
NED: An Inter-Graph Node Metric Based On Edit Distance

Haohan Zhu∗
Facebook Inc.

zhuhaohan@fb.com

Xianrui Meng∗
Apple Inc.

xmeng@apple.com

George Kollios
Boston University

gkollios@cs.bu.edu

ABSTRACT
Node similarity is fundamental in graph analytics. However,
node similarity between nodes in different graphs (inter-
graph nodes) has not received enough attention yet. The
inter-graph node similarity is important in learning a new
graph based on the knowledge extracted from an existing
graph (transfer learning on graphs) and has applications
in biological, communication, and social networks. In this
paper, we propose a novel distance function for measuring
inter-graph node similarity with edit distance, called NED.
In NED, two nodes are compared according to their local
neighborhood topologies which are represented as unordered
k-adjacent trees, without relying on any extra information.
Due to the hardness of computing tree edit distance on un-
ordered trees which is NP-Complete, we propose a modified
tree edit distance, called TED*, for comparing unordered
and unlabeled k-adjacent trees. TED* is a metric distance,
as the original tree edit distance, but more importantly,
TED* is polynomially computable. As a metric distance,
NED admits efficient indexing, provides interpretable re-
sults, and shows to perform better than existing approaches
on a number of data analysis tasks, including graph de-
anonymization. Finally, the efficiency and effectiveness of
NED are empirically demonstrated using real-world graphs.

1. INTRODUCTION
Node similarity is an essential building block for many

graph analysis applications and is frequently used to develop
more complex graph data mining algorithms. Applications
requiring node similarity include node classification, similar
node retrieval, and topological pattern matching.

In particular, node similarity measures between nodes in
different graphs (inter-graph nodes) can have many impor-
tant applications including transfer learning across networks
and graph de-anonymization [7]. An example comes from
biological networks. It has been recognized that the topo-
logical structure of a node (neighborhood) in a biological

∗Work done while at Boston University.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 6
Copyright 2017 VLDB Endowment 2150-8097/17/02.

network (e.g., a PPI network) is related to the functional
and biological properties of the node [6]. Furthermore, with
the increasing production of new biological data and net-
works, there is an increasing need to find nodes in these
new networks that have similar topological structures (via
similarity search) with nodes in already analyzed and ex-
plored networks [5]. Notice that, additional information on
the nodes can be used to enhance the distance function that
we compute using the network structure.

Another application comes from communication networks.
Consider a set of IP communication graphs from different
days or different networks that have been collected and only
one of these networks has been analyzed [7]. For example,
nodes in one network may have been classified into different
roles based on their positions in the graph. The question
is how to use this information to classify nodes from the
other networks without building new classifiers (i.e., across-
network classification) [7].

Finally, another important application of inter-graph node
similarity is to use it for de-anonymization. As an exam-
ple, given an anonymous social network and certain non-
anonymized information in the same domain, we could com-
pare pairwise nodes to re-identify nodes in the anonymous
social network by using the structural information from the
non-anonymized corresponding graphs [7, 22].

In recent years, many node similarity measures have been
proposed but most of them work only for nodes in the same
graph (intra-graph). Examples include SimRank [8], Sim-
Rank variants [30, 2, 10], random walks with restart [27],
influence-based methods [13], set matching methods [29, 11,
12] and so on. Unfortunately these methods cannot be used
to measure the similarity between inter-graph nodes.

The existing methods that can be used for inter-graph
node similarity [1, 3, 7, 4] have their own issues. OddBall
[1] and NetSimile [3] only consider the features in the ego-net
(instant neighbors) which limits the neighborhood informa-
tion. On the other hand, although ReFeX [7] and HITS-
based similarity [4] consider larger neighborhood, they are
not metrics and the absolute distance values between differ-
ent pairs of nodes are not comparable. Furthermore, their
distance values are not easy to interpret.

The objective of this paper is to develop a distance func-
tion for comparing two nodes in different graphs, where the
distance function is both metric and efficient to compute.
The first technical challenge is how to select the “signa-
tures” to represent nodes based only on the neighborhood
topological structures and at the same time include as much
information as possible. The second challenge is how to

697

Figure 1: K-Adjacent Tree

compare the “signatures” efficiently and precisely in order
to express the similarity between two nodes. The third chal-
lenge is how to guarantee that important properties for the
distance function such as “metric” and “interpretable” can
be satisfied.

