
Neural-Net Implementation of Complex Symbol-Processing
in a Mental Model Approach to Syllogistic Reasoning

John A. Barnden*

Computing Research Laboratory
New Mexico State University

Las Cruces, NM 88003

Abstract
A neural net system called "Conposi t " is
described. Conposit performs rule-based
manipulation of very short term, complex
symbolic data structures. This paper concen­
trates on a simulated version of Conposit
that embodies core aspects of Johnson-
Laird's mental model theory of syllogistic
reasoning. This Conposit version is not
intended to be a psychological theory, but
rather to act as a test and demonstration of
the power and flexibility of Conposit's
unusual connectionist techniques for encod­
ing the structure of data.

1 Introduction

The challenge presented to conncctionism and neural
networks studies by high-level cognitive processing —
which includes commonsense reasoning, planning, and
some aspects of natural language understanding — is
gaining increasing recognition. The main technical
difficulties are discussed in Barnden (1984), Fodor &
Pylyshyn (1988) and elsewhere in the connectionist
literature, and include the well-known variable-binding
problem and the problem of accounting for complex,
temporary, novel structures of short-term information.
Conposit is a neural net system that is aimed at high-
level cognitive processing and is able to manipulate
neural-net implementations of traditional, complex,
symbolic data structures by means of production rules
implemented as neural subnetworks [Barnden 1988a,b,
and elsewhere]. Conposit, in its current simulated ver­
sions, is therefore an exercise in "implementational con-
nectionism". See Bamden [1988b] for a discussion of
the value this type of connectionist research. Currently
simulated versions of Conposit are concerned only with
short-term processing: they have no adaptive learning

* This research is being supported in part by USAF grant
AFOSR-88-0215, by supercomputer facilities through NASA's
MPP Working Group, and by grant NAGW-1592 under the In-
novative Research Program of the NASA Office of Space Science
and Applications.

capability, and long-term memory consists entirely of the
fixed set of production rules.

In this paper 1 describe Conposit-3, a version of
Conposit that engages in commonscnse syllogistic rea­
soning, by embodying some core aspects of the
Johnson-Laird's "mental model" theory [Johnson-Laird
& Bara 1984]. This theory requires complex symbolic
structures to be manipulated in a variety of ways. The
production of a connectionist/ncural-net psychological
theory is not, however, an immediate goal of Conposit
research. The purpose of applying Conposit to an exist­
ing psychological theory was to provide a more objective
test of the flexibility and generality of Conposit's
symbol-processing techniques, which were originally
developed for other symbol processing tasks. The
mental-model implementation has been straightforward
and natural, and has required no ad hoc representational
or processing techniques. The implementation also sug­
gests that Conposit could, in the future, be a route by
which to map complex psychological symbol-processing
theories down to the neural network level. Conposit is,
in fact, intended as a highly tentative, partial and ideal­
ized model of how biological neural networks in human
cortex could effect symbolic information processing, but
this biological aspect is beyond the scope of this paper.

Section 2 summarizes Johnson-Laird's approach.
Sections 3 and 4 outline Conposit-3\s embodiment of it,
at an abstract level of description in which Conposit-3 is
viewed as a machine manipulating the symbolic contents
of registers. Section 5 sketches the neural-net imple­
mentation of this register machine. Section 6 concludes.
It is impossible in a paper of this length to describe a
system of the complexity of Conposit in detail. Further
information can be found in Barnden (1988b) and
Srinivas & Barnden (1989).

2 Syllogisms and Mental Models

Consider the syllogism

Some athletes are beekeepers.
A l l beekeepers are chemists.
Therefore, some athletes are chemists.

568 Cognitive Models

Johnson-Laird maintains that we make such a syllogistic
inference by constructing one or more *'mental models*'
conforming to the premises, and then try to read a con­
clusion off a mental model. A mental model is an
abstract data structure made up of atomic tokens and
identity links between tokens. For our example, there are
arbitrarily selected number of tokens standing for ath­
letes, beekeepers, or chemists. An arbitrarily selected
proper non-empty subset of the athlete tokens are related
by identity links to some beekeeper tokens, and all bee-
keeper tokens are so linked to chemist tokens. Some
tokens may be marked as being optional, a practice
which cuts down the number of models that needs to be
considered. The conclusion that some athletes are chem­
ists arises from noticing that some athlete tokens are
linked by chains of identity links to chemist tokens.
The mental model serves as a sort of internalized, highly
abstract "example situation'' conforming to the premises
of the English syllogism. Naturally, the "conclusion"
read off from a mental model might merely be an artifact
of the particular example it embodies, and therefore be
invalid. In response to this, Johnson-Laird postulates
that the system attempts to construct several different
mental models conforming to the premises, in an attempt
to falsify any particular putative conclusion. The
attempted-falsification process wi l l fail in the present
case, but would have succeeded if the above syllogism
had contained "some beekeepers" rather than "a l l bee-
keepers".

