structure of the program. In the case that the functional program is a tree trans-
ducer, we have the following:

3.1.1 Proposition (tree transducer rules are natural transformations). Every tree transducer
rule can be uniquely extended to a natural transformation, and vice versa every natural transfor-
mation of the appropriate type can be restricted to a tree transducer rule. °

And thus we can define tree transducers simply by giving the types of natural transformations.
Before we can do so we need one more definition in order to express applicative
terms [Dam82], i.e. terms, where some subterms are treated as functions which can be applied

to other terms.

3.1.2 Definition. Let C be a cartesian closed category and I € ObC. We define the functor A; :

EndC — Cby
Yf,g€MorC.A;fg=(g<id;) x f.

Obviously A is polynomial.
For every pair of objects X,Y € ObC we have A; XY = Y! x X. ForC = Set and k € Ny we
define AcXY = {1 vk | € X ApeY}EYEx X =A, XY, °

We will not give a precise definition of a tree transducer. We will rather define some classes of
tree transducers (and the respective classes of computable functions) by stating the type of their
rule in Table 1 where X, A are polynomial Set-endofunctors; Q is a cocartesian Set-endofunctor;
X (recursion variables), Y (context variables) are sets; k € N; A is a complete semiring; and B is
the boolean semiring. According to Proposition 3.1.1 the latter is an equivalent representation of
a tree transducer.

syntactic class class of computable functions type of rules
homomorphism HOM Ta X — X
top-down TOP Ta (QX) — Q(EX)
simple basic macro sb-MAC Tal Y+A(QX) Y)—A(QEXX))Y
basic macro b-MAC Ta(TaY + Ak(QX)(TAY); —A(QEEX))Y
macro MAC Tr +au@x)Y — A(Q(EX))Y
top-down tree-series TOP 4 A{TA(QX)) — Q(xX)
nondeterministic top-down TOPg B{Ta(QX)) — Q(XX)
bottom-up BOT Q(TaX) — X(QX)

Table 1: Some classes of tree transducers

3.1.3 Example (macro tree transducer). Consider the Haskell program:

data Nat = Zero| Succ Nat
datafe}] =[] |a:[o]
reversez = let
rev || ys = ys
rev (z : zs)ys = rev zs (T : ys)
inrev z {]

48

ezpox = let
ezp (Succ)y = ezpz (exp z y)
erp Zero y= Succy
in ezp z Zero

append z = let
app (z: 2s)ys = z : (app zs ys)
app (| ys = ys
inapp z]
Then the program reverse is a non-simple basic macro tree transducer, the program ezpo is a
simple non-basic macro tree transducer (This one is not in Table 1.), and the program append is
a simple basic macro tree transducer. °

4 Monads and monad transformers

Amonad T = (T, 7,) on C is a triple consisting of an endofunctor T and two natural transfor-
mationsn: T «-Idand p: T« T2suchthaty Ty =idr = p-nTand u- Te = - uT holds. The
intuition of a monad, that we will need, is that it can be viewed as a description of a recursive
data structure together with a notion of substitution.

4.1 Tree monads and free monads

The easiest example for a monad is the trivial monad ID¢ = (ld¢, idic , idia.) O a category C.

As an other example we give the monad of all trees over a ranked alphabet £. The endo-
functor T is given by TX = TgX, where Tz X denotes the set of I-trees over the set of vari-
ables X. Thennx : TtX « X describes the embedding of variables into trees X C Tg X and
px : TrX « Tx(TeX) describes substitution in the following way: For an interpretation of vari-
ablesi : TrY « X the substitution operator is given by py - Tgi : TeY « TrX. In the special
case {z1,...,zx} € X =Y whereiis defined usingsomet,,...,t; € T X byiz; =ty (andiy =y
otherwise) we have py - Txi = [t1 /3, . .., t/zx).

An endofunctor I : € « C is called a varietor if the concrete category of Z-algebras (C%,|.})
has free objects. It is a well known fact that polynomial Set-endofunctors are varietors and that
the free monads over these endofunctors describes free term-algebras together with the common
term-substitution.

4.1.1 Definition (monad morphism, free monad). Let T = (T,7,z) and T" = (T', 7,) be mon-
ads over C.
(i) A natural transformation h : T « T’suchthatg = h-n'andu - (h*h) = h- 4 iscalled a
monad morphism to T from T and we write A : T — T'.
(ii) It is easy to see that (i) gives rise to a category which we will denote by Mnd C. Moreover
this is a concrete category (Mnd C,|.|) built upon End C where the forgetful functor |. |
maps a monad (T, 7, #) € Ob(Mnd C) onto the underlying endofunctor T.

(iii) LetX : C « Cbeanendofunctor. A free object over Zin (Mnd C, | .|} is called a free monad
over . We denote a free monad over T by Ty and its underlying functor by Tg. 0

It is well known that varietors have free monads:

4.1.2 Theorem ({AHS90] Theorem 20.56). If ¥ : C « C is a varietor, then (CT, |.|) is monadic
over C and the associated monad is a free monad generated by £. o

49

4.2 Monad transformers

One part of the monadic transducer, which we define later in Definition 5.1.1, is an endofunctor
on a category of all monads over some category. Such a functor is sometimes called a monad
transformer [Mog90].

Many different definitions of a monad transformer exist in the literature. In (Hin00] a monad
transformer (H, 7, w) is an endofunctor H mapping monads onto monads together with two nat-
ural transformations = : H « Id (called promote or lift) and w : Id « H (called observe). We
will need a natural transformationw : [.], « [.[, - H to observe the final result of the monadic
computation (see Definition 4.4.3). However, this function w will not be part of our definition of
a monad transformer.

In [JV01] we have used an algebra transformer (cf. [Fok92]) to formulate a generalized version
of the "acid-rain-theorem’. The réle of this algebra transformer will be taken by an endofunctor
mapping monads onto monads in our new fusion Theorem 5.2.2.

4.2.1 Definition. A pointed functor (F, 7) on a category C is a pair consisting of a C-endofunctor
F and a natural transformation = : F < Idc. A monad transformer (H,n) on C is a pointed
functor on MndC. 0

In the following two subsections we will see how to construct monad transformers from ad-

junctions or coproducts of monads:

4.3 Monad transformers from adjunctions

4.3.1 Lemma (composition of an adjunction and a monad). Let (n,¢) : Q HU : C «— Dbean
adjunctionand T = (T,#,u) beamonadon D. Then T’ = (U-T-Q,UiQ - ,U(p - TeT)Q) is a
monad on C. °

We have just seen the function U-T-Q « T. For the following it will be useful to give it a name:

4.3.2 Definition. Let C, D, £, and F be categories. We define the binary operator «o for every
o € MorC™ and g € Mor €7 by

YH € ObD?. (@ —o B4 = a * idy * .
It is easy to see that «o is a bifunctor
R (i L R i
where the value of —o applied to a pair of objects F € ObC” and G € Ob €7 is given by
Y € Mor Df. (F o0 G)p = FypG

where F «—o G is a functor
FeoG:CF — Df

given on objects H € Ob D? by
(F—GH=F-H-G.

Notice, that the latter makes o to a bifunctor

. +0.: CAT «— CAT x CAT®".

50

4.3.3 Lemma. The binary operator o is a functor
. o . : CAT — CAT x CAT?
which is given on objects by
VC,D € ObCAT.C — D =C?P. o

4.3.4 Definition. Let Q : C «— D be a left adjoint endofunctor. We use the construction from
Lemma 4.3.1 to define a functor Q : Mnd D — Mnd C by

V(T,7, 1) € Ob(MndC). Q(T,#,p) = (U-T-Q,UiQ 7, U(k- TeT)Q),
Vh € Mor(MndC). Qh = UhQ
where (n,¢) : Q - U is an adjunction. Moreover Q is a concrete functor
Q: (MndD,[.|) — (MndC,(U—Q)-[.[). o
4.3.5 Lemma. The function from Definition 4.3.4 is a functor
7 : CAT — LeftAdj°®

where LeftAdj denotes the subcategory of CAT where the morphisms are all left adjoint func-
tors. °

4.3.6 Lemma. The bifunctor —o preserves adjunctions: Let Q, U, Q’, and U’ be functors. Then

Q4U A QHU = (QeoU)4(U~oQ'). o
4.3.7 Proposition. LetC be a category. The bifunctor

«o: End*C « EndC x EndC
can be extended to a concrete bifunctor:
« 0, : (Mnd(EndC),|.|) — (MndC,|.|) x (MndC,1{.])

Proof. We define —o on monads (T, 7, u) and (T, 4,) on C by

(Tom,) o (T,7,5) = (T T,nodfp o)

and have to verify that it maps monads onto monads and monad morphisms onto monad mor-
phisms. []

4.3.8Lemma. Let (¢,7): Q 1U: C — D be an adjunction where Q is a cocartesian endofunctor.
Then Q is a monad transformer.

Proof. Since Q is cocartesian we have a product (Q - Id)qeq@ where Q is a finite set. We claim
that (Q,) is a pointed functor where for everymonad T = (T, 7,) we define mr = U[Te,)geq 0T
where m = [T¢,]qeq denotes the unique mediating morphism satisfyingVg € Q. m - ¢y = Teg. We
have to verify that 7 is natural in T and that = is a monad morphism.]

