Off-Grid DOA Estimation Using Sparse Bayesian Learning for MIMO Radar under Impulsive Noise
Abstract
:1. Introduction
- The proposed DOA method could accurately estimate DOA for MIMO radar under non-Gaussian impulsive noise without the prior knowledge of its parameters, such as the characteristic exponent of alpha stable distribution. Hence, the proposed method is with wider application scope than conventional DOA methods;
- The proposed DOA method has a more robust performance than the conventional DOA estimation methods under impulsive noise, especially in the low generalized signal to noise ratio condition.
2. Problem Formulation
2.1. Signal Model
2.2. Impulsive Noise
2.3. Sparse Representation for MIMO DOA Estimation
3. Proposed Off-Grid DOA Estimation Method
3.1. Sparse Signal Model
3.2. Sparse Bayesian Learning Based Approach
Algorithm 1 Proposed Method |
|
4. Simulation Results and Analysis
4.1. Simulations versus GSNRs
4.2. Simulations versus Characteristic Exponents
4.3. Simulations versus Signal Snapshot
4.4. Simulations versus DOAs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Wan, L.; Huang, M.; Shen, C.; Han, Z.; Zhu, T. Low-Complexity Channel Estimation for Circular and NoncircularSignals in Virtual MIMO Vehicle Communication Systems. IEEE Trans. Veh. Technol. 2020, 69, 3916–3928. [Google Scholar] [CrossRef]
- Ma, J.; Liu, H.; Peng, C.; Qiu, T. Unauthorized Broadcasting Identification: A Deep LSTM Recurrent Learning Approach. IEEE Trans. Instrum. Meas. 2020, 69, 5981–5983. [Google Scholar] [CrossRef]
- Ma, J.; Qiu, T. Automatic Modulation Classification Using Cyclic Correntropy Spectrum in Impulsive Noise. IEEE Wirel. Commun. Lett. 2019, 8, 440–443. [Google Scholar] [CrossRef]
- Haimovich, A.M.; Blum, R.S.; Cimini, L.J. MIMO radar with widely separated antennas. IEEE Signal Process. Mag. 2007, 25, 116–129. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, S.; Liu, W.; Zheng, J.; Liu, H.; Li, J. Tunable adaptive detection in colocated MIMO radar. IEEE Trans. Signal Process. 2017, 66, 1080–1092. [Google Scholar] [CrossRef]
- Wan, L.; Han, G.; Jiang, J.; Rodrigues, J.J.P.C.; Feng, N.; Zhu, T. DOA Estimation for Coherently Distributed Sources Considering Circular and Noncircular Signals in Massive MIMO Systems. IEEE Syst. J. 2017, 11, 41–49. [Google Scholar] [CrossRef]
- Wang, H.; Wan, L.; Dong, M.; Ota, K.; Wang, X. Assistant Vehicle Localization Based on Three Collaborative Base Stations via SBL-Based Robust DOA Estimation. IEEE Internet Things J. 2019, 6, 5766–5777. [Google Scholar]
- Wang, H.; Wang, X.; Huang, M.; Wan, L.; Su, T. RxCV-based unitary SBL algorithm for off-grid DOA estimation with MIMO radar in unknown non-uniform noise. Digital Signal Process. 2021, 116, 103119. [Google Scholar] [CrossRef]
- Wen, F.; Shi, J.; Zhang, Z. Generalized spatial smoothing in bistatic EMVS-MIMO radar. Signal Process. 2022, 193, 108406. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, X.; Yang, Q.; Wu, X.; Deng, W. Combined root-MUSIC algorithms for multi-carrier MIMO radar with sparse uniform linear arrays. Iet Radar Sonar Navig. 2018, 13, 89–97. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Chen, C.; Li, J.; Xu, D. Reduced-complexity Capon for direction of arrival estimation in a monostatic multiple-input multiple-output radar. Iet Radar, Sonar Navig. 2012, 6, 796–801. [Google Scholar] [CrossRef]
- Ruan, N.J.; Wen, F.Q.; Ai, L.; Xie, K. A PARAFAC decomposition algorithm for DOA estimation in colocated MIMO radar with imperfect waveforms. IEEE Access 2019, 7, 14680–14688. [Google Scholar] [CrossRef]
- Xu, X.; Wei, X.; Ye, Z. DOA estimation based on sparse signal recovery utilizing weighted l1-norm penalty. IEEE Signal Process. Lett. 2012, 19, 155–158. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Liu, J.; Li, X.; Wang, J. A sparse representation scheme for angle estimation in monostatic MIMO radar. Signal Process. 2014, 104, 258–263. [Google Scholar] [CrossRef]
