
New inference algorithms based on rules
partition

Agnieszka Nowak-Brzezińska and Roman Simiński

Department of Computer Science, Institute of Computer Science, Silesian University,
Poland http://ii.us.edu.pl

Abstract. This paper presents new inference algorithms based on rules
partition. Optimisation relies on reducing the number of rules searched in
each run of inference and reducing the number of unnecessary recursive
calls and avoiding the extraction of too many new facts. The first part of
the paper presents the definition of the model of knowledge base based
on rules partition. The second part describes the modifications of both
forward and backward inference algorithms using knowledge base with
rules assigned to the groups given by the partition strategy. At the end,
the paper consists of an example of knowledge base with the description
of inference processes for this particular knowledge base.

Keywords: knowledge base, inference process, goal driven, data driven,
rules partition

1 Introduction

Knowledge bases are still one of the most popular method of knowledge repre-
sentation. They are constantly increasing in volume, thus the knowledge stored
as a set of rules is getting progressively more complex. The ability to obtain large
rules sets in easy and automatic way has got an enormous negative impact on the
time of decision making — inference in large rules sets is time consuming pro-
cess and the results of inference are in many cases hard to understand [1, 11, 7].
Effectiveness of both forward and backward inference algorithms is a significant
problem when considering the large and complex rules bases, especially when
we consider inference used in systems which work in the real-time environments
and do not use a dialogue with user during inference.

This paper presents a new idea of partitioning of rule knowledge base and ap-
plication of this idea in inference optimisation task. We introduce an approach,
which assumes that the rule knowledge base is decomposed into the groups of
rules, called rules partitions. Knowledge base in the form of rules partitions al-
lows to improve the efficiency of inference algorithms. The groups of rules on
which the knowledge base is partitioned let to reduce the search space for infer-
ence algorithms and to decrease the time needed to browse rules. Thus we may
say that the knowledge base in the form of rules partition optimises inference
processes. In this work we introduce two types of strategies for partitioning of
knowledge base. First important strategy, divides the rules knowledge base into

2 A.Nowak-Brzezińska, R.Simiński

groups of rules with similar premisses, the second divides the rules into groups of
rules with the same conclusion. The first one is called strategy based on similar
premisses. The second one is known as decision strategy. Both of the strategies
will be used as a base for proposed modification of inference algorithms. The
introduced partition strategies correspond to the research carried out so far by
the authors on cluster analysis for the rules in the knowledge base [8–10] and the
application of the concept of decision unit idea [12]. The proposed modification
of knowledge base model is a kind of decomposition of knowledge base. Every
created group of rules has its’ representatives and during the inference processes
the representatives of groups of rules are browsed instead of every rule one by
one. Improving of the efficiency of forward inference is significant if the qual-
ity of groups’ representatives is high enough. The modification of the classical
backward inference algorithm is based on extracting information of internal rules
dependencies. This information allows to perform only promising recursive calls
of backward inference algorithm. Optimisation relies on reducing the number of
rules searched for each run of inference and reducing the number of unnecessary
recursive calls.

The first part of the work presents the rules partitioning approach. The
second part consists of the description of interence algorithms modifications. At
the end, the paper contains an example of knowledge base with the description
of inference processes for this particular knowledge base.

2 Decomposition of rule knowledge bases

The proposed concept assumes division of knowledge base into coherent sub-
groups of rules. This section presents the basic concepts and notations of knowl-
edge base partitioning, because this conception is a relatively new and it is not
widely known. A significant part of this work contains detailed description of
proposed approach.

2.1 Preliminary information

The rules-based knowledge base R consists of n rules: r1, . . . , ri, . . . , rn and is an
unordered set. Each rule ri ∈ R is stored as a Horn’s clause: ri : p1 ∧ p2 ∧ . . . ∧
pm → c, where m is the number of literals1 in conditional part of rule ri (m ≥ 0,
i = 1 . . . n) and c is the literal for the conclusion part of rule ri. An attribute
a ∈ A may be a conclusion of rule ri as well as a premise of it. For each rule
ri ∈ R, the function concl(ri) returns the conclusion literal of rule ri, whereas
the function cond(ri) returns the set of conditional literals of rule ri. The set of
facts is denoted as F = {f1, f2, . . . fs}, the facts are also stored as literals. The
knowledge base KB is defined as a pair: KB = (R,F).
1 literals in the form of pairs of attribute and its value (a, vai) (or equally a = vai). Let
A be a non empty finite set of conditional and conclusion (decision) attributes. For
every attribute a ∈ A, the set Va is called the set of values of attribute a.