3 Mental Models in Conposit

Conposit-3 straightforwardly represents the Johnson-
Laird mental models, and constructs them from symbolic
data structures (fragments of semantic network) that
encode syllogism premises. Conposit-3 does not yet
address the following aspects of Johnson-Laird's
approach: (i) the understanding or generation of natural
language; (ii) a thorough attempted-falsification process
— Conposit-3 is given the conclusion, and merely
checks its validity with a single model randomly gen­
erated from the premises; or (ii i) negative premises and
conclusions ("no X are Y" and "some X are not Y ") .
The correction of the last two deficiencies is not difficult,
however, and wi l l be described elsewhere.

Conposit-3's representation of the above example
syllogism is illustrated in Figure 1. What this shows is
the starting state of an 8x8 region within a 32x32 array
of registers called the configuration matrix (CM) of
Conposit-3. The CM is Conposit-3's working memory
holding the short-term data structures on which produc­
tion rules act. Each square in the figure illustrates a
register. The values in registers may change rapidly as
a result of symbol processing. A register's state consists
abstractly of a symbol and a vector of binary highlight­
ing flag values (each is ON or OFF). The following
shows what the various items in a square in the Figures

A square not showing any symbol illustrates a register
containing a special "nu l l " symbol. If a square does not
show an ON value for a highlighting flag, then that flag
is OFF in the register. When, say, the black highlighting
flag is ON in a register, we say that the register is
highlighted in black.

A non-null symbol may have a specific representa­
tional function, such as denoting a particular object or
class of objects in the world, or a particular type of rela-
tionship among things. For instance, the ATMS, BKRS
and CHMS symbols in the Figure denote the classes of
all conceivable athletes, beekeepers and chemists respec­
tively. The OLAP and SUBC symbols denote the
classes of all conceivable class-overlap situations and
subclass situations respectively. The SI, S2 and S3 sym­
bols will be discussed below. (None of the symbols
mentioned is dedicated to syllogistic reasoning.) A regis­
ter containing a non-null symbol is thought of as
currently denoting whatever that symbol denotes. For

Barnden 569

instance, in the figure there are registers that — tem­
porarily — denote the athlete class and the class of con­
ceivable class-overlap situations.

The group of squares at the bottom middle of Fig­
ure 1 illustrates a possible "subconfiguration" of register
states that acts as a representation of the second premise
of the syllogism, namely that all beekeepers are chem­
ists. Conposit-3 takes a white-highlighted register to
denote a member of the class denoted by any adjacent
black-highlighted register. Therefore the white-
highlighted register in the bottom middle
subconfiguration denotes some class-inclusion situation.
Further, if a register denotes a class-inclusion situation,
then Conposit-3 takes any adjacent red-highlighted
register (here, the one containing BKRS) to denote the
included class, and any adjacent green-highlighted regis­
ter (here, the one containing CHMS) to denote the
including class.

The bottom left and right subconfigurations in Fig­
ure 1 are very similar to the middle one, and encode the
syllogism's first premise and the conclusion respectively.
The S I , S2 and S3 symbols are arbitrary, distinct,
variable-like unassigned symbols. Unassigned symbols
have no permanent denotation, but can be viewed as
attaining temporary denotations by virtue of their appear­
ance within data structures in the CM. For example,
since the register at the bottom left containing S1 denotes
the athletcs-overlap-bcckcepcrs situation, the symbol SI
is taken to denote this temporarily. Now, Conposit takes
all registers containing the same non-null symbol to
denote the same thing; so, by this symbol-sharing princi­
ple, the two registers in the upper half of the Figure
containing SI also denote the athletes-ovcrlap-bcekeepers
situation. The registers containing S2 and S3 arc analo­
gously interpreted.

