Non-Destructive Testing of Alfalfa Seed Vigor Based on Multispectral Imaging Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Multispectral Imaging
2.3. Determination of Seed Germination Characteristics
2.4. Artificial Accelerated Aging Determination of Seed Vigor
2.5. Data Analysis
3. Results
3.1. Germination Test of Alfalfa Seeds at Different Maturity and Harvest Years
3.2. Chlorophyll Fluorescence Determination
3.3. Analysis of Morphological Data and Spectral Data
3.4. Multivariate Analysis
3.5. Prediction of Seed Emergence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhai, Z.; Jia, L.; Qi, H.; Wang, R.; Zhao, G. Advances in nondestructive testing of seed vigor. J. Zhejiang AF Univ. 2020, 37, 382–390. [Google Scholar]
- Li, W.; Yu, X.; Liu, C.; Tan, Y.; Miao, X.; Song, S. Research progress of crop seed vigor detection methods. J. Agric. Catastro 2021, 11, 7–8. [Google Scholar]
- Zhou, Y.; Zhou, S.; Wang, L.; Wu, D.; Cheng, H.; Du, X.; Mao, D.; Zhang, C.; Jiang, X. miR164c and miR168a regulate seed vigor in rice. J. Integr. Plant Biol. 2020, 62, 470–486. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Sun, Q. Importance of seed vigor in seed quality assessment. Seed Sci. Technol. 2003, 1, 18. [Google Scholar]
- Cai, S. Decay of seed vigor and its relation to storage conditions. Seed 1987, 5, 49–51. [Google Scholar]
- ISTA. International Rules for Seed Testing; International Seed Testing Association—ISTA: Bassersdorf, Switzerland, 2022. [Google Scholar]
- Elmasry, G.; Mandour, N.; Wagner, M.-H.; Demilly, D.; Verdier, J.; Belin, E.; Rousseau, D. Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant Methods 2019, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Cong, X. Study on the Determination of Seed Vigour of Perennial Ryegrass Using Multispectral Imaging Technology; China Agricultural University: Beijing, China, 2020. [Google Scholar]
- Galletti, P.A.; Carvalho, M.E.A.; Hirai, W.Y.; Brancaglioni, V.A.; Arthur, V.; Da Silva, C.B. Integrating Optical Imaging Tools for Rapid and Non-invasive Characterization of Seed Quality: Tomato (Solanum lycopersicum L.) and Carrot (Daucus carota L.) as Study Cases. Front. Plant Sci. 2020, 11, 577851. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Liu, C.; Zheng, L. Rapid Discrimination of High-Quality Watermelon Seeds by Multispectral Imaging Combined with Chemometric Methods. J. Appl. Spectrosc. 2019, 85, 1044–1049. [Google Scholar] [CrossRef]
- Liu, D.; Bai, S.; Yang, Q.; Qi, X.; Liang, Z.; Guo, W.; Li, P. Advances in saline-alkali tolerance of Alfalfa (Medicago sativa L.). J. Biol. 2021, 38, 98–101. [Google Scholar]
- Julia, M.S.; Anna, C.P. Chlorophyll fluorescence as a new marker for peanut seed quality evaluation. SA Sci. 2021, 2, e21111. [Google Scholar]
- Wang, D.; Wang, K.; Wu, J. Research progress of nondestructive rapid measurement of seed quality based on spectrum and imaging technology. Spectrosc. Spectr. Anal. 2021, 41, 52–59. [Google Scholar]
- Kenanoglu, B.B.; Demir, I.; Jalink, H. Chlorophyll Fluorescence Sorting Method to Improve Quality of Capsicum Pepper Seed Lots Produced from Different Maturity Fruits. HortScience 2013, 48, 965–968. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, C. Study on grain weight and seed vigor of each grain position in panicle of rice. Seed 2002, 1, 38–40. [Google Scholar]
- Kaya, M.D.; Day, S. Relationship between seed size and NaCl on germination, seed vigor and early seedling growth of sunflower (Helianthus annuus L.). Afr. J. Agric. Res. 2008, 3, 787–791. [Google Scholar]
- Xie, T.; Tekrony, D.M. Effects of variety, planting density and pod position on seed vigor of soybean. Chin. J. Eco-Agric. 2005, 1, 75–78. [Google Scholar]