51

4.4 Monad transformers from coproducts of monads

The coproduct of monads on a category C is just the usual coproduct in the category MndC.
Colimits of monads have been studied in [Kel80]. Coproducts of monads have been used in
[LG02a, LGO2b] to construct monad transformers.

4.4.1 Lemma (coproduct of free monads). Let C be a cocartesian category and X and A be C-
varietors. Then:
Tg + Ta 2 Txa

Proof. The free-functor mapping a varietor onto its free monad is left adjoint and thus preserves
coproducts.]

4.4.2 Definition and Lemma. Let C be a cocartesian category with initial object 0 and A a C-
object. Let us denote the left and right injections of binary coproducts by i and /, respectively.
(i) AT = ((A+)i id]) is amonad on C. (In particular 0+ = ID.)
(iiy The monad A* is free over A (i.e. AT = Ty,).
(iii) The function (.)* is a functor
() :MndCc—C
defined on C-morphisms f by f+ = f +id. o
4.4.3 Definition. LetC be a categoryand I € ObC.
(i} We define the functorA; : C — End Cby

VT e Ob(EndC).A;T =TI and
Vh € Mor(EndC).Ath = hy.

(ii) We define the functor |.|; : C «— MndC by A; - |.| where (MndC,|.|) is the concrete
category of monadson C and |.| : End C — Mnd C the default forgetful functor mapping
a monad onto its underlying endofunctor. °

4.4.4 Corollary. LetC be a category such that Mnd C is cocartesian. Then:
®
(+)* : (Mnd(MndC),|.||.lp) — (MndC,|.|)
is a semi-concrete functor.

(i) For every monad T on C the functor (T + .) = |T*|is a monad transformer: ((T + .),{)
where (denotes a right injections into the coproduct of two monads.

(iii} For every C-object A we have a concrete functor

(A++.):(Mndc,|.|)c--(MndC,(Ide—o(A+.))-|.|). °

5 Monadic transducers

A monadic transducer is a generalization of a tree transducer described in terms of category the-
ory. The advantage of monadic transducers is a higher level of abstraction which leads to much
more elegant proofs and enables us to treat different kinds of tree transducers (homomorphism,
top-down, high-level, tree-series, ...) in a unified framework. Monadic transducers can be used
to give denotational semantics to fragments of functional programs. We will use this denota-
tional semantics to prove the correctness of our monadic fusion.

52

5.1 Syntax and semantics of monadic transducers

5.1.1 Definition (monadic transducer). Let C be a category which has an initial object 0. M =
(H, L, A, w, g) is called a monadic transducer on C if

() H: MndC «— MndC (called pattern) is an endofunctor,
(i) ,A:C «C arevarietors,
(i) w:|e]g <].]y-H (called observe), and

(i) ¢:|HTa| < L (called rule) are natural transformations. o

The intuition behind this definition is as follows: A monadic transducer is a particular func-
tional program (or tree transducer) where: The two varietors describe the input and output data
type, respectively. The pattern describes the syntactic structure or recursion pattern. The rule
defines the program by a set of equations. And finally, the observe picks the desired value from
the result of a mutual recursion.

We define the semantics of a monadic transducer in two phases:

5.1.2 Definition (generalized semantics of a monadic transducer). LetM = (H,Z,A,w,0)bea
monadic transducer over C. Since Ty is free over I, there exists a universal arrow uy : Ty « I.
Then there exists a unique monad morphism (M) : HT5 « Ty such that (M} - ux = o holds:

0 *
ot
v
[N PR -
(M)

HTp «———T;

The underlying natural transformation
qMID : |HTA| «Tx

is called the generalized semantics of M. The generalized semantics is independent from w.
However, it depends on the choice of the universal arrow ux. To make things simpler, we choose
for every varietor ¥ a universal arrow ux from I (to the free monad over ¥) and use this choice
implicitly for the generalized semantics of every monadic transducer. To simplify our notation
we will sometimes omit the forgetful functor | . | on morphisms. °

Itis worth mentioning that ‘being a monad morphism’ is a natural property for the generalized
semantics (M):

(i) 7 = (M) - #’ means that variables will be throughput and

(i) p- ((M) * (M)) = {M) - o’ states that (M) is compositional (or syntax directed).

5.1.3 Definition (semantics of a monadic transducer). Let M = (H, I, A,w, p) be a monadic
transducer over C which has an initial object 0. The semantics [M] : T50 «— Tz0 of M is defined

by
M} = wr, - |[(MD,. °

53

5.2 Fusion of monadic transducers

5.2.1 Definition (fusion of monadic transducers). Let M = (H,A,l,w,0) and M =
(H', L, A,/ ¢') be monadic transducers over C which has an initial object 0. The fusion M - M’
of M and M’ is the monadic transducer over € defined by

M-M = (H H I, w xwH(M) o)

where * denotes the vertical composition operator of natural transformations. Moreover we de-
fine for every C-varietor X the identity monadic transducer by

IDg = (Id, L, L, id, ug). o

5.2.2 Theorem. LetM = (H,A, T, w,p)and M’ = (H', L, A,w’, ¢’} be monadic transducers over C
which has an initial object 0. Then the following holds:

(i) (ID) = id, and

(ii) (M-M') = H' (M) - (M’).

(iii) The monadic transducers over C are the morphisms of a category M T C where composi-
tion is fusion and the objects are the class of all C-varietors.

{iv) The semantics [.] is a functor
[.]:c—MmTC.

Proof. (i) Consider the following diagram:

z
uf '
1
1
o ut
'
1
I v
[S E—
2}
id'rt

The outside triangle around @@ commutes trivially and @ commutes by definition of {.)
(Definition 5.1.2). Thus ® also commutes, because uy is universal.

(ii) Let g = H'{M) - ¢'. Consider the diagram in Figure 1.
(iii) We define the category MT C by
Ob(MTC) = {T | £:C « Cisavarietor}
MTC(A,X)={M | M= (H,X,A,uw,) isamonadic transducer}
where the identity for every Z € Ob(MT C) is the monadic transducer IDy and composi-

tion is fusion. That the identities are neutral elements w.r.t. fusion is obvious. It remains
to show that fusion is associative: Let M” = (H”,l,0,w", ¢"), M’ = (H',A,T,u’,¢’), and

54

™M

€ e mmm e e m

u}:
[(H - H)Tr| H'(M) |H'Ta| M) Ts
o
(M- M)

The outside triangle around @@® and the triangle ® commute by definition (Defini-
tion 5.1.2). Obviously ® commutes by definition of . Thus @ also commutes, because
uy is universal.

Figure 1: Fusion of monadic transducers (generalized semantics)

M = (H, L, A, w,) be monadic transducers over C. Then:
= (M . M/) .M
e (H/I . (H/ K H), z, e, w”* (w/ *w)’ H”qM M'D : Q”)
= (H" -(H'-H), Z, 0, w" * (' *w), H"(H' (M) - (M')) - g")
= ((H" “H')-H, Z,0, (W sw)*w, (H- H')(M) - H"{M') - g")
=M-(H"-H, L, T, w" xu', H'(M) - o")
=M. (M’ M")

(iv) With Definition 5.1.3 and (i) we calculate {IDg] = idy, - |{IDg)], = idr5o. Consider the
diagram in Figure 2. Altogether we have that [.] : ¢ — MT C is a functor. n

5.3 Monadic transducer homomorphisms

In order to interpret the results of fusions in Subsection 7.2 we will have to compare monadic
transducers. We have two obvious notions of equivalence: Monadic transducers M and M’ may
be syntacticly equivalent (M = M’) or they may be semanticly equivalent ([M] = [M]). Artlessly,

the former implies the latter.
It will become apparent (in Theorem 7.2.7) that a more subtle relation between monadic trans-

ducers is of use:

5.3.1 Definition. LetM = (H,Z,A,w,0) and M’ = (H', T, A,/ ¢') be monadic transducers. A
natural transformation 7 : H « H’ such that

“)TA'ITTAIO=“')!|'A and 9=TTA'QI
holds is called a monadic transducer homomorphism to M from M’ and we write it
T MM o

Obviously, ‘being homomorphic' is a preorder on the class of monadic transducers, moreover
it implies semantic equivalence as demonstrated in the following:

55

(M- M),

(4]

H (M M’
“JHTr [3] “J’I‘A [M’]
M &
(W *w)r,. (@ [HTFO 1Mo Ta0
(6]
R 1 | B IIM . M:]I
L P
The triangles ® and @ commute by definition and the square ® because o’ : |.|, <

||y - H is natural. The triangle @ is just an instance of (ii)®. The triangle © and the
outside triangle around @-® commute by definition. Thus @ also commutes.

Figure 2: Fusion of monadic transducers (semantics)

5.3.2 Theorem (monadic transducer homomorphisms preserve semantics). Let M =
(H,Z,A,w,p)and M’ = (H', I, A,«’, o) be monadic transducers. If there exists a monadic trans-
ducer homomorphism 7 : M — M’ then [M] = [M'].

Proof. Consider the diagrams in Figure 3. Finally we calculate: [M] = wr, - (M)g = wy, - (M'}o =
M} [

6 Tree transducers as monadic transducers

We have already seen, that a tree transducer can be described by its rule. But for the different
classes of tree transducers the types of these differ. A monadic transducer provides a uniform
description for all classes of tree transducers.