- Liu, L.; Rao, Z. An Adaptive Lp Norm Minimization Algorithm for Direction of Arrival Estimation. Remote Sens. 2022, 14, 766. [Google Scholar] [CrossRef]
- Yan, B.; Zhao, Q.; Zhang, J.; Zhang, J.A.; Yao, X. Multiobjective bilevel evolutionary approach for off-grid direction-of-arrival estimation. Appl. Soft Comput. 2021, 113, 107954. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Li, X.; Bi, G. Nuclear norm minimization framework for DOA estimation in MIMO radar. Signal Process. 2017, 135, 147–152. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, Y.; Zhang, T.; Chen, S.; Li, J. Iterative reweighted proximal projection based DOA estimation algorithm for monostatic MIMO radar. Signal Process. 2020, 172, 107537. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Z.; Chen, Z.; Wang, X. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling. IEEE Trans. Signal Process. 2018, 67, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, W.; Liu, W. Joint DOA, range, and polarization estimation for rectilinear sources with a COLD array. IEEE Wirel. Commun. Lett. 2019, 8, 1398–1401. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Song, H.; Ma, Y. Conjugate ESPRIT for DOA estimation in monostatic MIMO radar. Signal Process. 2013, 93, 2070–2075. [Google Scholar]
- Button, M.D.; Gardiner, J.G.; Glover, I.A. Measurement of the impulsive noise environment for satellite-mobile radio systems at 1.5 GHz. IEEE Trans. Veh. Technol. 2002, 51, 551–560. [Google Scholar]
- Ma, J.; Qiu, T.; Tian, Q. Fast Blind Equalization Using Bounded Non-Linear Function With Non-Gaussian Noise. IEEE Commun. Lett. 2020, 24, 1812–1815. [Google Scholar]
- Zeng, W.; So, H.C. Outlier-Robust Matrix Completion via ℓp-Minimization. IEEE Trans. Signal Process. 2017, 66, 1125–1140. [Google Scholar]
- Zhang, J.; Qiu, T. A novel covariation based noncircular sources direction finding method under impulsive noise environments. Signal Process. 2014, 98, 252–262. [Google Scholar]
- Liu, Q.; Yang, C.; Gu, Y.; So, H.C. Robust sparse recovery via weakly convex optimization in impulsive noise. Signal Process. 2018, 152, 84–89. [Google Scholar]
- Liu, W.; Pokharel, P.P.; Príncipe, J.C. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar]
- Chen, B.; Xing, L.; Zhao, H.; Zheng, N.; Príncipe, J.C. Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 2016, 64, 3376–3387. [Google Scholar]
- Zhang, J.; Qiu, T.; Luan, S. Robust Sparse Representation for DOA Estimation With Unknown Mutual Coupling Under Impulsive Noise. IEEE Commun. Lett. 2020, 24, 1455–1458. [Google Scholar]
- Zhang, J.; Qiu, T.; Luan, S.; Li, H. Bounded non-linear covariance based ESPRIT method for noncircular signals in presence of impulsive noise. Digit. Signal Process. 2019, 87, 104–111. [Google Scholar]
- Wan, Q.; Duan, H.; Fang, J.; Li, H.; Xing, Z. Robust Bayesian compressed sensing with outliers. Signal Process. 2017, 140, 104–109. [Google Scholar]
DOA Method | () | () | () | () |
---|---|---|---|---|
Proposed | 100% | 100% | 98% | 60% |
RVSBL | 93% | 95% | 88% | 38% |
IRPP | 58% | 50% | 46% | 3% |
NUC-NORM | 12% | 10% | 8% | 2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Zhang, J.; Yang, Z.; Qiu, T. Off-Grid DOA Estimation Using Sparse Bayesian Learning for MIMO Radar under Impulsive Noise. Sensors 2022, 22, 6268. https://doi.org/10.3390/s22166268
Ma J, Zhang J, Yang Z, Qiu T. Off-Grid DOA Estimation Using Sparse Bayesian Learning for MIMO Radar under Impulsive Noise. Sensors. 2022; 22(16):6268. https://doi.org/10.3390/s22166268
Chicago/Turabian StyleMa, Jitong, Jiacheng Zhang, Zhengyan Yang, and Tianshuang Qiu. 2022. "Off-Grid DOA Estimation Using Sparse Bayesian Learning for MIMO Radar under Impulsive Noise" Sensors 22, no. 16: 6268. https://doi.org/10.3390/s22166268
APA StyleMa, J., Zhang, J., Yang, Z., & Qiu, T. (2022). Off-Grid DOA Estimation Using Sparse Bayesian Learning for MIMO Radar under Impulsive Noise. Sensors, 22(16), 6268. https://doi.org/10.3390/s22166268