In this paper, we propose a novel distance function for
measuring inter-graph node similarity with edit distance,
called NED. In our measure, two inter-graph nodes are
compared according to their neighborhood topological struc-
tures which are represented as unordered and unlabeled k-
adjacent trees. In particular, the NED between a pair of
inter-graph nodes is equal to a modified tree edit distance
between the pair of corresponding unordered and unlabeled
k-adjacent trees. The modified tree edit distance is called
TED* which is also proposed in this paper. We introduce
TED* because the problem of computing the original tree
edit distance on unordered trees is NP-Complete. TED*
is not only polynomially computable, but it also preserves
all metric properties as the original tree edit distance does.
TED* is empirically demonstrated to be efficient and ef-
fective in comparing trees. Since TED* is a metric edit
distance, NED can admit efficient indexing and provides re-
sults that are interpretable. According to our case study
in the experiments, NED performs very well on graph de-
anonymization applications.

Overall, in this paper we make the following contributions:
• We propose a polynomially computable and metric dis-

tance function, NED, to measure the similarity be-
tween inter-graph nodes.
• We propose a modified tree edit distance, TED*, to

compare unordered trees, where TED* is both metric
and polynomially computable.
• We show that TED* can be a good approximation to

the original tree edit distance for unordered trees.
• We show that NED can admit efficient indexing for

similarity retrieval on nodes due to the metricity.
• We use the graph de-anonymization application as a

case study to show that NED performs very well in
efficiency and precision for inter-graph node similarity.

2. NEIGHBORHOOD TOPOLOGIES

2.1 Unordered K-Adjacent Tree
We first introduce the unlabeled unordered k-adjacent tree

that we use to represent the neighborhood topological struc-
ture of each node. The k-adjacent tree was firstly proposed
by Wang et al. [28] and for completeness, we include the
definition here:

Definition 1. The adjacent tree T (v) of a vertex v in
graph G(V,E) is the breadth-first search tree starting from
vertex v. The k-adjacent tree T (v, k) of a vertex v in graph
G(V,E) is the top k-level subtree of T (v).

The difference between the k-adjacent tree in [28] and in
this paper is that we do not sort the children of each node
based on their labels. Thus, the k-adjacent tree in this paper
is an unordered and unlabeled tree structure.

An example of a k-adjacent tree is illustrated in Figure
1. For a given node in a graph, its k-adjacent tree can
be retrieved deterministically by using breadth first search.
In this paper we use this tree to represent the topological
neighborhood of a node that reflects its “signature” in the
graph. In this paper, we consider undirected graphs for sim-
plicity. However, the k-adjacent tree can also be extracted
from directed graphs. E.g., one node can have one inbound
k-adjacent tree and one outbound k-adjacent tree. Simi-
larly, our distance metric between inter-graph nodes can be
applied to directed graphs as well by considering both in-
bound and outbound trees.

2.2 Isomorphism Complexity
In this section, we discuss why the neighborhood tree is

chosen to represent the node “signature” rather than the
neighborhood subgraph.

In general, the identity property for measuring inter-graph
node similarity should be defined as follows:

Definition 2. For two nodes u and v, u ≡ v if and only
if δ(u, v) = 0.

The above definition indicates that two nodes are equiv-
alent if and only if the distance between two nodes is 0.
When comparing two nodes only based on their neighbor-
hood topological structures, the isomorphism between the
“signatures” of two nodes is the most precise way to mea-
sure the node equivalency. Therefore, the identity property
can be written as in Definition 3.

Definition 3. For two nodes u and v, S(u) ' S(v) if
and only if δ(u, v) = 0.

In Definition 3, S(u) and S(v) are the “signatures” of
nodes u and v respectively and S(u) ' S(v) denotes that the
two “signatures” are isomorphic. Hence, the computability
of the metric distance functions for comparing inter-graph
nodes cannot be easier than the computability of the “sig-
nature” isomorphism.

In our NED, we choose the neighborhood k-adjacent trees
as the “signatures” of nodes. Then the rooted tree isomor-
phism is used to represent the node equivalency. Thus, it
is possible to construct a polynomially computable distance
function which satisfies the metric properties.