6.1 Homomorphism tree transducers as monadic transducers

We start with the easiest case: the homomorphism tree transducer. The rule of a homomorphism
tree transducer has the form Tp X «2X_ ¥ X which can be abstracted from X (using Proposi-

tion 3.1.1) yielding the natural transformation: T 2 5. Thisis already the desired rule of the
monadic transducer where the pattern and the observe are both trivial, i.e. identity functions.

6.1.1 Proposition. The homomorphism tree transducers are precisely the monadic transducers

M = (1d, T, A, 1d, o)

56

[H'Tal0 [H'T4| o
u[
TAO (4] ITTA |o TTs (3] Tz e - —— b
k ‘/QMID
[HTa[0 [HTa| o
[4

The triangles @ and ® commute by definition and the triangle around @®© commutes according
to the precondition. Thus the square around ®® also commutes and since us is universal ©
commutes. The triangle @ commutes according to the precondition.

Figure 3: Monadic transducer homomorphisms preserve semantics

over Set where I and A are polynomial. °

6.2 Top-down tree transducers as monadic transducers

The rule of a top-down tree transducer has the form T (QX) X Q(XX) where Q is cocarte-
sian. This rule can be understood as a definition for a couple of functions (e.g. even and odd
from the introduction). Alternatively we could define just one function whose results are tuples
(e.g. fz = (even z, odd z)). Let us describe the tupling by U, i.e. UA is the set of all tuples with
elements in A. Than the new rule would have the form

U(Ta(QX)) « ZX,
(True, False) — Zero,
(odd n, even n) «— Succn.

Let us formalize what we have done so far:

6.2.1 Lemma. Let C be a bicartesian category and Q : C «— C a cocartesian functor. Then Q s left
adjoint. °
6.2.2 Lemma (flip rule type). Let C, D, and £ be categories, T : € « &, L : D — £, and

Q—iU:C‘_’D.Then
CE(T,Q- L) = DU T,5). °

We start again with the rule T (QX) nlxd Q(XX). Abstraction from X (according to Proposi-

tion 3.1.1) yields the natural transformation: T - Q £ Q- Z. The Lemmas 6.2.1 and 6.2.2 tell us
/
that we can equivalently describe this rule by a natural transformation U - T4 - Q 2 ¥ where
7
Q - U. The latter is equal to QTa A by Definition 4.3.4. This is already the desired rule of the

monadic transducer with pattern Q.
Finally we have to decide which value the monadic transducer should output. In our example

this means whether we want to compute the function even or odd. We do this with a projection

57

7 : Id — U witch picks the desired value. Using Q@ = @ we can define the observe of the monadic

transducer by w = 7| . |,.
Altogether we get the following:

6.2.3 Proposition. The top-down tree transducers are precisely the monadic transducers
M . (6! Z! A!w! g)

over Set where Q is a cocartesian Set-endofunctor, L and A are polynomial, and w = 7|.|,
where 7 is a projection. o

We have no room in this paper to describe the following in detail. The proofs and the precise
constructions can be found in [Jiir02]. In particular we will just ignore the observe of the monadic
transducers.

The rule of a simple basic macro tree transducer has the form TA(Y + A (QX)Y)
A;(Q(XX))Y where A; is the functor from Definition 3.1.2. As before in the top-down tree trans-
ducer case, we use adjunctions to move the functors Q and A;. But this time the pattern is more
complicated: We describe this by the functor «—o from Definition 4.3.2 and (.)* from Defini-
tion 4.4.2 using Corollary 4.4.4.

(ox)y

6.2.4 Lemma. Let C be a category which has function spaces. Then
A] ‘i/\] :EndC~C
where A; : C — End C is the functor from Definition 4.4.3. °

6.2.5 Note. Let usillustrate the above theorem in the category Set: Weuse Ay XY = {zy1 -~ yx |
zeX AyeY} Y xXand AT ={Al---k.t | t€T{1,....k}} = T{1,...,k}. Then we

have an adjunction:
(n,€): Ay 1A : End Set — Set

where nxz = (ids,z) and (e1)y(f,t) = T ft. Moreover, the function 5 and ¢ describe 7-

conversion:
Ae(AeX) = {/\1~~-k.t ' te AcX{l,... ,k}}

n: Ak - Ag — Id
nx:Al---k.zl---k +— =z (n-conversion)

and B-reduction:
Ac(MTYY = {(A1--ktyyr -y | t€T{L,...,k} A y €Y}

€: Id — Ak - Ag
(eT)y : [w/it — (Al---k.t)y - -y (B-reduction)

6.2.6 Proposition. The simple basic macro tree transducers are precisely the monadic transduc-

ers
M= (A -Q-(1d* +.)- (. ~o1ID),L,A,w,0)

over Set where I is a finite set, Q is a cocartesian Set-endofunctor, and £ and A are polynomial.
[

The basic macro tree transducer case is just a little more complicated than the simple basic
macro tree transducer: The only difference to Proposition 6.2.6 is that we have to replace the
functor (. —o ID) by the functor (—o) defined by V h. («o}h = h <o h.

58

6.2.7 Proposition. The basic macro tree transducers are precisely the monadic transducers
M= (Ar-Q-(1d* +.)- («0),L,A,w,0)

over Set where I is a finite set, Q is a cocartesian Set-endofunctor, and I and A are polynomial.
<

In order to describe arbitrary macro tree transducers we need the adjunction F 4 |.| where F
is the free-functor F : Ty — L mapping a varietor onto its free monad.

6.2.8 Proposition. The macro tree transducers are precisely the monadic transducers
M= (F-A;-Q~(.)+,Z,A,w,g)

over Set where [is a finite set, Q is a cocartesian Set-endofunctor, and ¥ and A are polynomial.
<

7 Fusion of tree transducers

In Section 6 we have seen how particular functional programs can be equivalently transformed
into monadic transducers. Now we are ready to apply the monadic fusion Theorem 5.2.2 to func-
tional programs:

7.1 Fusion of individual tree transducers
f

Given algebraic types A, B, and C and functional programs C L B L Aweconstruct a new

program C . A such that

P H O) I

[~}

where the initial term-algebras Tg, T, andTr are supposed to be the semantics of the types A,
B, and C, respectively. The construction of 4 is shown in Figure 4. The rule of h is constructed
according to Definition 5.2.1. The correctness of the fusion transformation w.r.t. the denotational
semantics [.] follows from Theorem 5.2.2. Notice, that there occurs no A in the rule of the fusion,
and thus the intermediate data structure has indeed been removed.

This algorithm works for all functional programs which can be written as monadic transducers
(and more as outlined in Subsection 8.1). In particular it works for the classes of tree transducers

from Section 6.

7.2 Fusion of classes of tree transducers

Our new fusion theorem makes it possible to fuse classes of tree transducers (or more precisely:
classes of functions computable by a class of tree transducers). We have already seen the follow-
ing classes: HOM C TOP C sb-MAC C b-MAC C MAC. From the theory of tree transducer it is
known that all the above inclusions are proper.

Let ID be the class of all identity functions. For all classes of functions A and B we define the

composition
A-B={a-b|a€AAbeB A doma=codb}.

59

functional g h f
program C%B Ce—A B— A

some category
theory magic]
- YRR (/
rule |HTr| — A |(H" - H)Tr| "ﬂg_ Z) ;Q
universal sF |
property : .
generalized (h l
semantics l {HTr| ‘_ng Ta [I(HI HITr| — 4 D J HTal — Tz
restriction
& observation

semantics Te0 ld] Tad Te0 [~] Ts0 1 Ted

Figure 4: Monadic fusion algorithm

Obviously JD € HOM because [IDs] = idt,. Moreover, if ID C BthenA C A-Bn B- A

According to Definition 5.1.1 and Theorem 5.2.2 it suffices to compose the patterns of the ac-
cording monadic transducers from Section 6 in order to compose two of the classes HOM, TOP,
sb-MAC, b-MAC, or MAC.

It is obvious that all classes of monadic transducers are closed under composition with HOM
from either side, because the pattern of a homomorphism transducer is the identity functor Id.

7.2.1 Theorem (fusion of top-down tree transducers [Eng75]).
TOP - TOP = TOP. °

Proof. Let Q and Q' be the pattern of the two top-down tree transducers where Q and Q’ are co-
cartesian Set-endofunctors according to Proposition 6.2.3. We just have to compose the patterns
and use Lemma 4.3.5: @7 - Q = Q- @'. Since cocartesian functors are closed under composition
the latter is again the pattern of a top-down tree transducer. [

7.2.2 Theorem (fusion of a ((simple) basic) macro and a top-down tree transducer [Eng81]).

sb-MAC - TOP = sb-MAC
b-MAC - TOP = b-MAC
MAC - TOP= MAC.

Proof. The pattern of a top-down tree transducer is Q' and the pattern of any of the above macro
tree transducers has the form Q- - - where Q and Q’ are cocartesian Set-endofunctors according
to the Propositions 6.2.3, 6.2.6, 6.2.7, and 6.2.8. As in the proof of Theorem 7.2.1 we calculate the

pattern of the fusion: Q- Q' - ---.]

The following lemmas help us to calculate with patterns of monadic transducers:

7.2.3Lemma. Let C be a category which has function spaces, I be aC object,and Q HU : C — C.

