Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 May 2024]
Title:OmniBind: Teach to Build Unequal-Scale Modality Interaction for Omni-Bind of All
View PDF HTML (experimental)Abstract:Research on multi-modal learning dominantly aligns the modalities in a unified space at training, and only a single one is taken for prediction at inference. However, for a real machine, e.g., a robot, sensors could be added or removed at any time. Thus, it is crucial to enable the machine to tackle the mismatch and unequal-scale problems of modality combinations between training and inference. In this paper, we tackle these problems from a new perspective: "Modalities Help Modalities". Intuitively, we present OmniBind, a novel two-stage learning framework that can achieve any modality combinations and interaction. It involves teaching data-constrained, a.k.a, student, modalities to be aligned with the well-trained data-abundant, a.k.a, teacher, modalities. This subtly enables the adaptive fusion of any modalities to build a unified representation space for any combinations. Specifically, we propose Cross-modal Alignment Distillation (CAD) to address the unequal-scale problem between student and teacher modalities and effectively align student modalities into the teacher modalities' representation space in stage one. We then propose an Adaptive Fusion (AF) module to fuse any modality combinations and learn a unified representation space in stage two. To address the mismatch problem, we aggregate existing datasets and combine samples from different modalities by the same semantics. This way, we build the first dataset for training and evaluation that consists of teacher (image, text) and student (touch, thermal, event, point cloud, audio) modalities and enables omni-bind for any of them. Extensive experiments on the recognition task show performance gains over prior arts by an average of 4.05 % on the arbitrary modality combination setting. It also achieves state-of-the-art performance for a single modality, e.g., touch, with a 4.34 % gain.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.