Computer Science > Machine Learning
[Submitted on 12 Sep 2024]
Title:Non-negative Weighted DAG Structure Learning
View PDF HTML (experimental)Abstract:We address the problem of learning the topology of directed acyclic graphs (DAGs) from nodal observations, which adhere to a linear structural equation model. Recent advances framed the combinatorial DAG structure learning task as a continuous optimization problem, yet existing methods must contend with the complexities of non-convex optimization. To overcome this limitation, we assume that the latent DAG contains only non-negative edge weights. Leveraging this additional structure, we argue that cycles can be effectively characterized (and prevented) using a convex acyclicity function based on the log-determinant of the adjacency matrix. This convexity allows us to relax the task of learning the non-negative weighted DAG as an abstract convex optimization problem. We propose a DAG recovery algorithm based on the method of multipliers, that is guaranteed to return a global minimizer. Furthermore, we prove that in the infinite sample size regime, the convexity of our approach ensures the recovery of the true DAG structure. We empirically validate the performance of our algorithm in several reproducible synthetic-data test cases, showing that it outperforms state-of-the-art alternatives.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.