Note that the absolute positions of the symbols and
highlighting states are irrelevant, as are the directions of
the adjacency relationships. Moreover, a
subconfiguration such as the ones mentioned can be split
up into pieces by means of symbol sharing tBarnden
1988b], so that the predecessor and successor role fillers
could be specified at widely separated positions in the
CM.

The three subconfigurations in the upper half of
Figure 1 specify the order in which the situations
represented in the bottom half should be considered,
corresponding to the order of the statements in the syllo­
gism. (The Johnson-Laird theory respects this order.)
For instance, the upper middle subconfiguration states
that the situation denoted by SI is to be considered
before the situation denoted by S2. The interpretation of
the upper three subconfigurations is analogous to that of
the lower three: the symbol THEN denotes the class of
possible processing-ordering situations, and, for such
situations, red and green highlighting mark the predeces­
sor and successor respectively. (As a special case, the

left-hand upper subconfiguration states that the SI situa­
tion is the first to be considered. The purpose of the 5
sign wi l l be explained later.)

In a way to be described below, production rules
that fire in response to ordering and premise
subconfigurations shown in Figure 1 create the subsiate
shown in Figure 2, which illustrates a different region of
the CM. Actually, the new data structures in that Figure
could be spread around randomly over the C M , but they
arc shown in a regimented arrangement for illustrative
clarity.

The XI to X6 are distinct unassigned symbols. Each
Johnson-Laird token for a class of persons is imple­
mented as a pair of adjacent CM registers, one of which
(the black one) temporarily represents a class of person,
and the other of which (the white one, containing an Xi
symbol) therefore represents a particular though
indefinite member of the class. Each Xi symbol is
thereby considered to denote a person for the time being.
The function of Johnson-Laird's identity links is taken
over by symbol-sharing, since symbol-sharing registers
represent the same thing. In the Figure an 'S' indicates
special highlighting signifying that the token is optional.
(Optionality could also be indicated by a more elaborate
data structure.)

The construction of the mental model has two
main phases. First, a production rule called
"Rule_Some" detects the subconfiguration for the first
premise (Figure 1, bottom left), and constructs, in ran­
dom positions in the C M , the athlete and beekeeper
tokens in Figure 2. It creates randomly many athlete

570 Cognitive Models

tokens, six on average, then constructs beekeeper tokens
using the same unassigned symbols as in a random sub­
set of the athlete tokens, and, finally, randomly con­
structs three extra beekeeper tokens on average.
Secondly, another, similar, rule called "Ru le_A l l "
detects the subconfiguration for the second premise and
constructs some chemist tokens with the same unas­
signed symbols as in the beekeeper tokens, and then con­
structs some extra chemist tokens.

To check the conclusion, Rule_Some comes into
play again by detecting the conclusion subconfiguration
(Figure 1, bottom right) and checking that there is at
least one athlete token and chemist token sharing a sym­
bol. In cases where the conclusion of a syllogism is
invalid, Conposit-3 sometimes does and sometimes does
not construct a mental model consistent with the conclu­
sion, because of the randomness. It would be trivial to
get Conposit-3 to repeat the whole process in an attempt
to alight randomly on a falsifying model.

Rule_Some, Rule_AH and the remaining rule,
Notc_Ncxt (see below), work with any classes in syllo­
gisms, not just the athlete, beekeeper and chemist
classes. There is no replication of rule circuitry for the
different classes.

4 Conposit-3's Production Rules

A Conposit-3 rule consists of a condition part and an
action part. At any time, only one action part can be
executing, but the CM state detection implied by condi­
tion parts is done in parallel across all rules. Conflict
resolution among simultaneously satisfied rules is based
on a fixed total priority ordering, but this wi l l be relaxed
in later Conposit versions.

The condition part of a rule tests for the presence
or absence of specific sorts of CM state configuration, by
means of a highly parallel detection mechanism that wi l l
be sketched in a moment. The action part manipulates
CM data structures by changing the symbol and/or
highlighting states of registers. The registers subjected
to these changes are chosen "associatively" on the basis
only of their current highlighting/symbol states, and the
states of their immediate neighbors. An action part is an
arbitrarily complex flowchart, possibly involving branch­
ing and looping, each node of which sends a command
signal that causes a group of elementary changes at some
CM registers.