New inference algorithms based on rules’ partition 3

2.2 Partition strategies

For every rules base R with n rules the number of possible subsets is 2n. Any
arbitrarily created subset of rules R ∈ 2R is called a group of rules PR or rules
partition. It is created by partition strategy, denoted by PS, which generates

groups of rules PR: PS(R) gen⇒ PR. Partition strategy PS for rules set R gen-
erates the partition of rules PR ⊆ 2R:PR = {R1, R2, . . . , Rk} where: k is the
number of groups of rules formed by the partition PR, and Rj is j-th group
of rules, R ∈ 2R and j = 1, . . . , k. Partition strategy PS is the general con-
cept. It is possible to show a lot of different approaches for creating groups of
rules. Each of them can be done with a different partition strategy. Every sim-
ple partition strategy involves the necessity of defining the membership criteria
mc : R × PR → [0..1]. We can define mc in a variety of ways, also we can
consider specific form of this function (mc : R× PR→ {0, 1}), for example:

mc(ri, Rj) =

{
1 if sim(ri, Rj) ≥ T
0 in the opposite case

(1)

where sim(ri, Rj) is defined in eq.3.
In general, the value 1 denotes the situation when rule ri ∈ R is definitely

included in the group Rj and 0 in the opposite case. The value between 0 and
1 denotes the degree of membership of rule ri to the group Rj . It is possible
to achieve many different partitions of rules. Generally, including op, as any
operator from the set [>, >, <, 6, =, 6=], we can simply define partition PR as
follows: PR = {Rj : Rj ∈ 2R ∧ ∀ri∈Rj

mc(ri, Rj) op T}, where value mc(ri, Rj)
defines the membership of rule ri to the group Rj which can be higher, higher
or equal, equal, less, less or equal to the threshold value T (0 ≤ T ≤ 1).

The exceptional case of a simple strategy is the specific partition called fur-
ther the selection. The selection divides the set of rules R into two subsets R
and R− R in such a way, that all rules from R meet the membership criterion
for some partition strategy PS, and all other rules do not meet such criterion.
Partition PR = {R,R−R}, which is the result of the selection, is important in
practical terms. During the inference process, we search within the knowledge
base one rule by one (which is time consuming) in order to find a set of relevant
rules. Selection serves the same role, because it provides rules necessary to be
activated during the inference process, but in a more efficient way.

There are two types of partition strategies: simple and complex. Simple strat-
egy creates final partition PR by a single search of rules set R and by assigning
each rule ri to group Rj according to the value of the membership function
mc(ri, Rj). The example of simple strategy is a selection of a pair of most sim-
ilar rules or selection a group of rules to which a given rule is the most similar
according to the value of threshold T and membership function mc. The strategy
of creating groups of similar rules is the example of complex strategy because
it usually multiply runs the simple strategy of finding two most similar rules
or groups of rules. Complex strategies very often do not generate the final par-
tition in a single step. Usually, they begin with a preliminary partition, which
is modified further in accordance to the methods of partition. It is defined by

4 A.Nowak-Brzezińska, R.Simiński

a combination of a few simple strategies, an iteration of one of them or the
combination of both methods.

Partition strategy based on finding groups of rules with similar premisses is
the example of complex strategy which uses simple strategy known as strategy of
choosing a pair of the most similar rules many times. Finding the pair of most
similar objects is a crucial step in every clustering algorithm. Thus the parti-
tion strategy which divides rules into the groups of rules with similar premisses
has the result similar to the Agglomerative Hierarchical Clustering (AHC) algo-
rithm but the hierarchy does not need to be saved [8, 9]. Only the result of the
final partition is important. The process can be terminated when the similarity
between merged clusters drops below given threshold (it was called the mAHC
algorithm in [6]). The result of partitioning the set of all rules from R using the
mAHC algorithm is k groups of rules R1, . . . , Rl, . . . , Rk and it is following:

R = {R1, . . . , Rl, . . . , Rk : ∀ri,rj∈Rl
sim(ri, rj) ≥ T}. (2)

Each group Rl consists of rules for which mutual similarity is at least equal to T .
To do this, at the beginning we have to use simple strategy forming R1, . . . , Rk

groups where every rule belongs to exactly one group. This strategy is used
only once and is defined as: R : ∪{R1 ∪ . . . ∪ Rn : ∀Ri∈R1,...,Rn |Ri| = 1 ∧
∀Ri,Rj∈R1,...,Rn,Ri 6=Rj

Ri∩Rj = ∅}. In the next step the strategy based on finding
the most similar rules or groups of rules is multiply executed.