Then the following holds:
AQ)EUdi—OU)A] o

60

7.2.4 Lemma. Let C be a bicartesian closed category, / be a C-object, and Q a cocartesian C-
endofunctor. Then the following holds:

A]Qg(Qf—Old)Al <

7.2.5 Corollary. Let C be a bicartesian closed category which has function spaces, 7 be a C ob-
ject, and Q a cocartesian C-endofunctor with right adjoint U. Putting together the Lemmas 7.2.3
and 7.2.4 and with a little help from Definition 4.3.2, Lemmas 4.3.6 and 6.2.4 we get:

Q-Aqr=A; Qo U. o
7.2.6 Lemma. LetQHU:C — Dbean adjunction and T and T’ be monads on C. Then:
Qo U(T +oT') > QT — QT'. o

For the following theorem we will need Corollary 4.4.4, Corollary 7.2.5, and Lemma 7.2.6 to
compose the patterns. Then we have to use Lemma 4.3.8 and Corollary 4.4.4 to construct a
monadic transducer homomorphism from the composed pattern to the wanted pattern of the
fusion (as they are not necessarily equal). Finally we use Theorem 5.3.2 to show the equivalence
of the two semantics and thus of the respective classes of tree transducers:

7.2.7 Theorem (fusion of a top-down and a ((simple) basic) macro tree transducer [EV85)).

TOP - sb-MAC = sh-MAC
TOP - b-MAC = b-MAC
TOP- MAC= MAC. °

8 Generalizations and future work

Finally we outline some topics for further research:

The monadic fusion theorem (Theorem 5.2.2) works in arbitrary categories (which have an
initial object). We want to investigate applications of the monadic fusion in other categories
than Set, e.g.: bottom-up tree transducers or functional programs with infinite data structures.

The monadic fusion guarantees the elimination of the intermediate data structure. However,
this does not necessarily imply that the resulting program will be more efficient. We want to
compare the efficency of the programs before and after the monadic fusion.

We would like to extend our monadic fusion to tree to tree-series transducers which will be
possible with the following generalization:

8.1 Using arbitrary monads

Consider the rule ¢ : |HT4| « £ of a monadic transducers according to Definition 5.1.1. It is
easy to see that (i) and (ii) of Theorem 5.2.2 make no use of the fact that T, is a Jfree monad over
A. Hence we can define a generalized version of a monadic transducer where the rule has the
form g : |HT| « X where T is an arbitrary monad. Then we can still apply our fusion theorem
(Theorem 5.2.2 (ii)) even if the consuming monadic transducer is generalized.

References

61

[AHS90]

[CDPR97a]

{CDPR97b]

[CF82]

[Dam82}

[Eng75]

[Eng80]

[Eng81]

[EV85]

{Fok92]

[Fiil81]

[FV98]

[Gie88]

[Gil96]

[GLP93]

[Hin00]

J. Addmek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories. Pure
and Applied Mathematics. John Wiley & Sons, 1990.

L. Correnson, E. Duris, D. Parigot, and G. Roussel. Attribute grammars and func-
tional programming deforestation. In 4th International Static Analysis Symposium—
Poster Session, Paris (F), 1997.

L. Correnson, E. Duris, D. Parigot, and G. Roussel. Symbolic composition. Technical
Report 3348, INRIA, January 1997.

B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive program
schemes. Theoret. Comput. Sci., 17:163-191, 235-257, 1982.

W. Damm. The IO- and Ol-hierarchies. Theoretical Computer Science, 20:95-2086,
1982.

]. Engelfriet. Bottom-up and top-down tree transformations—a comparison. Math.
Systems Theory, 9(3):198-231, 1975.

]. Engelfriet. Some open questions and recent results on tree transducers and tree
languages. In R.V. Book, editor, Formal language theory: perspectives and open prob-
lems, pages 241-286. New York, Academic Press, 1980.

J. Engelfriet. Tree transducers and syntax-directed semantics. Technical Report
Memorandum 363, Technische Hogeschool Twente, March 1981. also in: Pro-
ceedings of the Colloquium on Trees in Algebra and Programming (CAAP'92), Lille,
France 1992.

J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System Sci., 31:71-146,
1985.

M. M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of Twente,
Dept INE Enschede, The Netherlands, 1992.

Z. Fillop. On attributed tree transducers. Acta Cybernet., 5:261-279, 1981.

Z. Filop and H. Vogler. Syntax-directed semantics—Formal models based on tree
transducers. Monographs in Theoretical Computer Science, An EATCS Series.
Springer-Verlag, 1998.

R. Giegerich. Composition and evaluation of attribute coupled grammars. Acta In-
form., 25:355-423, 1988.

A. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD thesis, De-
partment of Computing Science, Glasgow University, January 1996.

A. Gill, J. Launchburry, and S. L. Peyton-Jones. A short cut to deforestation. In Pro-
ceedings of Functional Programming Languages an Computer Architecture (FPCA'93),
pages 223-232, Copenhagen, Denmark, June 1993. ACM Press.

R. Hinze. Deriving backtracking monad transformers. In P. Wadler, editor, Pro-
ceedings of the 2000 International Conference on Functional Programming (ICFP'03),
Montreal, Canada, sep 2000.

62

{Joh01]

[Juro2)

(Jvol]

[Kel80]

[Kiih98)

[KV01]

[LGO02a]

(LGO2b])

[Mog30]

[Rou68]

[TM95}

[Wad90]

P Johann. Short cut fusion: Proved and improved. In W, Taha, editor, Proceedings
of the 2nd International Workshop on Semantics, Applications, and Implementation
of Program Generation (SAIG'01), volume 2196 of LNCS, pages 47-71, Florence, Italy,
September 2001. Springer.

C. Jirgensen. Monadic fusion of functional programs. Technical Report TUD-FI02-
12, Technische Universitdt Dresden, Fakultit Informatik, D-01062 Dresden, Ger-
many, December 2002.

C. Jiirgensen and H. Vogler. Syntactic composition of top-down tree transducers is
short cut fusion. Technical Report TUD-FI01-10, Technische Universitit Dresden,
Fakultdt Informatik, D-01062 Dresden, Germany, November 2001. Accepted for pub-
lication in Math. Struct. in Comp. Science.

G. M. Kelly. A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves and so on. Bulletins of the Australian Mathe-
matical Society, 22:1-83, 1980.

A. Kiihnemann. Benefits of tree transducers for optimizing functional programs.
In V. Arvind and R. Ramanujam, editors, Proceedings of the 18th INternational
Conference on Foundations of Software Technology & Theoretical Computer Science
(FST&TCS'98), volume 1530 of LNCS, pages 146-157, Chennai, India, dec 1998.
Springer-Verlag.

A. Kiihnemann and J. Voigtlinder. Tree transducer composition as deforestation
method for functional programs. Technical Report TUD-FI01-07, Technische Uni-
versitidt Dresden, Fakultét Informatik, D-01062 Dresden, Germany, August 2001.

Ch. Liith and N. Ghani. Composing monads using coproducts. In International Con-
ference on Functional Programming (ICFP'02), pages 133- 144. ACM Press, Septem-
ber 2002.

Ch. Liith and N. Ghani. Monads and modularity. In Alessandro Armando, editor,
Frontiers of Combining Systems FroCos 2002, 4th International Workshop, number
2309 in Lecture Notes in Artificial Intelligence, pages 18-32. Springer Verlag, 2002.

E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-
90-113, LFCS, 1990.

W. C. Rounds. Trees, transducers and transformations. PhD thesis, Stanford Univer-
sity, 1968.

A. Takano and E. Meijer. Shortcut deforestation in calculational form. In Proceedings
of the Conference on Functional Programing Languages and Computer Architecture,
pages 306-313, La Jolla, CA, June 1995. ACM Press.

P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science, 73(2):231-248, 1990.

63

An Abstract Monadic Semantics for
Value Recursion

Eugenio Moggi* Amr Sabryt
DISI Dept. of Computer Science
Univ. di Genova Indiana University
moggi@disi.unige.it sabryQ@indiana.edu
Abstract

This paper proposes an operational semantics for value recursion
in the context of monadic metalanguages. Our technique for combin-
ing value recursion with computational effects works uniformly for all
monads. The operational nature of our approach is related to the im-
plementation of recursion in Scheme and its monadic version proposed
by Friedman and Sabry, but it defines a different semantics and does
not rely on assignments. When contrasted to the axiomatic approach
proposed by Erkok and Launchbury, our semantics for the continua-
tion monad invalidates one of the axioms, adding to the evidence that
this axiom is problematic in the presence of continuations.

1 Introduction

How should recursive definitions interact with computational effects like
assignments and jumps? Consider a term fix x.e where fix is some fixed point
operator and e is an expression whose evaluation has side-effects. There are
at least two natural meanings for the term:

1. the term is equivalent to the unfolding e{z = fix z.e}T'and the side-
effects are duplicated by the unfolding.

2. the side-effects are performed the first time e is evaluated to a value v
and then the term becomes equivalent to the unfolding v{z = fix z.v}.