The following wi l l describe the subconfiguration-
detection and state-change mechanisms in the context
mainly of "Note_Next" , the simplest of the three rules
in Conposit-3. Its condition part detects the presence of
a THEN subconfiguration (see top of Figure 1) whose
predecessor register (the red one) has been marked by
ONness of the " d o n e " highlighting flag (5). (In the ini­
tial state of the CM in simulation runs, the "done"
highlighting is at the predecessor register of the " f i r s t "

THEN subconfiguration.) The goal of Note_Ncxt is to
place " n o w " highlighting at the successor register R
(the green one) in the detected THEN subconfiguration,
and to spread this now-highlighting also to all registers
having the same symbol as R. In Figure 1, the effect of
a Note_Next execution is to mark with " n o w " highlight­
ing the two registers both containing the SI symbol, or
both containing the S2 symbol, or both containing the S3
symbol. This serves to mark the class-overlap or sub­
class situation that should now be attended to; the now-
highlighting contributes to the firing of "Rulc_Somc" or
"Ru le_AU" as appropriate.

Note_Next's detection mechanism is as follows, at
the register-machine level of description. The mechan­
ism relies on register arrays, called location matrices
(LMs), that are isomorphic to the CM. A location matrix
register has one of two stales, ON or OFF. An ON value
at a register in a particular LM indicates the presence of
a particular sort of subconfiguration based at the
corresponding register in the CM. For the purpose of
Note__Ncxt, the LMs are ones called LMr.THEN,
LM ..member THEN and LM::done_pred. The first
acquires an ON value at every position corresponding to
a CM register containing the THEN symbol. The second
LM acquires an ON value at every position correspond­
ing to a CM register that is white-highlighted and is
adjacent to a black-highlighted register containing the
THEN symbol. Recall that a white register of this sort
denotes a member of the class of possible succession
situations. The LM also acquires ON values at the posi­
tions where CM registers contain the same symbol as a
white one of the sort just described. That is, ON values
in this (and every other) LM are "spread by symbol-
sharing". The third L M , LM::done_pred, acquires an
ON value at the positions of "done-predecessor" CM
registers: CM registers that arc done-highlighted and are
acting as the predecessor register of a THEN
subconfiguration. In fact, therefore, LMr.done_pred
acquires an ON value at every position that is adjacent to
the position of an ON register in LM:.member_'/'//EN
and that corresponds to a CM register that is both done-
highlighted and red-highlighted. Also, ONness is spread
by symbol-sharing in this LM as in any other.

The starting node of the action-part flowchart of
Note_Next is stimulated into action if there is an ON
value anywhere in LM::done_pred. The action pari is a
linear flowchart with four nodes. The starling node
sends a command signal to LMr.donejyred, telling every
register in it that is ON to send a signal to its
corresponding CM register. The CM registers receiving
such a signal turn their "detected" highlighting flags
ON. Thus, the effect is to mark every "done predeces-
sor" register in the CM with "detected" highlighting.
Once this effect is complete, the second flowchart node
is activated, and sends a command signal to the CM, tel­
ling every white register that has a neighbor highlighted

Bamden 571

in both red and * detected'' to turn its "moving"
highlighting flag ON. The signal also tells the CM to
add "moving" highlighting to every register having the
same symbol as one that is already "moving"-
highlighted. (This is "spreading by symbol-sharing" of
changes within the CM.) Then, the third flowchart node
is activated, and sends a command signal to the CM tel­
ling every green register that has a moving-highlighted
neighbor to turn its "now" flag ON. Again, the signal
also causes spreading of the now-highlighting by symbol
sharing. Finally, the fourth flowchart node sends a com­
mand signal to the CM telling every register to turn OFF
its "done" and "moving" highlighting flags.

A full description of Rule_Some or Rulc_AU
would be too long to be included here, but they work
analogously to Note_Ncxt on the basis of LMs and com­
mand signals very like those used in Note_Next. How­
ever, their action parts are more complex, involving
branching and looping, both of which arc controlled by
detection of ON values in certain LMs or specific
highlighting states in the CM. Rule_Some detects the
presence of a now-highlighted OLAP (i.e. overlap)
situation in the CM. If mental model tokens of both
classes involved already exist, as will be the case if
Rule_Some is operating on the bottom right OLAP situa­
tion in Figure 1, then the rule merely checks for the
existence of a token of one the classes that shares a sym­
bol with a token of the other class. In more detail, the
rule marks all the while registers in athlete and chemist
tokens (as in Figure 2) with special highlighting flags
"membcr_of_classl" and "member_of_class2" respec­
tively. Part of this marking process is to spread such
highlighting by symbol-sharing. All that is left to do is
to detect the presence of some register marked with both
"mcmbcr_of_classl" and "mcmbcr__of_class2". We
have here a traditional marker passing process, but work­
ing over highly temporary data structures. When tokens
of both classes do not already exist, Rule_Some creates
randomly many tokens of one or both classes, as
appropriate, establishing sharing of some symbols Xi
between some tokens of one class an some tokens of the
other. Rule_All is very similar to Rule_Some.