To determine the similarity between rules here the authors use the function
R×R → [0..1] defined as:

sim(ri, rj) =
|cond(ri) ∩ cond(rj)|
|cond(ri) ∪ cond(rj)|

. (3)

The value of sim(ri, rj) is equal to 1 if rules are formed by the same literals and
0 when they do not have any common literals. The more similar the rules are,
the value of sim(ri, rj) is closer to 1. It uses the similarity of conditional part
of rules. However, we may also use the information about conclusions of rules
while measuring the similarity of rules. This similarity measure works well with
either rules, groups of rules, representatives of rules or set of facts. It is worth
to mention that each group in created rules partition achieves its’ representa-
tive called Profile. Instead of searching within the full structure of rules, only
representatives of groups are compared. They are usually given by the set of
common literals among all the literals belonging to all the rules forming a group
of rules, a set of the most frequent literals or the set of distinctive ones. To find
a relevant group of rules during the inference process the maximal value of sim-
ilarity (see eq. 3) between the set of facts F (and/or hypothesis to be proven)
and the representatives of each group of rules Profile(Rj) is searched. Value of
sim(F, Profile(Rj)) is equal to 0 if there is no such fact fi (or hypothesis to
prove) which is included in the representative of any group Rj . It is equal to 1 if
all facts (and/or hypothesis) are included in the Profile(Rj) of group Rj . The
more facts with hypotesis included in the profile of group Rj the greater the

New inference algorithms based on rules’ partition 5

value of similarity. Exhaustive search of rules is done only within a given group.
Details of inference process are given in the section 3.

Partition strategy for rules with the same conclusions creates the groups
of rules from R by grouping rules with the same attribute in conclusions. It
also can be called decision oriented partition strategy. The membership criterion
for rule ri and group Rj is given by the function mc defined in eq. 1. When
we will use the simple partition algorithm (described below in the next section
as Alg01:createPartitions) with the mc function defined in this way, we obtain
decision oriented partitions. Each group of the rules generated by this algorithm
may have the following form: R = {r ∈ R : ∀ri∈R concl(ri) = concl(r)}. The
number of groups in the partition k : 1 ≤ k ≤ n depends on the number of
different decisions included in conclusions of such rules. When we distinguish
different decision by the different conclusions appearing in the rules — we get one
group for each conclusion. This partition strategy corresponds to the concept of
the decision units presented in [9, 10]. In accordance to more general conception
of rules partitions (presented here), decision units are just one of many possible
partitioning strategy. In every group we have rules with the same conclusion: a
fixed (a, v) pair. All rules, grouped within a rule set, take part in an inference
process confirming the goal described by the particular attribute-value — for
each R ∈ PR the conclusion set |Concl(R)| = 1.

The attribute in knowledge base usually represents the particular concept
or property from real word. The value of attribute expresses the determined
meaning of the concept or state of the property. If we consider the specified
(a, v) pair, we think about particular kind of concept or about particular property
state. Similarly, in decision tables DT = (U,A∪{d}) — considered in the Rough
Set Theory — values of decision attributes d defines partition of objects from

U into the decision class CLASSA(d) = {X1
A, X

2
A, . . . X

r(d)
A }, where r(d) is the

cardinality of value set for attribute a and Xi
A is the i-th decision class of A [13].

Each group of rules from elementary partition is similar to i-th decision class
Xi

A [14].