- Zhao, G.; Ma, P.; Wang, J.; Wang, G. Identification of tolerance to deep sowing and physiological response to deep sowing stress in different maize inbred lines. J. Maize Sci. 2009, 17, 9–13. [Google Scholar]
- Robertson, A.R. Historical development of CIE recommended color difference equations. Color Res. Appl. 1990, 15, 167–170. [Google Scholar] [CrossRef]
- Yam, K.L.; Papadakis, S.E. A simple digital imaging method for measuring and analyzing color of food surfaces. J. Food Eng. 2004, 61, 137–142. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Ye, D.; Guan, C.; Zou, Y.; Li, Z. Discrimination of capsule development and seed vigor of Flue-cured Tobacco Based on CIELab color space. Chin. Tob. Sci. 2015, 36, 24–28. [Google Scholar]
- Elmasry, G.; Mandour, N.; Al-Rejaie, S.; Belin, E.; Rousseau, D. Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring—An Overview. Sensors 2019, 19, 1090. [Google Scholar] [CrossRef] [Green Version]
- Boelt, B.; Shrestha, S.; Salimi, Z.; Jorgensen, J.R.; Nicolaisen, M.; Carstensen, J.M. Multispectral imaging-a new tool in seed quality assessment? Seed Sci. Res. 2018, 28, 222–228. [Google Scholar] [CrossRef]
- Barlocco, N.; Vadell, A.; Ballesteros, F.; Galietta, G.; Cozzolino, D. Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy. Anim. Sci. 2006, 82, 111–116. [Google Scholar] [CrossRef]
- Hu, X.; Yang, L.; Zhang, Z. Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species. Plant Methods 2020, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, L.; Zhang, Z.; Wang, Y. Differentiation of alfalfa and sweet clover seeds via multispectral imaging. Seed Sci. Technol. 2020, 48, 83–99. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Z.; Hu, X. Cultivar Discrimination of Single Alfalfa (Medicago sativa L.) Seed via Multispectral Imaging Combined with Multivariate Analysis. Sensors 2020, 20, 6575. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Song, R.; He, X.; Mao, P.; Jia, S. Non-Destructive Identification of Naturally Aged Alfalfa Seeds via Multispectral Imaging Analysis. Sensors 2021, 21, 5804. [Google Scholar] [CrossRef] [PubMed]
- Olesen, M.H.; Nikneshan, P.; Shrestha, S.; Tadayyon, A.; Deleuran, L.C.; Boelt, B.; Gislum, R. Viability Prediction of Ricinus cummunis L. Seeds Using Multispectral Imaging. Sensors 2015, 15, 4592–4604. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Sun, Y.; Sun, C.; Li, R.; Guo, C. Study on high vigor character of hard seed. Seed 2005, 8, 44–48. [Google Scholar]
Feature | Green Ripe Stage | Yellow Ripening Stage | Full Ripening Stage |
---|---|---|---|
Area (mm2) | 2.09 ± 0.51 b | 2.75 ± 0.34 a | 2.77 ± 0.39 a |
Length (mm) | 2.05 ± 0.29 b | 2.37 ± 0.22 a | 2.37 ± 0.21 a |
Width (mm) | 1.40 ± 0.17 b | 1.58 ± 0.10 a | 1.58 ± 0.13 a |
RatioWidthLength | 0.69 ± 0.08 a | 0.67 ± 0.08 b | 0.67 ± 0.07 b |
Compactness Circle | 0.66 ± 0.08 | 0.65 ± 0.08 | 0.65 ± 0.07 |
Compactness Ellipse | 0.98 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.01 |
BetaShape_a | 1.64 ± 0.17 a | 1.57 ± 0.15 b | 1.55 ± 0.13 c |
BetaShape_b | 1.51 ± 0.17 a | 1.49 ± 0.13 b | 1.48 ± 0.13 c |
Vertical Skewness | −0.07 ± 0.05 c | −0.05 ± 0.04 b | −0.04 ± 0.03 a |
CIELab L* | 39.27 ± 5.45 c | 46.05 ± 3.91 b | 47.47 ± 3.16 a |
CIELab A* | 6.76 ± 3.77 c | 9.62 ± 2.12 a | 9.24 ± 1.43 b |
CIELab B* | 29.45 ± 4.80 c | 33.35 ± 2.67 a | 33.10 ± 3.30 b |
Saturation | 30.98 ± 4.66 b | 34.70 ± 2.41 a | 34.25 ± 3.19 a |
Hue | 1.21 ± 0.62 b | 1.28 ± 0.15 a | 1.30 ± 0.05 a |
Feature | 2019 | 2008 | 2004 |
---|---|---|---|
Area (mm2) | 2.53 ± 0.41 b | 2.88 ± 0.47 a | 2.94 ± 0.46 a |
