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Abstract 
A neural net system called "Conposi t " is 
described. Conposit performs rule-based 
manipulation of very short term, complex 
symbolic data structures. This paper concen­
trates on a simulated version of Conposit 
that embodies core aspects of Johnson-
Laird's mental model theory of syllogistic 
reasoning. This Conposit version is not 
intended to be a psychological theory, but 
rather to act as a test and demonstration of 
the power and flexibility of Conposit's 
unusual connectionist techniques for encod­
ing the structure of data. 

1 Introduction 

The challenge presented to conncctionism and neural 
networks studies by high-level cognitive processing — 
which includes commonsense reasoning, planning, and 
some aspects of natural language understanding — is 
gaining increasing recognition. The main technical 
difficulties are discussed in Barnden (1984), Fodor & 
Pylyshyn (1988) and elsewhere in the connectionist 
literature, and include the well-known variable-binding 
problem and the problem of accounting for complex, 
temporary, novel structures of short-term information. 
Conposit is a neural net system that is aimed at high-
level cognitive processing and is able to manipulate 
neural-net implementations of traditional, complex, 
symbolic data structures by means of production rules 
implemented as neural subnetworks [Barnden 1988a,b, 
and elsewhere]. Conposit, in its current simulated ver­
sions, is therefore an exercise in "implementational con-
nectionism". See Bamden [1988b] for a discussion of 
the value this type of connectionist research. Currently 
simulated versions of Conposit are concerned only with 
short-term processing: they have no adaptive learning 
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capability, and long-term memory consists entirely of the 
fixed set of production rules. 

In this paper 1 describe Conposit-3, a version of 
Conposit that engages in commonscnse syllogistic rea­
soning, by embodying some core aspects of the 
Johnson-Laird's "mental model" theory [Johnson-Laird 
& Bara 1984]. This theory requires complex symbolic 
structures to be manipulated in a variety of ways. The 
production of a connectionist/ncural-net psychological 
theory is not, however, an immediate goal of Conposit 
research. The purpose of applying Conposit to an exist­
ing psychological theory was to provide a more objective 
test of the flexibility and generality of Conposit's 
symbol-processing techniques, which were originally 
developed for other symbol processing tasks. The 
mental-model implementation has been straightforward 
and natural, and has required no ad hoc representational 
or processing techniques. The implementation also sug­
gests that Conposit could, in the future, be a route by 
which to map complex psychological symbol-processing 
theories down to the neural network level. Conposit is, 
in fact, intended as a highly tentative, partial and ideal­
ized model of how biological neural networks in human 
cortex could effect symbolic information processing, but 
this biological aspect is beyond the scope of this paper. 

Section 2 summarizes Johnson-Laird's approach. 
Sections 3 and 4 outline Conposit-3\s embodiment of it, 
at an abstract level of description in which Conposit-3 is 
viewed as a machine manipulating the symbolic contents 
of registers. Section 5 sketches the neural-net imple­
mentation of this register machine. Section 6 concludes. 
It is impossible in a paper of this length to describe a 
system of the complexity of Conposit in detail. Further 
information can be found in Barnden (1988b) and 
Srinivas & Barnden (1989). 

2 Syllogisms and Mental Models 

Consider the syllogism 

Some athletes are beekeepers. 
A l l beekeepers are chemists. 
Therefore, some athletes are chemists. 
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Johnson-Laird maintains that we make such a syllogistic 
inference by constructing one or more *'mental models*' 
conforming to the premises, and then try to read a con­
clusion off a mental model. A mental model is an 
abstract data structure made up of atomic tokens and 
identity links between tokens. For our example, there are 
arbitrarily selected number of tokens standing for ath­
letes, beekeepers, or chemists. An arbitrarily selected 
proper non-empty subset of the athlete tokens are related 
by identity links to some beekeeper tokens, and all bee-
keeper tokens are so linked to chemist tokens. Some 
tokens may be marked as being optional, a practice 
which cuts down the number of models that needs to be 
considered. The conclusion that some athletes are chem­
ists arises from noticing that some athlete tokens are 
linked by chains of identity links to chemist tokens. 
The mental model serves as a sort of internalized, highly 
abstract "example situation'' conforming to the premises 
of the English syllogism. Naturally, the "conclusion" 
read off from a mental model might merely be an artifact 
of the particular example it embodies, and therefore be 
invalid. In response to this, Johnson-Laird postulates 
that the system attempts to construct several different 
mental models conforming to the premises, in an attempt 
to falsify any particular putative conclusion. The 
attempted-falsification process wi l l fail in the present 
case, but would have succeeded if the above syllogism 
had contained "some beekeepers" rather than "a l l bee-
keepers". 