The first meaning corresponds to the standard mathematical view [Bar84].
The second meaning corresponds to the standard operational view defined
“Supported by MIUR project NAPOLI and EU project DART IST-2001-33477.
tThis material is based upon work supported by the NSF under Grants No. CCR
0196063 and CCR 0204389.

since the SECD machine {Lan64] and as implemented in Scheme for ex-
ample [KCE98]. The two meanings are observationally equivalent in a
pure functional language. When the computational effects are expressed
using monadsIl’Erk6k and Launchbury [Erk02I' ELOOT ELMO02] introduced
the phrase value recursion in monadic computations for the second mean-
ing and the name mfix for the corresponding fixed-point operator. Since
we also work in the context of monadic metalanguagesI’'we adopt the same
terminology but use the capitalized name Mfix to distinguish our approach.
We propose a simple uniform operational technique for combining monadic
effects with value recursion. Computing the result of Mfix z.e requires three
rules:

1. A rule to initiate the computation of e. Since this computation hap-
pens under a binderI'care must be taken to rename any other bound
instance of z that we might later encounter.

2. If the computation of e returns a value vI"all free occurrences of z are
replaced by fix z.v (where fix is the standard mathematical fixed-point
operator).

3. If the computation of e attempts to use zI'we signal an error.

The three rules above are robust in the sense that they can be uniformly
applied to a wide range of monads: we give examples for the monads of
state[’'non-determinismI'parallelismI'and continuations.

QOur semantics is operational in nature but unlike the SECD and Scheme
semantics[it doesn’t rely on assignments to realize the second rule. The
presence of assignments in the other operational approaches yields a different
semanticsI"complicates reasoningl’and invalidates some equational axioms.
In contrastthe work by Erkék and Launchbury [ELOOTErk02] advocates an
axiomatic approach to defining value recursion by proposing several desirable
axioms. In their approach one has to find for each given monad over some
category (or defined in Haskell [Jon99]) a fixed point operator that satisfy the
axioms (up to observational equivalence). The endeavor has to be repeated
for each monad individually. For the continuation monad there are no known
fixed point operators that satisfy all the desired axioms.

Summary. Sections 2 and 3 illustrate the technique by taking an existing
monadic metalanguage MMLS with ML-style references [MF03T'Sec.3] and
extending it with value recursion. Section 4 recalls the equational axioms
for value recursion in [Erk02]Tand when they are known to fail. Section 5
shows that the addition of value recursion to MML® is robust with respect
to the addition of other computational effectsI'namely non-determinism and
parallelism. Finally['Section 6 explains the full subtleties of value recursion

65

in the presence of continuationsIoutlines a proof of type safetyl'and discusses
counter-examples to equational axioms.

2 A Monadic Metalanguage with References

We introduce a monadic metalanguage MML® for imperative computationsI'
namely a subset of Haskell with the IO-monad. Its operational semantics is
given according to the general pattern proposed in [MFO03|Ti.e. we specify
a confluent simplification relation —> (defined as the compatible closure
of a set of rewrite rules)['and a computation relation —— describing
how the configurations of the (closed) system may evolve. This is possible
because in a monadic metalanguage there is a clear distinction between term-
constructors for building terms of computational types['and the other term-
constructors that are computationally irrelevant (i.e. have no effects). For
computationally relevant term-constructors we give an operational semantics
that ensures the correct sequencing of computational effectsl’e.g. by adopting
some well-established technique for specifying the operational semantics of
programming languages (see [WF94])I'while for computationally irrelevant
term-constructors it suffices to give local simplification rulesI'that can be
applied non-deterministically (because they are semantic preserving).

The syntax of MMLS is abstracted over basic types b['variables z € XI'and
locations [€ L.

e Types TET::=b|1'1—>Tg|MT|RT|

e€E ::= z|)Az.e|erex|rete| doz «— e;ep|

® Terms l I new e l get e l set €1 €2

In addition to the basic typesI’ we have function types 1 — 79I refer-
ence types Rr for locations containing values of type 7'and computational
types M7 for (effect-full) programs computing values of type 7. The terms
do T «— ej;e2 and ret e are used to sequence and terminate computationsI’
the other monadic operations are: new e which creates a new referencel'get e
which returns the contents of a referencel’and set e; es which updates the
contents of reference e; to be e;. In order to specify the semantics of the
languagel'the set of terms also includes locations [.

Table 1 gives the typing rules (for deriving judgments of the form I bz e: 7T
where I': X fn 1 is a type assignment for variables z:7 and Z:L B Tisa
signature for locations [: R.

The operational semantics is given by two relations (as outlined above): a
simplification relation for pure evaluation and a computation relation for
monadic evaluation. Simplification — is given by f-reductionli.e. the

compatible closure of (Az.ez)e; —> ea{z:=e;}. The computation relation
66

z)=r Lz:nbger
_]

a
by a:7 Tlsdzen—mn

I'kgey:ry =1 Chlzexnn

app

Ff—g €1€2: T2
ret Tlrer I'tzer:Mn Tyoimbgep:Mn
0
I'tegrete: Mt ks doz «— ey;e: My

Z(l) = Rr F'kger I's e:RT
l new get

I'ks :RT I' kg new e: M(R7T) Ity get e MT

I'kse:Rr Thgeg:t
set

[b5 set e; eg: M(RT)

Table 1: Type System for MML®

Id —> Id' | done (see Table 2) is defined using the additional notions of
evaluation contextsI'stores and configurations /d € Conf:

¢ Evaluation contexts IE € EC::=0| E[do z « ; e]I
(or equivalently E ::=0 | do z — Fje).

e Stores p € S A fng map locations to their contents.

e Configurations (u, e, E) € Conf £ SxExEC consist of the current store
puI' the program fragment e under considerationI’and its evaluation
context F.

3 Extension with Value Recursion

We now describe the monadic metalanguage MML%Z obtained by extend-

ing MML® with two fixed point constructs: fix z.e for ordinary recursionl’
and Mfix z.e for value recursion. The expression fix z.e simplifies to its
unfolding. For computing the value of Mfix z.e['the subexpression e is first
evaluated to a monadic value ret ¢’. This evaluation might perform compu-
tational effects but cannot use z. Then all occurrences of z in e’ are bound
to the monadic value itself using fix so that any unfolding will not redo the
computational effects.

The extension MMLfsim is an instance of a general pattern (only the extension
of the computation relation is non-trivial)['that will become clearer after

considering other monadic metalanguages.
67

Administrative steps

(A.0) (u,ret e,0) —> done

(A.1) (g,doz «— ey;e2,E) > (u, e, E[do z « O eg])
(A.2) (u,ret ey, E[do z «— Dse]) —> (p,e2{z:= 1}, FE)
Imperative steps
(new) (u,new e, E) ——> (u{l:e},ret |, E) where [¢ dom(u)
(get) (u,get I, E) —> (u,ret e, E) with e = p(l)

(set) (u,set! e, B) —> (u{l = e}, ret |, E) with | € dom(p)

Table 2: Computation Relation for MMLS

e Terms re € E+=fix z.e | Mfix :r.eJ

o Evaluation contexts IE € EC += E[Mfix z.00] |

e Configurations (X|u,e, E) € Conf 2 Pan(X) x S x Ex EC . The
additional component X is a set which records the recursive variables
generated so farI'thus X grows as the computation progresses.

Despite their different semanticsI'the two fixed points have similar typing
rules:

Fe:Mrbse Mt FoMrbseMT
Ttry fixzee Mt I'ts Mfixz.e: M7

The simplification relation is extended with the rule fix z.e — e{z:=
fix z.e} for fix-unfolding.

The computation relation /d —> Id' | done | err may now raise an error
and is defined by the following rules:

o the rules in Table 2I'modified to propagate the set X unchangedl'and
e the following new rules for evaluating recursive bindings Mfix z.e:

(M.1) (X|u, Mfix z.e, E) —> (X, z|u, e, E[Mfix z.0]]) with z renamed
to avoid clashes with X

(M.2) (X|u, ret e, E[Mfix z.0]) —> (X|E, ret €, E) where & stands for
o{z: = fix z.ret e}

68

(err) (X|p,z, E) —> err where z € X (attempt to use an unresolved
recursive variable)

In the context Mfix z.0 the hole is within the scope of a binder'thus it
requires evaluation of open terms:

e The rule (M.1) behaves like gensymI'it ensures freshness of z. As
the computation progresses may leak anywhere in the configuration
(depending on the computational effects available in the language).

e The rule (M.2) does the reversel'it replaces all free occurrences of
in the configuration with the term fix z.ret el'in which z is not free.
This rule is quite subtle['because of E{z:= e} (see Definition 6.5).

In special cases [AFMZ02] it is possible to simplify (M.2) by treating X
as a stack and enforcing the invariant that FV(E) = 0'but our aim is
an operational semantics that works with arbitrary computational effects.
Indeed in the case of continuations (Section 6)I'neither of these invariants
holds.

4 Axioms for Value Recursion

In [Erk02] the fixed point constructs have a slightly different typing:

ozrkgeMr

'ty mfixz.e: Mt
This rule allows the use of = at type 7 before the recursion is resolvedl’
as in (mfix z.set £ 0): M (R int). In [Erk02] this premature attempt to
use z is identified with divergenceI'while but we consider it a monadic
errorl'which should be statically prevented by more refined type sys-
tems [BouOl1]. The difference of typing reflects this desire and is not
an intrinsic limitation of our approach.

where z is of type .