However, if the k-hop neighborhood subgraphs are the
“signatures” of nodes, the restricted graph isomorphism (in
Lemma 1) will be used to represent the node equivalency. It
guarantees that to satisfy the identity in Definition 2 and 3,
the problem of computing node similarity with k-hop neigh-
borhood subgraphs is as hard as graph isomorphism, which
belongs to class NP, but not known to belong to class P.
Due to space limitation, we leave the proof in [34].

Lemma 1. Given two nodes u ∈ Gu, v ∈ Gv and a value
k, Gs(u, k) and Gs(v, k) are k-hop neighborhood subgraphs
of u and v. Gs(u, k) and Gs(v, k) are restricted isomorphic
if Gs(u, k) ' Gs(v, k) and v = f(u), where f is the bijec-
tive node mapping for the isomorphism. Then if there exists
a distance function δ(u, v) which satisfies Definition 3, the
computation of distance function δ is at least as hard as the
graph isomorphism computation.

698

Figure 2: TED* vs Tree Edit Distance

For example, the graph edit distance is a metric between
two graphs which can be a distance function to compare
inter-graph nodes based on k-hop neighborhood subgraphs.
However, as mentioned in Lemma 1, the graph edit distance
is not polynomial-time computable. Actually, the compu-
tation of graph edit distance is known to be NP-Hard [31].
There are several approximated algorithms for computing
graph edit distance [18, 21, 31]. However, although the ap-
proximations make the computation efficient the bounds are
very loose and make the resulting distance not viable.

Notice that Jin et al. [10] proposed a set of axiomatic role
similarity properties for intra-graph node measures. The
major difference between axiomatic properties and metric
properties is that in the set of axiomatic role similarity prop-
erties, the identity is only verified in one direction. Namely,
if two nodes are automorphic, the distance is 0. Whereas, if
the distance is 0, two nodes may not be automorphic. The
reason of one way direction verification is because the node
automorphism is chosen to represent the node equivalency
and the graph automorphism problem is also not known if
it belongs to class P.

Therefore, in this paper, we choose the tree structure to
represent the neighborhood topology of a node. Actually,
any spanning tree can be a representation of a node. We
adopt the k-adjacent tree because it can be deterministically
extracted and we show in Section 7.1, the k-adjacent tree can
capture the neighborhood topological information very well.

3. NODE SIMILARITY

3.1 TED*
As explained in Section 2.2, the neighborhood tree is a

suitable “signature” for comparing inter-graph nodes using
only topological information. Before introducing node sim-
ilarity, we should define how to compare the neighborhood
trees efficiently and also preserve the metric properties.

The tree edit distance [26] is a well-defined and popular
metric for tree structures. For a given pair of trees, the
tree edit distance is the minimal number of edit operations
which convert one tree into the other. The edit operations
in the original tree edit distance include: 1) Insert a node;
2) Delete a node; and 3) Rename a node. For unlabeled
trees, there is no rename operation.

Although the ordered tree edit distance can be calculated
in O(n3) [19], the computation of unordered tree edit dis-

tance has been proved to belong to NP-Complete [33], and
it is even MaxSNP-Hard [32]. The neighborhood trees in
this paper are unordered and unlabeled k-adjacent trees.
Therefore, we propose a novel modified tree edit distance
called TED* which still satisfies the metric properties like
the original tree edit distance but it can be polynomially
computable.

The difference between the modified tree edit distance
TED* and the original tree edit distance TED is that we im-
pose an additional restriction: no edit operation can change
the depth of an existing tree node. The reason is that, we
view the depth of a neighbor node, which represents the
closeness between the neighbor node and the root node,
as an important property of this node in the neighborhood
topology. Therefore, two nodes with different depths should
not be matched to the same entity. Thus, we have a differ-
ent set of edit operations for TED* which is defined on this
new set of edit operations.

3.2 Edit Operations in TED*
In the original tree edit distance, when inserting a node

between an existing node n and its parent, it increases the
depth of node n as well as the depths of all the descendants
of node n. Similarly, when deleting a node which has de-
scendants, it decreases the depths of all the descendants.
Since in TED* we do not want to change the depth of any
node, we should not allow these operations. Instead, we
need another set of edit operations as follows:
• Insert a leaf node
• Delete a leaf node
• Move a node at the same level

To clarify, “Move a node at the same level” means chang-
ing an existing node’s parent to another. The new parent
node should be in the same level as the previous one. We
introduce this “move” edit operation because only operating
on leaf nodes will significantly increase the number of oper-
ations when comparing trees. The above 3 modified edit op-
erations do not change the depth of any existing node. Also
after any edit operation, the tree structure is preserved.