3 Mental Models in Conposit 

Conposit-3 straightforwardly represents the Johnson-
Laird mental models, and constructs them from symbolic 
data structures (fragments of semantic network) that 
encode syllogism premises. Conposit-3 does not yet 
address the following aspects of Johnson-Laird's 
approach: (i) the understanding or generation of natural 
language; (ii) a thorough attempted-falsification process 
— Conposit-3 is given the conclusion, and merely 
checks its validity with a single model randomly gen­
erated from the premises; or (ii i) negative premises and 
conclusions ( "no X are Y" and "some X are not Y " ) . 
The correction of the last two deficiencies is not difficult, 
however, and wi l l be described elsewhere. 

Conposit-3's representation of the above example 
syllogism is illustrated in Figure 1. What this shows is 
the starting state of an 8x8 region within a 32x32 array 
of registers called the configuration matrix (CM) of 
Conposit-3. The CM is Conposit-3's working memory 
holding the short-term data structures on which produc­
tion rules act. Each square in the figure illustrates a 
register. The values in registers may change rapidly as 
a result of symbol processing. A register's state consists 
abstractly of a symbol and a vector of binary highlight­
ing flag values (each is ON or OFF). The following 
shows what the various items in a square in the Figures 

A square not showing any symbol illustrates a register 
containing a special "nu l l " symbol. If a square does not 
show an ON value for a highlighting flag, then that flag 
is OFF in the register. When, say, the black highlighting 
flag is ON in a register, we say that the register is 
highlighted in black. 

A non-null symbol may have a specific representa­
tional function, such as denoting a particular object or 
class of objects in the world, or a particular type of rela-
tionship among things. For instance, the ATMS, BKRS 
and CHMS symbols in the Figure denote the classes of 
all conceivable athletes, beekeepers and chemists respec­
tively. The OLAP and SUBC symbols denote the 
classes of all conceivable class-overlap situations and 
subclass situations respectively. The SI, S2 and S3 sym­
bols will be discussed below. (None of the symbols 
mentioned is dedicated to syllogistic reasoning.) A regis­
ter containing a non-null symbol is thought of as 
currently denoting whatever that symbol denotes. For 
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instance, in the figure there are registers that — tem­
porarily — denote the athlete class and the class of con­
ceivable class-overlap situations. 

The group of squares at the bottom middle of Fig­
ure 1 illustrates a possible "subconfiguration" of register 
states that acts as a representation of the second premise 
of the syllogism, namely that all beekeepers are chem­
ists. Conposit-3 takes a white-highlighted register to 
denote a member of the class denoted by any adjacent 
black-highlighted register. Therefore the white-
highlighted register in the bottom middle 
subconfiguration denotes some class-inclusion situation. 
Further, if a register denotes a class-inclusion situation, 
then Conposit-3 takes any adjacent red-highlighted 
register (here, the one containing BKRS) to denote the 
included class, and any adjacent green-highlighted regis­
ter (here, the one containing CHMS) to denote the 
including class. 

The bottom left and right subconfigurations in Fig­
ure 1 are very similar to the middle one, and encode the 
syllogism's first premise and the conclusion respectively. 
The S I , S2 and S3 symbols are arbitrary, distinct, 
variable-like unassigned symbols. Unassigned symbols 
have no permanent denotation, but can be viewed as 
attaining temporary denotations by virtue of their appear­
ance within data structures in the CM. For example, 
since the register at the bottom left containing S1 denotes 
the athletcs-overlap-bcckcepcrs situation, the symbol SI 
is taken to denote this temporarily. Now, Conposit takes 
all registers containing the same non-null symbol to 
denote the same thing; so, by this symbol-sharing princi­
ple, the two registers in the upper half of the Figure 
containing SI also denote the athletes-ovcrlap-bcekeepers 
situation. The registers containing S2 and S3 arc analo­
gously interpreted. 