Length (mm) | 2.29 ± 0.23 b | 2.48 ± 0.26 a | 2.47 ± 0.24 a |
Width (mm) | 1.48 ± 0.13 c | 1.54 ± 0.14 b | 1.59 ± 0.14 a |
RatioWidthLength | 0.65 ± 0.07 a | 0.63 ± 0.07 b | 0.65 ± 0.07 a |
Compactness Circle | 0.62 ± 0.07 a | 0.60 ± 0.07 b | 0.62 ± 0.07 a |
Compactness Ellipse | 0.99 ± 0.01 | 0.98 ± 0.01 | 0.99 ± 0.01 |
BetaShape_a | 1.50 ± 0.14 a | 1.46 ± 0.15 b | 1.50 ± 0.14 a |
BetaShape_b | 1.43 ± 0.12 a | 1.39 ± 0.13 b | 1.42 ± 0.13 a |
Vertical Skewness | −0.04 ± 0.03 | −0.04 ± 0.03 | −0.04 ± 0.03 |
CIELab L* | 48.33 ± 4.05 a | 43.72 ± 4.39 b | 35.75 ± 4.44 c |
CIELab A* | 10.26 ± 2.56 c | 14.25 ± 2.74 b | 16.48 ± 2.01 a |
CIELab B* | 29.71 ± 2.83 a | 27.54 ± 2.98 b | 19.70 ± 4.53 c |
Saturation | 31.37 ± 2.42 a | 31.05 ± 2.42 a | 25.91 ± 4.29 b |
Hue | 1.24 ± 0.09 a | 1.09 ± 0.10 b | 0.87 ± 0.09 c |
Model | Index | G vs. Y | Y vs. F | G vs. F |
---|---|---|---|---|
LDA | Sensitivity (%) | 94.2 | 87.4 | 97.5 |
Specificity (%) | 98.3 | 84.3 | 95.9 | |
Precision (%) | 98.3 | 84.6 | 95.9 | |
Accuracy (%) | 96.3 | 85.8 | 96.7 | |
SVM | Sensitivity (%) | 95.0 | 89.1 | 95.8 |
Specificity (%) | 96.6 | 81.0 | 92.6 | |
Precision (%) | 96.6 | 82.2 | 92.7 | |
Accuracy (%) | 95.8 | 85.0 | 94.2 | |
RF | Sensitivity (%) | 91.7 | 82.4 | 99.2 |
Specificity (%) | 95.0 | 77.7 | 93.4 | |
Precision (%) | 94.9 | 78.4 | 93.7 | |
Accuracy (%) | 93.3 | 80.0 | 96.3 |
Model | Index | 2004 vs. 2008 | 2008 vs. 2019 | 2004 vs. 2019 |
---|---|---|---|---|
LDA | Sensitivity (%) | 98.3 | 97.5 | 100.0 |
Specificity (%) | 95.9 | 95.9 | 99.2 | |
Precision (%) | 95.9 | 95.9 | 99.2 | |
Accuracy (%) | 97.1 | 96.7 | 99.6 | |
SVM | Sensitivity (%) | 94.1 | 97.5 | 99.2 |
Specificity (%) | 96.7 | 93.4 | 99.2 | |
Precision (%) | 96.6 | 93.5 | 99.2 | |
Accuracy (%) | 95.4 | 95.4 | 99.2 | |
RF | Sensitivity (%) | 95.0 | 87.4 | 97.5 |
Specificity (%) | 95.9 | 89.3 | 98.3 | |
Precision (%) | 95.8 | 88.9 | 98.3 | |
Accuracy (%) | 95.4 | 88.3 | 97.9 |
Sample | Classification | Actually Number of CS | Correctly Predict Number of CS | Actually Number of RS | Correctly Predict Number of RS | Accuracy of Prediction(%) |
---|---|---|---|---|---|---|
Maturity | D | 173 | 160 | 1027 | 987 | 95.6 |
F | 2 | 2 | 1198 | 1089 | 90.9 | |
A | 17 | 14 | 1183 | 1033 | 87.3 | |
H | 649 | 451 | 551 | 375 | 68.8 | |
N | 359 | 232 | 841 | 698 | 77.5 | |
N + H | 1008 | 982 | 192 | 179 | 96.8 | |
Harvest year | D | 406 | 378 | 794 | 713 | 90.9 |
F | 10 | 9 | 1190 | 1019 | 85.7 | |
A | 26 | 15 | 1174 | 904 | 76.6 | |
H | 80 | 57 | 1120 | 1065 | 93.5 | |
N | 678 | 647 | 522 | 433 | 90.0 | |
N + H | 758 | 719 | 442 | 416 | 94.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zeng, H.; Ji, W.; Yi, K.; Yang, S.; Mao, P.; Wang, Z.; Yu, H.; Li, M. Non-Destructive Testing of Alfalfa Seed Vigor Based on Multispectral Imaging Technology. Sensors 2022, 22, 2760. https://doi.org/10.3390/s22072760
Zhang S, Zeng H, Ji W, Yi K, Yang S, Mao P, Wang Z, Yu H, Li M. Non-Destructive Testing of Alfalfa Seed Vigor Based on Multispectral Imaging Technology. Sensors. 2022; 22(7):2760. https://doi.org/10.3390/s22072760
Chicago/Turabian StyleZhang, Shuheng, Hanguo Zeng, Wei Ji, Kun Yi, Shuangfeng Yang, Peisheng Mao, Zhanjun Wang, Hongqian Yu, and Manli Li. 2022. "Non-Destructive Testing of Alfalfa Seed Vigor Based on Multispectral Imaging Technology" Sensors 22, no. 7: 2760. https://doi.org/10.3390/s22072760
APA StyleZhang, S., Zeng, H., Ji, W., Yi, K., Yang, S., Mao, P., Wang, Z., Yu, H., & Li, M. (2022). Non-Destructive Testing of Alfalfa Seed Vigor Based on Multispectral Imaging Technology. Sensors, 22(7), 2760. https://doi.org/10.3390/s22072760