Figure 2 shows an example of the difference between TED
and our modified tree edit distance TED*. When converting
the tree TA to the tree Tα, the traditional tree edit distance
requires 3 edit operations: delete node B, delete node E
and insert node H. TED* requires 4 edit operations: delete
node F , delete node G, insert node H and move node E.

699

Here we define the TED* as follows:

Definition 4. Given two trees T1 and T2, a series of edit
operations E = {e1, ...en} is valid denoted as Ev, if T1 can
be converted into an isomorphic tree of T2 by applying the
edit operations in E. Then δT (T1, T2) = min |E|, ∀Ev.

where each edit operation ei belongs to the set of edit oper-
ations defined above. |E| is the number of edit operations
in E and δT is the TED* distance proposed in this paper.

In this paper, number of edit operations is considered in
TED* which means each edit operation in TED* has a unit
cost. However, TED* can also be extended to a weighted
version. Notice that, for the same pair of trees, distance
TED* may be smaller or larger than TED. In Section 6, we
analyze the differences among TED*, TED and the graph
edit distance GED in more details, where the TED* can
be used to provide an upper-bound for GED on trees and
weighted TED* can provide an upper-bound for TED.

3.3 NED
Here, we introduce NED, the inter-graph node similarity

with edit distance. Let u and v be two nodes from two
graphs Gu and Gv respectively. For a given parameter k,
two k-adjacent trees T (u, k) and T (v, k) of nodes u and v
can be extracted separately. Then, by applying the modified
tree edit distance TED* on the pair of two k-adjacent trees,
we can get the similarity between the pair of nodes.

Denote δk as the distance function NED between two
nodes with parameter k and denote δT as TED*. Then
we have, for a parameter k,

δk(u, v) = δT (T (u, k), T (v, k)) (1)

For completeness, we present the metric properties for
node similarity here. The NED δk(u, v) is a metric, if and
only if it satisfies all 4 metric properties: non-negativity,
symmetry, identity and triangular inequality. Namely, for
any node u, v and w, and parameter k, the following holds:

1) δk(u, v) ≥ 0
2) δk(u, v) = δk(v, u)
3) δk(u, v) = 0, iff T (u, k) ' T (v, k)
4) δk(u, v) ≤ δk(u,w) + δk(w, v)

where T (u, k) ' T (v, k) denotes the tree T (u, k) is isomor-
phic to the tree T (v, k) where the node u is mapped to the
node v. Notice that, the modified tree edit distance TED*
also satisfies all 4 metric properties which means like NED
is a metric for nodes, TED* is a metric for trees.

4. TED* COMPUTATION
Since NED between nodes is equal to TED* between trees,

the most important part of computing NED is to calculate
TED*. In this section, we introduce the algorithm to com-
pute TED* between a pair of k-adjacent trees. Before illus-
trating the algorithm, we introduce some definitions.

Definition 5. Let Li(u) be the i-th level of the k-adjacent
tree T (u, k), where Li(u) = {n|n ∈ T (u, k), d(n, u) = i} and
d(n, u) is the depth of node n in T (u, k).

In Definition 5, the i-th level Li(u) includes the nodes
with depths of i in the k-adjacent tree T (u, k). Similarly in
k-adjacent tree T (v, k), there exists the i-th level Li(v). The
algorithm compares two k-adjacent trees T (u, k) and T (v, k)

T (u, k) k-adjacent tree of node u
Li(u) ith-level of k-adjacent tree of node u
C(n) Canonization label of node n
x < y Node x is a child of node y
Pi Padding cost for the level i
Mi Matching cost for the level i

G2
i Complete bipartite graph in the level i

w(x, y) Edge weight in G2
i between x and y

m(G2
i) Minimal cost for G2

i matching

fi : fi(x) = y Node mapping function for G2
i matching

Table 1: Notation Summarization for TED* Algorithm

bottom-up and level by level. First, the algorithm com-
pares and matches the two bottom levels Lk(u) and Lk(v).
Then the next levels Lk−1(u) and Lk−1(v) are compared and
matched. So on and so forth until two roots.