Note that the absolute positions of the symbols and 
highlighting states are irrelevant, as are the directions of 
the adjacency relationships. Moreover, a 
subconfiguration such as the ones mentioned can be split 
up into pieces by means of symbol sharing tBarnden 
1988b], so that the predecessor and successor role fillers 
could be specified at widely separated positions in the 
CM. 

The three subconfigurations in the upper half of 
Figure 1 specify the order in which the situations 
represented in the bottom half should be considered, 
corresponding to the order of the statements in the syllo­
gism. (The Johnson-Laird theory respects this order.) 
For instance, the upper middle subconfiguration states 
that the situation denoted by SI is to be considered 
before the situation denoted by S2. The interpretation of 
the upper three subconfigurations is analogous to that of 
the lower three: the symbol THEN denotes the class of 
possible processing-ordering situations, and, for such 
situations, red and green highlighting mark the predeces­
sor and successor respectively. (As a special case, the 

left-hand upper subconfiguration states that the SI situa­
tion is the first to be considered. The purpose of the 5 
sign wi l l be explained later.) 

In a way to be described below, production rules 
that fire in response to ordering and premise 
subconfigurations shown in Figure 1 create the subsiate 
shown in Figure 2, which illustrates a different region of 
the CM. Actually, the new data structures in that Figure 
could be spread around randomly over the C M , but they 
arc shown in a regimented arrangement for illustrative 
clarity. 

The XI to X6 are distinct unassigned symbols. Each 
Johnson-Laird token for a class of persons is imple­
mented as a pair of adjacent CM registers, one of which 
(the black one) temporarily represents a class of person, 
and the other of which (the white one, containing an Xi 
symbol) therefore represents a particular though 
indefinite member of the class. Each Xi symbol is 
thereby considered to denote a person for the time being. 
The function of Johnson-Laird's identity links is taken 
over by symbol-sharing, since symbol-sharing registers 
represent the same thing. In the Figure an 'S' indicates 
special highlighting signifying that the token is optional. 
(Optionality could also be indicated by a more elaborate 
data structure.) 

The construction of the mental model has two 
main phases. First, a production rule called 
"Rule_Some" detects the subconfiguration for the first 
premise (Figure 1, bottom left), and constructs, in ran­
dom positions in the C M , the athlete and beekeeper 
tokens in Figure 2. It creates randomly many athlete 

570 Cognitive Models 



tokens, six on average, then constructs beekeeper tokens 
using the same unassigned symbols as in a random sub­
set of the athlete tokens, and, finally, randomly con­
structs three extra beekeeper tokens on average. 
Secondly, another, similar, rule called "Ru le_A l l " 
detects the subconfiguration for the second premise and 
constructs some chemist tokens with the same unas­
signed symbols as in the beekeeper tokens, and then con­
structs some extra chemist tokens. 

To check the conclusion, Rule_Some comes into 
play again by detecting the conclusion subconfiguration 
(Figure 1, bottom right) and checking that there is at 
least one athlete token and chemist token sharing a sym­
bol. In cases where the conclusion of a syllogism is 
invalid, Conposit-3 sometimes does and sometimes does 
not construct a mental model consistent with the conclu­
sion, because of the randomness. It would be trivial to 
get Conposit-3 to repeat the whole process in an attempt 
to alight randomly on a falsifying model. 

Rule_Some, Rule_AH and the remaining rule, 
Notc_Ncxt (see below), work with any classes in syllo­
gisms, not just the athlete, beekeeper and chemist 
classes. There is no replication of rule circuitry for the 
different classes. 

4 Conposit-3's Production Rules 

A Conposit-3 rule consists of a condition part and an 
action part. At any time, only one action part can be 
executing, but the CM state detection implied by condi­
tion parts is done in parallel across all rules. Conflict 
resolution among simultaneously satisfied rules is based 
on a fixed total priority ordering, but this wi l l be relaxed 
in later Conposit versions. 

