Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Mar 2023 (v1), last revised 3 Jun 2023 (this version, v2)]
Title:Neural Vector Fields: Implicit Representation by Explicit Learning
View PDFAbstract:Deep neural networks (DNNs) are widely applied for nowadays 3D surface reconstruction tasks and such methods can be further divided into two categories, which respectively warp templates explicitly by moving vertices or represent 3D surfaces implicitly as signed or unsigned distance functions. Taking advantage of both advanced explicit learning process and powerful representation ability of implicit functions, we propose a novel 3D representation method, Neural Vector Fields (NVF). It not only adopts the explicit learning process to manipulate meshes directly, but also leverages the implicit representation of unsigned distance functions (UDFs) to break the barriers in resolution and topology. Specifically, our method first predicts the displacements from queries towards the surface and models the shapes as \textit{Vector Fields}. Rather than relying on network differentiation to obtain direction fields as most existing UDF-based methods, the produced vector fields encode the distance and direction fields both and mitigate the ambiguity at "ridge" points, such that the calculation of direction fields is straightforward and differentiation-free. The differentiation-free characteristic enables us to further learn a shape codebook via Vector Quantization, which encodes the cross-object priors, accelerates the training procedure, and boosts model generalization on cross-category reconstruction. The extensive experiments on surface reconstruction benchmarks indicate that our method outperforms those state-of-the-art methods in different evaluation scenarios including watertight vs non-watertight shapes, category-specific vs category-agnostic reconstruction, category-unseen reconstruction, and cross-domain reconstruction. Our code is released at this https URL.
Submission history
From: Xianghui Yang [view email][v1] Wed, 8 Mar 2023 02:36:09 UTC (35,402 KB)
[v2] Sat, 3 Jun 2023 07:54:13 UTC (35,828 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.