A rule operates on the CM in a fashion that is
highly, but not completely, SIMD-like, register-local,
and parallel. Each command signal sent to the CM or to
an LM is identically distributed to all the registers in the
matrix. As we have seen, different registers react dif­
ferently, according to their own current states and (in
the CM case) those of their immediate neighbors. Often,
a command signal sent to the CM requires the CM to
confine its initial reaction to just one, arbitrarily selected,
register. Arbitrary selection is used, for instance, in
register recruitment during data structure building. How­
ever, even when arbitrary selection is in operation, the
command signal can require every register that has the
same symbol as one that is already chosen as reactive to

react also. This is "spreading by symbol-sharing".
Alternatively, the reaction required from reacting regis­
ters can include the broadcasting of their (assumed ident­
ical) symbols to all registers in the CM; the next com­
mand signal can then predicate reaction on whether
registers' symbols equal the one broadcast at the previ­
ous step. Apart from the sequencing implicit in spread­
ing by symbol-sharing, reacting registers work in paral­
lel.

5 Neural-Net Implementation of Con posit

This section briefly sketches a simple neural net imple­
mentation of the Conposit register machine. As stated
earlier, each CM register is implemented as a neural sub­
network. Part of this carries the symbol and highlight­
ing slates of the register, which are just temporary activa­
tion patterns. For each highlighting flag there is a small
cyclic subnetwork that can maintain one of two states of
recurrent activity. A symbol can be thought of a a bit
vector, each bit being carried by a similar cyclic subnet­
work.

The rest of the circuitry in the register is concerned
with the register's reaction to command signals. Each
CM register subnetwork is connected to the subnetworks
for immediately neighboring registers, in order to service
the sensitivity to neighboring-register state required by
many command signals. Each register subnetwork is
also connected to the so-called parallel distributor (PD)
for the CM. The PD is what directly receives command
signals from rule action part flowchart nodes, and one of
its main functions is to distribute each signal identically
to all the CM registers. Command signals are conveyed
on cables of connections, each connection in a cable con­
veying a binary or ternary value. Connections in a cable
serve purposes such as providing new values for symbol
bits or highlighting flags, specifying ON/OFF/don't-carc
highlighting-flag values for the purpose of selection of
reacting registers, and specifying whether the command
signal requires arbitrary selection, spreading by symbol
sharing, or symbol broadcasting.

A second important function of the PD is to per­
form the arbitrary selection, when required, among regis­
ters satisfying the symbol/highlighting conditions
specified in a command signal. (A succession of
arbitrary-selection steps is also used to serialize the sym­
bol broadcastings needed in the spreading-by-symbol-
sharing option.) Arbitrary-selection is performed by a
temporal winner-take-all contention-resolution mechan­
ism in the PD [Srinivas & Barnden 1989]. This mechan­
ism receives "ready" signals on special connections
from all registers among which selection is to take place.
The mechanism has the effect of detecting the first such
signal to arrive and telling the register that sent it that it
has been chosen. However, if the first ready signal is
followed within a certain time window by another ready
signal, all the sending registers are told to try again. The

5 72 Cognitive Models

mechanism relies on small random differences in the
times taken by CM registers to decide to send a ready
signal, and on differences between the travel times of
signals on different connections. Thus, Conposit at the
implemenlational level brings in relative timing of sig­
nals in an important way, and is therefore different from
most other connectionist systems.

LM registers are implemented similarly to CM
registers, and each LM also has a PD very like the CM's.
LMs are connected together, and to the CM, in a simple
way to reflect the functional dependencies described ear­
lier. Each LM register receives input connections only
from the corresponding and neighboring registers in the
CM and/or other LMs. Simple AND/OR logic, imple­
mented in neural units acting as logic gates, is then all
that is required for introducing ON values into LMs.