The condition part of a rule tests for the presence 
or absence of specific sorts of CM state configuration, by 
means of a highly parallel detection mechanism that wi l l 
be sketched in a moment. The action part manipulates 
CM data structures by changing the symbol and/or 
highlighting states of registers. The registers subjected 
to these changes are chosen "associatively" on the basis 
only of their current highlighting/symbol states, and the 
states of their immediate neighbors. An action part is an 
arbitrarily complex flowchart, possibly involving branch­
ing and looping, each node of which sends a command 
signal that causes a group of elementary changes at some 
CM registers. 

The following wi l l describe the subconfiguration-
detection and state-change mechanisms in the context 
mainly of "Note_Next" , the simplest of the three rules 
in Conposit-3. Its condition part detects the presence of 
a THEN subconfiguration (see top of Figure 1) whose 
predecessor register (the red one) has been marked by 
ONness of the " d o n e " highlighting flag (5). (In the ini­
tial state of the CM in simulation runs, the "done" 
highlighting is at the predecessor register of the " f i r s t " 

THEN subconfiguration.) The goal of Note_Ncxt is to 
place " n o w " highlighting at the successor register R 
(the green one) in the detected THEN subconfiguration, 
and to spread this now-highlighting also to all registers 
having the same symbol as R. In Figure 1, the effect of 
a Note_Next execution is to mark with " n o w " highlight­
ing the two registers both containing the SI symbol, or 
both containing the S2 symbol, or both containing the S3 
symbol. This serves to mark the class-overlap or sub­
class situation that should now be attended to; the now-
highlighting contributes to the firing of "Rulc_Somc" or 
"Ru le_AU" as appropriate. 

Note_Next's detection mechanism is as follows, at 
the register-machine level of description. The mechan­
ism relies on register arrays, called location matrices 
(LMs), that are isomorphic to the CM. A location matrix 
register has one of two stales, ON or OFF. An ON value 
at a register in a particular LM indicates the presence of 
a particular sort of subconfiguration based at the 
corresponding register in the CM. For the purpose of 
Note__Ncxt, the LMs are ones called LMr.THEN, 
LM ..member THEN and LM::done_pred. The first 
acquires an ON value at every position corresponding to 
a CM register containing the THEN symbol. The second 
LM acquires an ON value at every position correspond­
ing to a CM register that is white-highlighted and is 
adjacent to a black-highlighted register containing the 
THEN symbol. Recall that a white register of this sort 
denotes a member of the class of possible succession 
situations. The LM also acquires ON values at the posi­
tions where CM registers contain the same symbol as a 
white one of the sort just described. That is, ON values 
in this (and every other) LM are "spread by symbol-
sharing". The third L M , LM::done_pred, acquires an 
ON value at the positions of "done-predecessor" CM 
registers: CM registers that arc done-highlighted and are 
acting as the predecessor register of a THEN 
subconfiguration. In fact, therefore, LMr.done_pred 
acquires an ON value at every position that is adjacent to 
the position of an ON register in LM:.member_'/'//EN 
and that corresponds to a CM register that is both done-
highlighted and red-highlighted. Also, ONness is spread 
by symbol-sharing in this LM as in any other. 

The starting node of the action-part flowchart of 
Note_Next is stimulated into action if there is an ON 
value anywhere in LM::done_pred. The action pari is a 
linear flowchart with four nodes. The starling node 
sends a command signal to LMr.donejyred, telling every 
register in it that is ON to send a signal to its 
corresponding CM register. The CM registers receiving 
such a signal turn their "detected" highlighting flags 
ON. Thus, the effect is to mark every "done predeces-
sor" register in the CM with "detected" highlighting. 
Once this effect is complete, the second flowchart node 
is activated, and sends a command signal to the CM, tel­
ling every white register that has a neighbor highlighted 
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in both red and * detected'' to turn its "moving" 
highlighting flag ON. The signal also tells the CM to 
add "moving" highlighting to every register having the 
same symbol as one that is already "moving"-
highlighted. (This is "spreading by symbol-sharing" of 
changes within the CM.) Then, the third flowchart node 
is activated, and sends a command signal to the CM tel­
ling every green register that has a moving-highlighted 
neighbor to turn its "now" flag ON. Again, the signal 
also causes spreading of the now-highlighting by symbol 
sharing. Finally, the fourth flowchart node sends a com­
mand signal to the CM telling every register to turn OFF 
its "done" and "moving" highlighting flags. 