2.3 The partition algorithms

The input parameters for rules partition algorithm based on simple strategy are:
knowledge base R, mc function and the value of the threshold T . Output data is
the partition PR. Time complexity of such algorithm is O(n ·k), where n = |R|,
k = |PR|. For each rule r ∈ R we have to check whether the goal partition PR
contains the group R with rule r (the value of the mc function has to be at least
equal to T : mc(r,R) > T). If such a rule doesn’t exist the given rule r becomes
the seed of a new group which is added to the created partition PR. Alg01:
The simple partition algorithm

Require: R, mc, T ;
Ensure: PR = {R1, R2, . . . , Rk};
procedure createPartitions(R, var PR, mc, T)
var R, r;

6 A.Nowak-Brzezińska, R.Simiński

begin
PR = {};
for all r ∈ R do
if ∃R ∈ PR : mc(r,R) > T then
R = R ∪ r;

else
R = {r};
PR = PR ∪R;

end if
end for
end procedure

The algorithm of creating the specific partition called selection is presented
below. The input parameters are knowledge base R, the function mc which
defines the membership criterion and the threshold value T . Output data is the
single group of rules R, which consists of rules from R, that fulfill the condition
of mc. In fact, each selection generates the partition which has two elements,
but the second group is defined implicitly as R−R. So the final partition of PR
for the selection strategy is created as: PR = {R,R− R}. Time complexity of
this algorithm is O(n), where n = |R|.

Let us notice that presented algorithm does not have any knowledge about the
specification of a given group of rules. It uses only the values of the membership
function mc. If the parameter R is an empty set, the function of mc determines
whether the rule r fulfills the condition given by the membership function for
empty groupR.Alg02: Selection strategy algorithm

Require: R, mc, T ;
Ensure: R = {r1, r2, . . . , rl};
procedure createSelection(R, var R, mc, T)
var r;
begin
for all r ∈ R do
if mc(r,R) > T then
R = R ∪ r;

end if
end for
end procedure

An example of partition algorithm (different to selection strategy algorithm)
is the algorithm based on clustering rules into groups of similar rules. For each
rule it checks if a particular rule should be included in a given group. The result
is a partition of k groups: PR = {R1, R2, . . . , Rk}. This algorithm describes the
AHC or mAHC algorithms and it is presented as follows.

Alg03: Partition algorithm given by clustering

Require: R, mc, T ;
Ensure: PR = {R1, R2, . . . , Rk};
procedure clustering(R, var R, mc, T)
INPUT: R ;

New inference algorithms based on rules’ partition 7

repeat
carry out some processing
findTwoMostSimilarGroupsOfRules(R);
createNewGroup(pOR, R);

until max{sim(Ri, Rj)} ≥ T
OUTPUT: R’ ;

whereR′ denotes the created rules’ partition. findTwoMostSimilarGroupsOfRules(
R) is the procedure that compares groups’ representatives and finds the two most
similar. The createNewGroup(pOR, R) function adds the new, recently created
group to the structure and reduces the size of the structure by removing the
elements which formed the newly created group.

Partitions generated by the algorithms Alg01, Alg02, Alg03 are unique
and complete — each rule r ∈ R is considered, and qualified to one group R,
that matches the criteria of mc. Presented modification of backward inference
will utilise this features. For this reason algorithms which generates incomplete
or non-unique partitions will not be presented in this work.

3 Inference in knowledge bases with partition of rules

The main goal of the decision support systems (DSSs) is to infer new knowledge
from data stored in knowledge base. The inference is the process of proving (or
falsifying) the hypothesis, knowing that the facts used in the process are true
[1, 2]. The more rules in knowledge base, the greater the time needed to search
withing a given knowledge base. A lot also depends on the number of facts given
as input data. Choosing a proper methods of inference is very crucial and should
be considered due to a goal of the given user of DSS. If the user wants to prove
some hypothesis, the best choice is a goal driven inference process. When the
user does not know what to prove, but has some facts given as input knowledge,
the proper way is to use data driven inference process.