Fyz:tkger . . -
———————— requires recursive definitions at all types; we only
kg fixzer

require them at computational types.
Two of the important axioms for defining value recursion in [Erk02] are:

(Purity) mfix z.ret e = ret (fix z.e)
(Left-shrinking) mfix z.(do z; «— ej;e2) = do zy — e;;mfix z.eg
when z ¢ FV(e;)

The purity axiom requires that mfix coincides with fix for pure computa-
tions. Because of the differences in typingl’the purity axiom in our case
becomes:
(Purity) Mfix z.rete = fixz.rete
69

Left-shrinking states that computations which do not refer to the recursive
variable can be moved outside the recursive definition. This rewriting how-
ever is known to be incorrect in Scheme [Baw88)] but it was argued [Erk02]
that the failure of left-shrinking is due to the idiosyncrasies of Scheme. In
fact left-shrinking is invalidated by our semantics and in other known com-
binations of value recursion and continuations [FS00I'Car03). Indeed if one
captures the continuation in e; then on the left-hand side this continuation
has access to free occurrences of z in e but not on the right-hand side. As
Section 6.2 illustrates this can be exploited to write a counterexample to
left-shrinking.

5 Non-Determinism and Parallelism

We consider two extensions to MML® (and MML%I): the first introduces non-
deterministic choice e, or eoI'the second introduces a construct spawn e; ez
to spawn a thread of computation e; in parallel with the continuation e of
the current thread.

Non-determinism. The typing rule for non-deterministic choice is:

I'tgey:Mr Tbsex: Mt
I'txe ores: Mr

The configurations for MMLS and MML%:B are unchanged. The computation
relations are modified to become non-deterministic. More specificallyl’

o for MMLST'we add the computation rules (4, e; or es, Ey+—> (p,e, E)
for ¢ =1, 2,

e for MMLﬁwae add the rules (X|u,e; or ez, E) —> (X|u, €;, E) for
i=1,2.

Parallelism. The typing rule for spawn is:

r |‘}3 eleTl Fl—): 62:MT2
I'ts spawn e) eg: My

In this case a configuration consists of a (finite) multi-set of parallel threads
sharing the store ul'where each thread is represented by a pair (e, F).
For MMLS the configurations become (i, N) € Conf £5x Mg (ExEC)Ti.e.
instead of a thread (e, F) one has a multi-set of threads['and the computation
relation Jd —> Id’ | done is defined by the following rules:

70

e Administrative steps: threads act independentlyl’termination occurs
when all threads have completed

(done) (g, @) —> done
(A.0) (u,(ret e,0) WY N) —> (u, N)
(A1) (u,(doz « e1;ez, B)WN) —> (u, (€1, E[do z — D ez]) W N)
(A.2) (u,(ret e1, E[do z «— O;e3])) W N) —> (u, (e2{z:= €1}, E) W N)

e Imperative steps: each thread can operate on the shared store

(new) (u,(new e, E)WN) —> (u{l:e}, (ret I, E)&N) where | ¢ dom(x)
(get) (u,(get [, E)W N) —> (u, (ret e, E) W N) with e = u(l)
(set) (i, (setle, E)YN) —> (u{l = e}, (retl, E)WN) with! € dom(y)

e Step for spawning a new thread

(spawn) (u,(spawn e ez, E) W N) —> (u, (e;,0) & (e2, E)W N)

For MML%z the configurations become (X |u, N) € Conf £ Phin(X)xSxpu(Ex
EC)Ii.e. the threads share the set X which records the recursive variables
generated so farl’and the computation relation Id ——> Id' | done | err is
defined by the rules above (modified to propagate the set X unchanged) and
the following rules for recursive monadic bindings:

(M.1) (X|pg,(Mfix z.e,E) ¥ N) —> (X, z|u, (¢, E[Mfix z.0]) ¥ N) with z
renamed to avoid clashes with X

(M.2) (X|u,(ret e, E[Mfix z.0)) & N) —> (X|T, (ret €, E) ¥ N) where &
stands for e{z:= fix z.ret e}

(err) (X|g,(z,E)YN)+—> err wherez € X

When a thread resolves a recursive variable z (M.2)['the value of z is prop-
agated to all other threads. When an error occurs in a thread (err)I"the
whole computation crashes.

6 References and Continuations

In this section we consider in full detail the monadic metalanguage MML%;(I‘

obtained from MML‘fgiz by adding continuations. Section 6.1 outlines a proof
of type safetyl’and Section 6.2 shows the failure of the left-shrinking axiom
and discusses some differences with Scheme. The syntax of MML}’;‘;’.(is ab-
stracted over basic types bI'variables x € XI'locations [€ L and continuations

keK:
71

Mz)=r Dz bg e
a
'ty a7 Tk dzeery > 7

app I'trepiri =1 Dhlsgenn Fz:Mtbge Mt
P Thseen by fixze: MT
et Tlrer do F'tyer: My Dyoimpibs e Mm
Thsrete Mt 'ty doz «—e;en: M1y

e:MrbseMr
T'Fs Mfix z.e: MT

Z()=Rr Fryper I'kge:Rr
———— new get —
'ty l:RT I' kg new e: M(RT) 'ty get e: M1

Fkzep:Rr Thgepr

Mfix

set
[Fg set e; eg: M(RT)
(k) = Kr Iz:Kr bg e: Mr
——— callcc
Tty k: KT Tty calleccze: M1

T'Fgei:Kr Thgep:MT

throw
T' b5 throw ey ex: M7’

Table 3: Type System for MML%;{

o Types ‘rET::=b|-rl—>-rz|M7'|R‘r|K7'|

e€E :i= z|Aze|eer| fixze|
ret e | doz + eyjes | Mfix z.e |
| newe| gete| sete ez |
k| callcc z.e | throw ejeq

e Terms

The type K7 is the type of continuations which can be invoked on arguments
of type M7 (invoking the continuation aborts the current context). The
expression callcc z.e binds the current continuation to z; the expression
throw eje; has the dual effect of aborting the current continuation and
using e; instead as the current continuation. This effectively “jumps” to the
point where the continuation e; was captured by callcc.

Table 3 gives the typing rules for deriving judgments of the form I' g e: 7T
where [: X B Tisa type assignment for variables z:7 and E: LUK i N
a signature for locations i: RT and continuations k: K.

72

The simplification relation —> on terms is given by the compatible closure
of the following rewrite rules:

B) (Az.ex)er —> ex{z:=e1}
fix) fix z.e —> e{z:= fix z.¢}

We write = for the equivalence induced by ——= T.e. the reflexivel'symmet-
ric and transitive closure of —> . We state the properties of simplification
relevant for our purposes.

Proposition 6.1 (Congr) The eguivalence = induced by —> 1is a con-
gruence.

Proposition 6.2 (CR) The simplification relation —> is confluent.
Proposition 6.3 (SR) If'Fse:7 ande —> ¢, then T kg e 1.

To define the computation relation Id —-> Id’ | done | err (see Table 4)I'
we need the auxiliary notions of evaluation contextsI storesI'continuation
environmentsI'configurations Id € Confl'and computational redexes:

e Evaluation contexts IE € EC::=0| E[do z «— DO;¢] | E[Mfix :r.D]I
(or E::=0|doz «— E;e | Mfix z.E)

e Stores u € S 5| 2 Eand continuation environments p € KE & fn
EC

e Configurations (X|u, p, e, E) € Conf £ Ppn(X)x SxKEXE x EC consist
of the current store p and continuation environment pI'the program
fragment e under consideration and its evaluation context E. The set
X records the recursive variables generated so farI'thus X grows as
the computation progresses.

e Computational redexes
re€R ::= rete|doz«—ej;er| Mix z.e |
newe | get!l] set!l e callcc z.e | throw k e

Remark 6.4 In the absence of Mfix z.eI'the hole O of an evaluation context
E is never within the scope of a binder. Therefore one can represent F as
a A-abstraction Az.E[z]l'where z ¢ FV(E). This is how continuations are
modeled in the A-calculuslin particular the operation E|e] of replacing the
hole in E with a term e becomes simplification of the S-redex (Az.E[z]) e.
This representation of continuations is adopted also in the reduction seman-
tics of functional languages with control operators [WF94]. In such reduc-

tion semantics there is no need keep a continuation environment pI'because
73

a continuation k with p(k) = F is represented by the A-abstraction \z.E[z].
In the presence of Mfix z.e (or when modeling partial evaluation['multi-stage
programmingland call-by-need [AF97TAMO*95IMOW98])Tevaluation may
take place within the scope of a binder['and one can no longer represent an
evaluation context with a A-abstractionl'because the operation E[e] may
capture free variables in e. In this case['continuation environments are very
convenient['since the subtle issues regarding variable capture are confined to
the level of configurationsI"and do not percolate in terms and other syntactic
categories. 1

In an evaluation context the hole O can be within the scope of a binderT'thus
an evaluation context F has not only a set of free variablesI'but also a set
of captured variables. MoreoverI'the definition of E{z':= ¢’} differs from
the capture-avoiding substitution e{z’:= ¢’} for termsI'because captured
variables cannot be renamed.

Definition 6.5 The sets CV(E) and FV(E) of captured and free variables
and the substitution E{z':=¢e'} are defined by induction on E:

e CV(O) = Fv(O) £0 and O{z":=¢'} 2o

e CV(doz — E;e) £ CV(E), FV(do z — E;e) £ FV(E)UFV(e)\{z})
and (do z — E;e){z':= €'} £ doz— E{z':=¢€'};e{z’:= €'} (the
bound variable z can be renamed to be different from z' and from any
of the free variables of €').

e CV(Mfix z.E) & {z} UCV(E), FV(Mfix z.E) 2 FV(E) \ {z} and

oy A MixzE ifz=d
(Mfix z.E){z':=¢'} = { Mfix . B{z':= €'} otherwise

(the captured variable z cannot be renamed; free occurrences of = in e’
may be captured.)