A full description of Rule_Some or Rulc_AU 
would be too long to be included here, but they work 
analogously to Note_Ncxt on the basis of LMs and com­
mand signals very like those used in Note_Next. How­
ever, their action parts are more complex, involving 
branching and looping, both of which arc controlled by 
detection of ON values in certain LMs or specific 
highlighting states in the CM. Rule_Some detects the 
presence of a now-highlighted OLAP (i.e. overlap) 
situation in the CM. If mental model tokens of both 
classes involved already exist, as will be the case if 
Rule_Some is operating on the bottom right OLAP situa­
tion in Figure 1, then the rule merely checks for the 
existence of a token of one the classes that shares a sym­
bol with a token of the other class. In more detail, the 
rule marks all the while registers in athlete and chemist 
tokens (as in Figure 2) with special highlighting flags 
"membcr_of_classl" and "member_of_class2" respec­
tively. Part of this marking process is to spread such 
highlighting by symbol-sharing. All that is left to do is 
to detect the presence of some register marked with both 
"mcmbcr_of_classl" and "mcmbcr__of_class2". We 
have here a traditional marker passing process, but work­
ing over highly temporary data structures. When tokens 
of both classes do not already exist, Rule_Some creates 
randomly many tokens of one or both classes, as 
appropriate, establishing sharing of some symbols Xi 
between some tokens of one class an some tokens of the 
other. Rule_All is very similar to Rule_Some. 

A rule operates on the CM in a fashion that is 
highly, but not completely, SIMD-like, register-local, 
and parallel. Each command signal sent to the CM or to 
an LM is identically distributed to all the registers in the 
matrix. As we have seen, different registers react dif­
ferently, according to their own current states and (in 
the CM case) those of their immediate neighbors. Often, 
a command signal sent to the CM requires the CM to 
confine its initial reaction to just one, arbitrarily selected, 
register. Arbitrary selection is used, for instance, in 
register recruitment during data structure building. How­
ever, even when arbitrary selection is in operation, the 
command signal can require every register that has the 
same symbol as one that is already chosen as reactive to 

react also. This is "spreading by symbol-sharing". 
Alternatively, the reaction required from reacting regis­
ters can include the broadcasting of their (assumed ident­
ical) symbols to all registers in the CM; the next com­
mand signal can then predicate reaction on whether 
registers' symbols equal the one broadcast at the previ­
ous step. Apart from the sequencing implicit in spread­
ing by symbol-sharing, reacting registers work in paral­
lel. 

5 Neural-Net Implementation of Con posit 

This section briefly sketches a simple neural net imple­
mentation of the Conposit register machine. As stated 
earlier, each CM register is implemented as a neural sub­
network. Part of this carries the symbol and highlight­
ing slates of the register, which are just temporary activa­
tion patterns. For each highlighting flag there is a small 
cyclic subnetwork that can maintain one of two states of 
recurrent activity. A symbol can be thought of a a bit 
vector, each bit being carried by a similar cyclic subnet­
work. 

The rest of the circuitry in the register is concerned 
with the register's reaction to command signals. Each 
CM register subnetwork is connected to the subnetworks 
for immediately neighboring registers, in order to service 
the sensitivity to neighboring-register state required by 
many command signals. Each register subnetwork is 
also connected to the so-called parallel distributor (PD) 
for the CM. The PD is what directly receives command 
signals from rule action part flowchart nodes, and one of 
its main functions is to distribute each signal identically 
to all the CM registers. Command signals are conveyed 
on cables of connections, each connection in a cable con­
veying a binary or ternary value. Connections in a cable 
serve purposes such as providing new values for symbol 
bits or highlighting flags, specifying ON/OFF/don't-carc 
highlighting-flag values for the purpose of selection of 
reacting registers, and specifying whether the command 
signal requires arbitrary selection, spreading by symbol 
sharing, or symbol broadcasting. 