3.1 Forward inference

This type of inference is also called data or facts driven. Each rule is analysed
whether all its’ premisses are satisfied. If that is the case, the rule is activated and
its’ conclusions are added to the set of facts. The algorithm stops either where
there are no more rules which can be activated or when the starting hypothesis
is added to the set of facts [5–8]. Forward inference leads to a massive growth
of new facts, but most of them are nonessential to prove the starting hypothesis
and can slow down the inference process significantly. Unfortunately, when the
DSS consists of more than 100 rules, the vast majority of time (over 90%) is
consumed to find the rules which can be activated [2–4]. The inference process
can be divided into three stages: matching, choosing and execution. At first, the
premisses of each and every rule are analysed to match it to the current set
of facts. Then the subset of the conflict set is chosen consisting of those rules,
which are actually activated. At the end, previously selected rules are analysed

8 A.Nowak-Brzezińska, R.Simiński

and the set of facts is updated. The matching phase usually takes the biggest
amount of processing time during the inference. To reduce the time necessary to
realise the matching phase, the authors propose to partition the rules into groups
that match the facts set with minimal covering threshold. It is not necessary to
build a full partition and to create the selection from all the rules which are
relevant to set of facts with some minimal covering factor. Having the structure
with rules’ partition, the forward inference works as follows: in each iteration
the representatives of each group are browsed and only a group with the highest
similarity to the given set of facts is chosen for further analysis. This particular
group is the browsed. Each rule belonging to this group is analysed and when
the rules’ premisses are fully covered by the set of facts, rule is activated. The
conclusion of the activated rule is added to the set of facts.

The pseudocode of such inference process is following:

Require: R, F ;
Ensure: F ;
procedure forwardInference(R, F)
var R;
begin
createFactsMatchingSelection(R, F , R);
while R 6= ∅ do
applyRules(R, F);
excludeRules(R, R);
createFactsMatchingSelection(R, F , R);

end while
end procedure

The algorithm uses temporary variable R, which is the set of rules that is the
result of the previous selection. The procedure responsible for finding the most
relevant group to the given set of facts (F) and thus - the rules to activate is
createFactsMatchingSelection. It is responsible for creating the selection of rules
that match the given condition defined by mc. The membership function mc
checks whether the sim(ri, Rj) is greater or equal to T . Using the createFacts-
MatchingSelection procedure reduces the time necessary to find relevant rules
significantly. The original time complexity O(n) is reduced to the O(k) where
k << n, k denotes the number of created groups. If the result of the selection
is not empty (R 6= ∅) the procedure applyRules is commenced. It adds the new
facts which are the conclusions of all rules activated from the set R to the set
of facts. The excludeRules function temporarily removes activated rules from
further searching. Afterwords, the createFactsMatchingSelection procedure is
called again. The whole presented process is repeated in while loop until the
selection becomes empty.

It should now be clear that the most often used method of running the mc
function is to calculate the similarity value between a given set of facts and a
rule from the previously selected set R.

Among the advantages of the proposed modification of the classical forward
inference process are: reducing the time necessary to search within the whole

New inference algorithms based on rules’ partition 9

knowledge base in order to find rules to activate and achieving additional in-
formation about fraction of rules that match the input knowledge (the set of
facts).

3.2 Backward inference

In this section we present the backward inference algorithm, which use the con-
ception of the decision partitions PR, created by the selection algorithm Alg01.
The proposed modification utilises the following concepts: (i) the reduction of
the search space by choosing only rules from particular rule group, according to
a current structure of decision oriented rules partition and (ii) the estimation of
the usefulness for each recursive call for sub-goals, only promising recursive calls
of classical backward algorithm will be made.

Modified algorithm for backward inference will use the following input data:
PR — the decision partition, F — the set of facts, g — the goal of the inference.
The output data of the algorithm: F — the set of facts, including possible new
facts obtained through inference, the function’s result as boolean value, true if
the goal g is in the set of facts: g ∈ F , false otherwise.

Alg04: Modified backward inference algorithm
function backwardInference(PR, g, var F) : boolean
begin

if g ∈ F do return true else
A← ∅, truePremise ← false, select R ∈ PR where g ∈ Concl(R)
while ¬truePremise ∧ {R−A} 6= ∅ do

select r ∈ {R−A} according to the current selection strategy
forall w ∈ cond(r) do

truePremise ← (w ∈ F)
if ¬truePremise ∧ w ∈ InC(R) then

truePremise ← backwardInference(PR, w, F)
elseif ¬truePremise then

truePremise ← environmentConfirmsFact(w)
elseif ¬truePremise then

break
endif

endfor
if ¬truePremise then A = A ∪ {r} endif

endwhile
endif
if truePremise then F = F ∪ {g} endif
return truePremise

end function

The proposed modification of backward inference algorithm utilises the in-
formation from decision partitions of rules to reduce the number of unnecessary