Rule flowcharts map easily onto neural networks,
each node being realized as a small subnetwork. Each
node receives enablement connections from its predeces­
sor flowchart nodes, and/or connections conveying infor­
mation about the presence of highlighting values values
(anywhere) in the CM and/or ON values (anywhere) in
some LMs. Each non-starting node also receives an
enablement connection from the CM's PD, so that a
node only becomes activated when the previously
activated node's work has been completed.

6 Conclusion

Conposit-3 is a connectionist/neural-network system with
the ability to manipulate complex symbolic data struc­
tures, based on those proposed in an existing, sophisti­
cated psychological theory. Also, Conposit could easily
effect straightforward deduction of a syllogism conclu­
sion from the premises, without going through mental
models. Conposit versions reported elsewhere extend the
demonstration of its powers. Its ability to do constrained
variable binding is shown by a version that embodies the
rule: if A loves B, B loves C, and C is not A, then A is
jealous of C [Barnden 1988b]. Also, a type of variable-
binding is implicit in Conposit-3, in that the rules do not
involve different pieces of circuitry to cope with different
combinations of classes in syllogisms.

Although the symbolic manipulations in running
Conposit simulations have been simple from the point of
view of traditional A I , they are readily extensible to
much more complex cases. Further, very few other fully
connectionist systems can even come near to what Con-
posit does, the systems of Shastri & Ajjanagadde (1989)
and Touretzky & Hinton (1988) being two important
exceptions. Conposit's data structuring flexibility comes
from its use of registers, and from its relative-position
encoding (RPE) and pattern-similarity association (PSA)
techniques. In Conposit, PSA takes the form of
symbol-sharing: the use of several occurrences of the
same symbol in different registers to achieve a linking

power similar to that of linking by associative addressing
in computers. RPE appeals to the idea that one can put
things into association with each other rapidly and flexi­
bly by putting them next to each other (cf. the
sequential-allocation method used for data structuring in
computers.) The relatively computer-like appearance of
Conposit makes it unusual as a connectionist/ncural-nct
system. However, RPE and PSA have loose but reason­
ably clear connections to techniques used in other con­
nectionist systems [Barnden 1988a,b], and there arc
many aspects of future Conposit versions that ally it to
more traditional connectionist/neural systems [Barndcn
1988b].

Acknowledgments
I thank K. Srinivas for help with simulation work.

References

Barnden, J.A. (1984). On short-term information pro­
cessing in connectionist theories. Cognition and
Brain Theory, 7 (1), pp.25-59.

Barnden, J.A. (1988a). The right of free association:
relative-position encoding for connectionist data
structures. Procs. 10th Annual Conf of the Cogni­
tive Science Soc. Hillsdale, N.J.: Lawrence Erl-
baum.

Barnden, J.A. (1988b). Conposit, a neural net system for
high-level symbolic processing: the register-
machine level. Memoranda in Computer and Cog­
nitive Science, MCCS-88-145, Computing
Research Laboratory, New Mexico State Univer­
sity. Modified version to appear in J.A. Barndcn
& J.B. Pollack (Eds), Advances in Connectionist
and Neural Computation Theory, Vol. 1, Norwood,
N.J.: Ablex.

Fodor, J.A. & Pylyshyn, Z.W. (1988). Conncclionism
and cognitive architecture: a critical analysis. In S.
Pinker & J. Mehler (Eds.), Connections and sym­
bols, Cambridge, Mass.: M IT Press.

Johnson-Laird, P.N. & Bara, B.G. (1984). Syllogistic
inference. Cognition, 76 (1), pp. 1-61.

Shastri, L. & Ajjanagadde, V. (1989). A connectionist
system for rule-based reasoning with multi-place
predicates and variables. Report MS-CIS-8905,
Computer and Information Science Dept, Univer­
sity of Pennsylvania.

Srinivas, K. & Barnden, J.A. (1989). Temporal-winncr-
take-all networks for arbitrary selection in connec­
tionist and neural networks. Manuscript for poster
at 1st Int. Joint Conf on Neural Networks, 1989.

Touretzky, D.S. & Hinton, G.E. (1988). A distributed
connectionist production system. Cognitive Sci­
ence, 12 (3), pp.423-466.

Barnden 573