The confluent simplification relation —> on terms extends in the obvious
way to a confluent relation (denoted —>) on storesI'evaluation contextsI’
computational redexes and configurations.

Lemma 6.6

1 If (X|p,p,e, B) —> (X'|w', ', €, B'), then X = X', dom(y') =
dom(p), dom(p’) = dom(p) and
e FV(¢/) CFV(e), CV(E') = CV(E) and FV(E’') CFV(E)
e FV(yu' 1) CFV(ul) for I € dom(p)
o CV(o' k) =CV(p k) and FV(o' k) CFV(p k) for k € dom(p)
74

Administrative steps

(A.0) (X|u, p,ret e,0) —> done

(A1) (X|u,p,do z — e1;e3, E) —> (X|u, p, €1, E[do z — D e3))
(A.2) (X|u, p, ret e1, E[do z — O eq]) —> (X|u,p,e2{z: = &1}, E)
Steps for recursive monadic binding

(M.1) (X|u,p, Mfix z.e, E) —> (X, z|p, p, e, E[Mfix z.00]) with & renamed
to avoid clashes with X

(M.2) (X|u, p, ret e, E[Mfix z.0]) —> (X|E, P, ret €, E) where & stands for

o{z:= fix z.ret e}
(the free occurrences of the recursive variable z are replaced anywhere

in the configuration)

(err) (X|p,p,z, E) —> err where z € X (attempt to use an unresolved
recursive variable)

Imperative steps
(new) (X|u, p,new e, E) —> (X|u{l: e}, p, ret I, E) where [¢ dom(y)
(get) (Xlu, p,get I, E) —> (X|p, p, ret e, E) with e = u(l)

(set) (X|u,p,set l e, E) —> (X|u{l = e}, p,ret I, E) with I € dom(y)
Control steps

(callee) (X|p,p,callcc z.e, E) —> (X|u, p{k: E},e{z:= k},E) where k ¢
dom(p)

(throw) (X|u, p, throw k e, E) —> (X|p, p, e, B) with By = p(k)

Table 4: Computation Relation for MML%(

75

(@)
AD:MrFs O M

AD:Mrbgs EEMTy AjzinbseMn
AO:Mrlysdoz— FE;e:Mny
AD:Mrbls E:MT

A,0: M7 s Mfix z.E: M1’

(do)

(Mfix) A(z) = M1’

Table 5: Well-formed Evaluation Contexts for MML%;(

2. If (X|p, 06, B) —> (X'|0', o', €', E') and FV(p, p,e, E)UCV(p, E) C
X, then X C X', dom(u) C dom(y'), dom(p) C dom(p') and
FV(u',p',e,E")UCV(p', E") C X'.

Theorem 6.7 (Bisim) If Id = (X|u, p, e, E) with e € R and Id —> Id',
then

1. Id —> D implies 3D’ s.t. Id' —> D' and D —> D'
2. Id —> D' implies 3D s.t. Id —> D and D —>> D'

where D and D’ range over Conf U {done, err}.

6.1 Type Safety

The definitions of well-formed configurations A +x Id:7' and evaluation
contexts A,0: M7 Fy E: M7’ must take into account the set X. Thus we
need a type assignment A mapping z € X to computational types M.

Definition 6.8 A by (X|p,p,e, E): 7' & dom(Z) = dom(u) & dom(p),
dom(A) = X and exists T such that

o Aty e: Mt is derivable

o A\O: Mty E: M7 is derivable (see Table 5)

o ¢ = pu(l) and Ry = X(I) implies Atz e m

e E; = p(k) and K7 = B(k) implies A,0: M7 by Eg: M7’

The formation rules of Table 5 for deriving A, J: M1 kg E: M7’ ensure that
A assigns a computational type to all captured variables of E. We can now
formulate the SR and progress properties for MMLZE,

76

Theorem 6.9 (SR)
1. If Abyg Idy: 7" and Idy —> Idy, then A bg Idy: 7'

2. If Ay g, Idy: 7' and Id) —> Idy, then exists o D Ty and Ay D A
s.t. Ag by, Idy: 7',

Theorem 6.10 (Progress) If A bs (X|u,p,e, E): 7', then one of the fol-
lowing holds

1. e¢Rande —>, or

2. e € R and (X|p, p,e, F) —>

6.2 Counter-examples
The left-shrinking property states that:
Mfix z.(do z) « e;;e3) = do) «— ey; Mfix z.ey when z € FV(e;)

It is instructive to consider how this property fails in MML%;(. Our example
(inspired by examples by Bawden and Carlsson) uses continuations in a way
that requires recursive types which can be declared as follows in Haskell
syntax:

data XT m = XT (m (Int, XT m)) -- final result
data KT m = KT (K (RT m)) -- recursive continuations
data RT m = -- arguments to continuations

Final (XT m)
| Pair (Bool, KT m)

Now we consider the following instance of the left-hand side (again in Haskell
syntax):

tl =
Mfix (\x ->
do p <- callec (\k -> return (Pair (True, KT k)))
case p of
Pair (b, KT k) ->
if b
then
do Final v <- callcc (\c¢ ->
throw k (return (Pair (False, KT ¢))))
return (1,v)
else throw k (return (Final (XT x))))

In our semantics (extended with simplification rules for booleansI pairsI’

etc) the example evaluates as follows. The pair p initially refers to a con-

tinuation which re-binds p. In the then-branch which is initially takenD’
77

this continuation is invoked with a new pair containing the continuation
c. This latter continuation expects a value v which it includes in the fi-
nal result (1,v). In the else-branch which is taken the second time['that
value v is bound to Final (XT x). Hence the return value of the body
of the Mfix is (1,Final (XT x)) and the entire expression evaluates to
fix x. return (1, Final (XT x)) which is a recursive pair of ones. How-
ever were we to move the first callcc-expression (which has no free occur-
rences of x) outside the MfixI'the continuations k and ¢ would have no access
to the variable x and the example would evaluate to return (1,x) which
would cause an error if the second component is needed. The fact that this
result is an approximation of the left-hand side does not generalize: with a
slightly more complicated examplel'it is possible to get a different observable
value.

Our semantics also differs from the Scheme semantics. The difference in this
case is due to the nature of variables in both systems: in our setting variable
are bound to expressions and locations must be created and dereferenced ex-
plicitly. In Scheme variables implicitly refer to locationsI’'which means that
continuations captured within the body of an Mfix not only have access to
the free occurrences of the recursive variable in the body of the recursive
definition but also to the location in which the result is to be stored: this
additional expressiveness for continuations invalidates even more transfor-
mations like Mfix z.e = e when z ¢ FV(e) [Baw88]. Such transformations
should still be valid in our model.

Acknowledgments We would like to thank Levent Erkok and Magnus
Carlsson for very fruitful discussions and comments.

References

(AF97) Zena M. Ariola and Matthias Felleisen. The call-by-need lambda
calculus. Journal of Functional Programmingl’ 7(3):265-301T
May 1997.

[AFMZ02] D. Anconal'S. Fagorzil'E. Moggil'and E. Zucca. Mixin modules
and computational effects. Submitted["2002.

[AMO%95] Zena M. Ariolal’ John Maraistl' Martin Oderskyl' Matthias
Felleisen'and Philip Wadler. A call-by-need lambda calculus. In
Conference record of POPL ’95, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: papers
presented at the Symposium: San Francisco, California, Jan-
uary 22-25, 19957 pages 233-246I' New York'NYI'USATI'1995.
ACM Press.

78

(Bars4]
(Bawss)
(Bouo1]
(Car03]

(ELOO]

[ELMO02]

(Erk02]

[FS00)

(Jon99]
(KCEY8]

(Lan64]
(MF03]

[MOW?9s]

[WF94]

Hlendrik] P[ieter| Barendregt. The Lambda Calculus: Its Syntaz
and Semantics. North-HollandI'revised edition’1984.

Alan Bawden. Letrec and callcc implement references. Message
to comp.lang.schemeI'1988.

Gérard Boudol. The recursive record semantics of objects revis-
ited. Lecture Notes in Computer Sciencel'2028:269-283T2001.

Magnus Carlsson. Value recursion in the continuation monad.
Unpublished NoteI'January 2003.

Levent Erkok and John Launchbury. Recursive monadic bind-
ings. In Proceedings of the ACM Sigplan International Con-
ference on Functional Programming (ICFP-00)I'volume 35.9 of
ACM Sigplan NoticesI'pages 174-185I'N.Y.I'September 18-21
2000. ACM Press.

Levent ErkokI’John Launchburyl’and Andrew Moran. Seman-
tics of value recursion for monadic input/output. Journal of
Theoretical Informatics and ApplicationsI’36(2):155-1802002.

Levent Erkok. Value Recursion in Monaedic Computations. PhD
thesisT'OGI School of Science and EngineeringlOHSUI'PortlandI’
OregonI'2002.

Daniel P. Friedman and Amr Sabry. Recursion is a computa-
tional effect. Technical Report 546’ Computer Science Depart-
ment'Indiana University'December 2000.