10 A.Nowak-Brzezińska, R.Simiński

recursive calls and the number of rules searched for in each run of the infer-
ence. Only promising groups of rules are selected for further processing (select
R ∈ PR where g ∈ Concl(R)), where Concl(R) is the set of conclusions for
the group of rule R, containing literals appearing in the conclusion parts of the
rules r from R. Only the selected subset of the whole rules of (R − A) is pro-
cessed in each iteration. Finally, only the promising recursive calls are made
(w ∈ InC(R)). InC(R) denotes connected inputs of the rules group, defined in
the following way: InC(R) = {(a, v) ∈ Cond(R) : ∃r∈R (a, v) = concl(r)}, where
Cond(R) is the set of conditions for the group of rule R, containing literals ap-
pearing in the conditional parts of the rules r from R. In each iteration the set
R contains only proper rules matching to the currently considered goal, it com-
pletely eliminates the necessity of searching for rules with conclusion matching
to the inference goal, it is not necessary to search within the whole set of rules
R — this information is simply stored in the decision-units and does not have
to be generated.

3.3 An example of knowledge base and inference processes

To illustrate the conception of partitioning and exploring the knowledge base,
let us consider an example of knowledge base R which consists of following rules.

r1 : (a, 1) ∧ (b, 1)→ (c, 1) r2 : (a, 1) ∧ (b, 2)→ (c, 2) r3 : (a, 1) ∧ (b, 3)→ (c, 1)
r4 : (b, 3) ∧ (d, 3)→ (e, 1) r5 : (b, 3) ∧ (d, 2)→ (e, 1) r6 : (b, 3)→ (e, 2)
r7 : (d, 4)→ (f, 1) r8 : (d, 4) ∧ (g, 1)→ (f, 1) r9 : (a, 1)→ (d, 4)

According to the knowledge base presented below and the set of facts F =
{(a, 1)}, in case of goal driven inference algorithm, for confirmation of the main
goal of the inference described by literal (f, 1), it is necessary to find rules match-
ing to the goal. Next — if such rules exist — we have to select the rule to be
activated. In our simple example we select a group R1 with rules r7 and r8 from
which we are choosing r7 as the rule with higher similarity value. Now we have
to confirm the truth of the premise (d, 4). Because it doesn’t appear in the facts
set, it becomes a new sub-goal of inference and inference algorithm runs recur-
sively. The classic version of the algorithm does not known whether the call is
promising — i.e. it is unknown if there is a rule that proves the new goal of
inference. For goal (d, 4) we use recursive call for (a, 1). It is a fact and when it
is confirmed the other subgoal will also be confirmed (d, 4) as well as the main
hypothesis (f, 1).

According to the rules’ partition based on finding similar rules and the set
of facts {(g, 1), (d, 4)} the process of data driven inference algorithm goes as
follows. Assuming that chosen partition strategy returns the following structure
of knowledge base:

R1 = {r7, r8} R2 = {r1, r3} R3 = {r4, r5} R4 = {r2} R5 = {r6} R6 = {r9}

New inference algorithms based on rules’ partition 11

we check the similarity2 between the set of facts F and the representative of
each group:

sim(F, Profile(R1)) =
2
3 , sim(F, Profile(R2)) = 0, sim(F, Profile(R3)) = 0,

sim(F, Profile(R4)) = 0, sim(F, Profile(R5)) = 0, sim(F, Profile(R6)) = 0.

Next we choose the most similar group to the set of facts (which is R1) and
we check the similarity between every rule in this particular group:

sim(r7, F) =
1

3
, sim(r8, F) =

2

3
.

We activate rules with all known premisses (in our case it is only one rule r8).
Then we include new fact to F : F = F ∪{(f, 1)}. The new fact is the conclusion
of activated rule r8. Of course we block rule r8 to make sure that it will not
be analyzed later because it would only increase the time of inference process
without gaining additional knowledge. We also block the whole group if all its’
rules are already blocked. The result of the inference process is eventually given
as a set of facts F = {(g, 1), (d, 4), (f, 1)}. If the rules partition is the result
of using the partition strategy based on clustering algorithm, it is necessary to
search the groups of rules using similarity measure based on searching using
profiles of groups. We may use any algorithms for rules clustering but the most
efficient one is, in authors’ opinion, the AHC or mAHC algorithm presented
in [8, 9]. Therefore, it is quite easy to find a group which would be suitable for
inference process. The time complexity of this operation is O(log n) where n is
the number of elements grouped during the clustering.