A second important function of the PD is to per­
form the arbitrary selection, when required, among regis­
ters satisfying the symbol/highlighting conditions 
specified in a command signal. (A succession of 
arbitrary-selection steps is also used to serialize the sym­
bol broadcastings needed in the spreading-by-symbol-
sharing option.) Arbitrary-selection is performed by a 
temporal winner-take-all contention-resolution mechan­
ism in the PD [Srinivas & Barnden 1989]. This mechan­
ism receives "ready" signals on special connections 
from all registers among which selection is to take place. 
The mechanism has the effect of detecting the first such 
signal to arrive and telling the register that sent it that it 
has been chosen. However, if the first ready signal is 
followed within a certain time window by another ready 
signal, all the sending registers are told to try again. The 
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mechanism relies on small random differences in the 
times taken by CM registers to decide to send a ready 
signal, and on differences between the travel times of 
signals on different connections. Thus, Conposit at the 
implemenlational level brings in relative timing of sig­
nals in an important way, and is therefore different from 
most other connectionist systems. 

LM registers are implemented similarly to CM 
registers, and each LM also has a PD very like the CM's. 
LMs are connected together, and to the CM, in a simple 
way to reflect the functional dependencies described ear­
lier. Each LM register receives input connections only 
from the corresponding and neighboring registers in the 
CM and/or other LMs. Simple AND/OR logic, imple­
mented in neural units acting as logic gates, is then all 
that is required for introducing ON values into LMs. 

Rule flowcharts map easily onto neural networks, 
each node being realized as a small subnetwork. Each 
node receives enablement connections from its predeces­
sor flowchart nodes, and/or connections conveying infor­
mation about the presence of highlighting values values 
(anywhere) in the CM and/or ON values (anywhere) in 
some LMs. Each non-starting node also receives an 
enablement connection from the CM's PD, so that a 
node only becomes activated when the previously 
activated node's work has been completed. 

6 Conclusion 

Conposit-3 is a connectionist/neural-network system with 
the ability to manipulate complex symbolic data struc­
tures, based on those proposed in an existing, sophisti­
cated psychological theory. Also, Conposit could easily 
effect straightforward deduction of a syllogism conclu­
sion from the premises, without going through mental 
models. Conposit versions reported elsewhere extend the 
demonstration of its powers. Its ability to do constrained 
variable binding is shown by a version that embodies the 
rule: if A loves B, B loves C, and C is not A, then A is 
jealous of C [Barnden 1988b]. Also, a type of variable-
binding is implicit in Conposit-3, in that the rules do not 
involve different pieces of circuitry to cope with different 
combinations of classes in syllogisms. 

Although the symbolic manipulations in running 
Conposit simulations have been simple from the point of 
view of traditional A I , they are readily extensible to 
much more complex cases. Further, very few other fully 
connectionist systems can even come near to what Con-
posit does, the systems of Shastri & Ajjanagadde (1989) 
and Touretzky & Hinton (1988) being two important 
exceptions. Conposit's data structuring flexibility comes 
from its use of registers, and from its relative-position 
encoding (RPE) and pattern-similarity association (PSA) 
techniques. In Conposit, PSA takes the form of 
symbol-sharing: the use of several occurrences of the 
same symbol in different registers to achieve a linking 

power similar to that of linking by associative addressing 
in computers. RPE appeals to the idea that one can put 
things into association with each other rapidly and flexi­
bly by putting them next to each other (cf. the 
sequential-allocation method used for data structuring in 
computers.) The relatively computer-like appearance of 
Conposit makes it unusual as a connectionist/ncural-nct 
system. However, RPE and PSA have loose but reason­
ably clear connections to techniques used in other con­
nectionist systems [Barnden 1988a,b], and there arc 
many aspects of future Conposit versions that ally it to 
more traditional connectionist/neural systems [Barndcn 
1988b]. 
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