Report on the programming language Haskell 98T'February 1999.

Richard Kelsey['William Clingerl'and Jonathan Rees (Editors).
Revised report on the algorithmic language Scheme. ACM SIG-
PLAN NoticesI'33(9):26-76'September 1998.

Peter J. Landin. The mechanical evaluation of expressions. The
Computer Journall'6(4):308-320I" January 1964.

E. Moggi and S. Fagorzi. A monadic multi-stage metalanguage.
In FoSSaCS 2003TLNCS. Springer-Verlagl'2003.

John MaraistI’ Martin Oderskyl’and Philip Wadler. The call-
by-need lambda calculus. Journal of Functional Programmingl’
8(3):275-317'May 1998.

Andrew K. Wright and Matthias Felleisen. A syntactic approach
to type soundness. Information and Computation'115(1):38-94T"

1994.
79

Hierarchies in p-calculus

Damian Niwinski

Institute of Informatics, Warsaw University

Abstract

Finite-state recognizability is obviously at the basic level of all reasonable com-
plexity hierarchies, as far as computations of finite duration are considered (e.g.,
over integers). This property is no more true if we deal with infinite computations,
running over reals (i.e., infinite words) or, more generally, over infinite trees. In
particular, it is well-known that a finite-state Rabin automaton can recognize the
set of (suitable encodings of) well-founded trees which is II1 complete in terms of
projective hierarchy, and hence not arithmetical, and even not Borel.

An alternation hierarchy of the p-calculus seems to be well-suited for measuring
complexity of infinite computations. It also reconciles the finite-state recognizabil-
ity and the classical (arithmetical/analytical) hierarchies via some apparent con-
nections, notably between the class uv (of the alternation hierarchy) and IT}. Yet
some deeper connections remain to be understood, in particular the refinement of
the alternation hierarchy by the Wadge equivalence.

One of the general principles illustrated by both arithmetical and analytical
hierarchies is the duality between separation and reduction property: a class C has
separation property iff its dual C has reduction property, but a class cannot enjoy
both properties. There are some evidences that the principle should also hold for
the fixed—point alternation hierarchy, in spite of the limited expressive power of the
p-calculus, not allowing for the diagonal argument.

In the talk I will outline the known connections between various hierarchies and

some challenging open problems.

An Alternative Characterization for Complete

Iterativeness
(Extended Abstract)

Tarmo Uustalu! and Varmo Vene?

! Inst. of Cybernetics, Tallinn Technical University
Akadeemia tee 21, EE-12618 Tallinn, Estonia
tarmo@cs.ioc.ee
? Dept. of Computer Science, University of Tartu
J. Liivi 2, EE-50409 Tartu, Estonia
varmo@cs.ut.ee

Moss [4] and Aczel, Addmek et al. [1] have recently shown that the term
algebra of non-wellfounded terms in a universal-algebraic signature gives rise to
a monad which is completely iterative in the sense of solvability of arbitrary
systems of guarded equations. Aczel, Addmek et al. [2] have moreover shown
that it is the free completely iterative monad generated by this signature.

Technically, complete iterativeness is defined for ideal monads as unique exis-
tence of an operation on morphisms of a certain type. We show that the concept
admits an alternative definition where the criterion is unique existence of a nat-
ural transformation, a restriction however being that this definition can only be
invoked under the existence of certain final coalgebras. We argue that reasoning
about complete iterativeness can sometimes be easier resorting to the alternative
definition, one of the reasons being that the diagram chase format is not ideally
suited for reasoning about operations on morphisms. The alternative definition is
especially useful, if the core of an argument has to be conducted in the category
of endofunctors on the base category, as is the case with arguments concerning
algebras of terms in binding signatures.

Ideal monads, completely iterative monads The concept of complete iterativeness
is defined for monads that are ideal. A monad (T, 7, 1) on C is said to be ideal,
if it comes together with an endofunctor 7' on C and natural transformations
7:T" > T,p : T'"-T — T such that [n,7] : ld + " = T is a natural
isomorphism and

TIT_i)TT

T ——T

An ideal monad (T,n,u,T',7,u') is said to be completely iterative, if for
any guarded equation system with unknowns in A and parameters in B, i.e., a
morphism f : A = B+ T'(A + B), there exists a unique morphism h: A - TB

(notation solve(f)) that solves it, i.e., satisfies

B+T'(A+B) 4
ian,B+idT’(A+B)¢
(A+B) +T'(A+ B) *
[na+8:Tats]y
T(A+ B) —r—=>TTB —> TB

or, which is equivalent (because of the condition relating p and u'),

B+T(A+B)~—"T 4)
idg+T'[hnB]*
B+TTB 3
ids+upy
B+T'B TB
[78,78]

The main result of [2] was that, if an endofunctor H on C is iteratable (in the
sense of existence of the final (4 + H—)-coalgebra for every C-object A), then
the monad structure on the endofunctor T on C given by TA = v(A + H-) is
the free completely iterative monad generated by H. In [3], it was shown that
iteratability of H is necessary in order that the free H-generated completely
iterative monad exists.

An alternative definition Assume that the final (A+ T'(— + A))-coalgebra exists
for every C-object A. Set (T A,wa) = (v(A+T'(—+ A)),0ut 43 7:(—+4))- Then
one can show that (T,7n,u,T’, 7, ') is a completely iterative monad if and only
if a unique natural transformation h : T® — T (notation p™) exists such that

A+T(T®A+ A) <2 7oy 2
ida+T' [hma)y
A+T'TA h
idatuy |
A+T'A TA
[ﬂA,TA]

The definitions of solve(—) and p* via each other are: u§ = solve(wa) and
solve(f) = p¥ o Coitpyr(—+)(f) (f : A= B+T'(A+ B)). By Coit, we denote
coiteration: Coitr takes a F-coalgebra structure map to the corresponding final
coalgebra homomorphism.

Notice that morphisms w, are guarded equation systems and the condi-
tion asserts their unique solvability, so the alternative characterization replaces
the requirement of unique solvability of arbitrary guarded equation systems by
that of only some specific guarded equation systems which are representative
of all others. This makes the relationship between u* and solve(—) analogous
to that between p and —* (the Kleisli extension operation). While —* takes

82

any substitution rule to the corresponding substitution function, p delivers
only those substitution functions that correspond to an identity substitution
rule, since up = idrp*. Nevertheless 1 determines all substitution functions, as
f*=ppoTf(f: A= TB).

Intuitively, the decomposition solve(f) = u% o Coitg1(—1B)(f) refers to
solving a guarded equation system with unknowns in A and parameters in B in
two stages: first, a “quasi-solution” is calculated which assigns to the elements
of A not terms over B (elements of T B), but elements of T®B (“quasi-terms”
over B), and subsequently these quasi-terms are “flattened” into terms proper
yielding the real solution. (Compare this to calculating the result of substituting
a term for all occurences of a certain variable in a term by first naively replacing
the variable at these occurrences by the term in question and then flattening the
result into a term proper). To provide a contrast, let us note that a non-guarded
equation system with unknowns from A and parameters from B is a morphism
f:A—T(A+ B) and any such induces a morphism Coitr(_1g)(f): A - T'B
where T¥B = v(T(— + B)), so non-guarded equation systems with parameters
from B are quasi-solvable in terms of elements of T#B. But for T given by
TA = v(A+ H-) (the algebra of non-wellfounded terms over A in signature H)
there can be no hope in general to construct a natural transformation 7% — T.

Applications The alternative characterization can be used to prove that the
monad structure on T = »(ld + H—) where # : [C,C} — [C,C}] is given by
HX = X xX+X-(K,+1d)) (the algebra of non-wellfounded de Bruijn notations)
is completely iterative by explicitly constructing a candidate for 4> and checking
that it verifies the required property of being the unique h satisfying (2).

Acknowledgements This research was supported by the Estonian Science Foun-
dation under grant No. 5567. The participation of T. Uustalu and V. Vene at
ETAPS 2003 was made possible by a travel grant from the Estonian Information
Technology Foundation.

References

1. P. Aczel, J. Addmek, and J. Velebil. A coalgebraic view of infinite trees and iteration.
In A. Corradini, M. Lenisa, and U. Montanari, eds., Proc. of 4th Int. Wksh. on
Coalgebraic Methods in Comput. Sci., CMCS’01 (Genova, Apr. 2001), vol. 44(1) of
Electr. Notes in Theor. Comput. Sci.. Elsevier, 2001.

2. P. Aczel, J. Addmek, S. Milius, and J. Velebil. Infinite trees and completely iterative
theories: a coalgebraic view. Theor. Comput. Sci., to appear.

3. S. Milius. On iteratable endofunctors. In Proc. of 9th Int. Conf. on Category The-
ory and Comput. Sci., CTCS 2002 (Ottawa, Aug. 2002), Electr. Notes in Theor.
Comput. Sci., Elsevier, to appear.

4. L. S. Moss. Parametric corecursion. Theor. Comput. Sci., 260(1-2):139~163, 2001.

83

ean Joy,
°(°° % o

'&\)j T HEORY

= % A ND

HICH-LEVEL SCIENTIFIC)
. P RACTICE OF
CONFERENCES

Information Society

4 “lechnologics

S OFTWAR
7

>

WARSZAWA
POLSKIE LINIE LOTNICZE