4 Summary

We have introduced the approach, which assumes that the rule knowledge base
is decomposed into the groups of rules, called rules partitions. In our opinion
each knowledge base contains enough information, which allows to improve the
efficiency of the classic inference algorithms. We introduce partitions of rules as
the source of such information. Modification of the classical inference algorithms
is based on information extracted from the rules of groups generated by the
proposed, two partitioning strategy.

The proposed modification of forward algorithm consists of the reduction
the time necessary to realise the matching phase of inference by choosing only
the rules from particular rule group, which match the facts set with minimal
covering threshold. The proposed modification of backward algorithm consists of
the reduction of the search space by choosing only the rules from particular rule
group, according to a current structure of decision oriented rules partition and
the estimation of the usefulness for each recursive call for sub-goals. Therefore,

2 the value for a pair F and Profile(R1) is equal to
2
3
because there are two common

literals ((g, 1), (d, 4)) both in the set of facts and the representative of a group R1 =
{(g, 1), (d, 4), (f, 1)}.

12 A.Nowak-Brzezińska, R.Simiński

only necessary rules are searched and only promising recursive call of the classical
backward algorithm will made.

The concept of rules partitions is the new proposition, based on the previous
research concerning on rules clusters [9] and decision units [12]. Proposition of
the modified inference algorithm is the continuation of the previous research on
optimisation of the inference in the knowledge based systems [8] .

Acknowledgements

This work is a part of the project ,,Exploration of rule knowledge bases” founded
by the Polish National Science Centre (NCN: 2011/03/D/ST6/03027).

References

1. R. Akerkar and P. Sajja: Knowledge-Based Systems, Jones & Bartlett Learning,
(2010)

2. D. Batory: The LEAPS Algorithms, http://reports-archive.adm.cs.cmu.edu/
anon/1995/CMU-CS-95-113.pdf, (1995)

3. C. L. Forgy: On the efficient implementation of production systems, Carnegie-
Mellon University, (1979)

4. C. L. Forgy: Rete: A Fast Algorithm for the Many Pattern. Many Object Pattern
Match Problem, Artificial Intelligence, (1981)

5. J. P. Ignizio: An introduction to Expert Systems, McGraw-Hill, (1991)
6. D. P. Miranker: TREAT: A better match algorithm for AI Production Systems,

Department of Computer Sciences, University of Texas at Austin,(1987)
7. D. Heckerman, An Empirical Comparison of Three Inference Methods, CoRR,

2013, http://arxiv.org/abs/1304.2357, http://dblp.uni-trier.de.
8. Nowak-Brzezińska, T. Jach, A., R. Simiński, T. Xieski: Towards a practical ap-

proach to discover internal dependencies in rule-based knowledge bases, Lecture
Notes in Computer Science, LNCS 6954, Springer, 232-237, (2011)

9. A. Nowak-Brzezińska, A. Wakulicz-Deja: The way of rules representation in com-
posited knowledge bases, Advanced In Intelligent and Soft Computing, Man - Ma-
chine Interactions, Springer-Verlag, 175-182, (2009)

10. A. Nowak-Brzezińska, R. Simiński: Knowledge mining approach for optimization
of inference processes in rule knowledge bases, Lecture Notes in Computer Science,
vol. 7567, Springer Berlin Heidelberg, (534-537), (2012)

11. W. Pedrycz: Knowledge-Based Clustering: From Data to Information Granules,
Willey, (2005)

12. R. Siminski: Extraction of Rules Dependencies for Optimization of Backward Infer-
ence Algorithm, Beyond Databases, Architectures, and Structures, vol. 424, Com-
munications in Computer and Information Science, Springer International Pub-
lishing, 191-200, (2014)

13. A. Skowron, J. Komorowski, Z. Pawlak, L. Polkowski: Handbook of Data Mining
and Knowledge Discovery, Oxford University Press, Inc., (2002)

14. A. Skowron, Z. Suraj: Rough Sets and Intelligent Systems - Professor Zdzislaw
Pawlak in Memoriam, Intelligent Systems Reference Library, Vol. 42, Springer
Verlag, (2013)