When comparing and matching two levels, we use canon-
ization labels of nodes from the corresponding levels. The
canonization label is defined as follows:

Definition 6. Let C(n) be the canonization label of node
n, C(n) ∈ Z≥0. The canonization label C(n) is assigned
based on the subtree of node n. Two nodes u and v have the
same canonization labels C(u) = C(v), if and only if the two
subtrees of nodes u and v are isomorphic.

Canonization labels are different from the original node
labels and depend on the subtrees only. In the following
algorithm, x < y means x is an instant child of node y.

The notations used in the algorithm are listed in Table 1.

Algorithm 1: Algorithm for TED* Computation

Input: Tree T (u, k) and Tree T (v, k)
Output: δT (T (u, k), T (v, k))

1 for i← k to 1 do
2 Calculate padding cost: Pi =

∣∣|Li(u)| - |Li(v)|
∣∣;

3 if |Li(u)| < |Li(v)| then
4 Pad Pi nodes to Li(u);
5 else if |Li(u)| > |Li(v)| then
6 Pad Pi nodes to Li(v);

7 foreach n ∈ Li(u) ∪ Li(v) do
8 Get node canonization: C(n);

9 foreach (x, y), where x ∈ Li(u) & y ∈ Li(v) do
10 Get collection S(x) = (C(x′) | ∀x′ < x);
11 Get collection S(y) = (C(y′) | ∀y′ < y);
12 w(x, y) = |S(x) \ S(y)| + |S(y) \ S(x)|;
13 Construct bipartite graph G2

i with weights w(x, y);

14 Get cost m(G2
i) for minimal matching of G2

i ;

15 Calculate matching cost Mi = (m(G2
i) − Pi+1) / 2;

16 if |Li(u)| < |Li(v)| then
17 foreach x ∈ Li(u) do C(x) = C(fi(x));
18 else
19 foreach y ∈ Li(v) do C(y) = C(f−1

i (y));

20 Return δT (T (u, k), T (v, k)) =
∑k
i=1(Pi +Mi);

4.1 Algorithmic Overview
The overview of TED* computation is in Algorithm 1.

The inputs of the algorithm are two k-adjacent trees and
the output is TED* distance.

700

Figure 3: Node Canonization

In the algorithm, there are two types of costs: padding
and matching. Since the algorithm runs bottom-up level by
level, for each level i, there exists a local padding cost Pi
and a local matching cost Mi. The TED* distance is the
summation of padding and matching costs from all levels.

Actually, as explained in the following sections, there ex-
ists one-to-one mapping from padding and matching to edit
operations defined in Section 3.2. The padding cost repre-
sents the number of edit operations of 1) Inserting a leaf
node and 2) Deleting a leaf node, and the matching cost is
the number of edit operations of 3) Moving a node at the
same level.

To compute the padding and matching costs, we use 6
steps in each level: node padding (line 2-6 in Algorithm
1), node canonization (line 7-8), complete weighted bipar-
tite graph construction (line 9-13), weighted bipartite graph
matching (line 14), matching cost calculation (line 15) and
node re-canonization (line 16-19). Next, we describe those
6 steps in details.

4.2 Node Padding
The padding cost is the size difference between two corre-

sponding levels. Let Li(u) and Li(v) be the corresponding
levels. The difference between the number of nodes in Li(u)
and the number of nodes in Li(v) is the padding cost:

Pi =
∣∣|Li(u)| − |Li(v)|

∣∣ (2)

There is no edit operation that can change the number of
nodes except inserting a leaf node or deleting a leaf node.
More importantly, inserting a leaf node and deleting a leaf
node are symmetric. If transforming from level Li(u) to
Li(v) needs inserting several leaf nodes, on the other hand,
transforming from level Li(v) to Li(u) needs deleting several
leaf nodes. Without loss of generality, we use padding costs
to represent the number of inserting / deleting leaf nodes
for one way transformation.

4.3 Node Canonization
After node padding, we assign the canonization labels to

all the nodes in the corresponding levels Li(u) and Li(v).
Namely, ∀ n ∈ Li(u) ∪ Li(v), we assign the canonization
label C(n) to node n.

Based on Definition 6, two nodes x and y have the same
canonization labels C(x) = C(y), if and only if the two sub-
trees of nodes x and y are isomorphic. All the leaf nodes
(new inserted ones and existing ones) should have the same
canonization labels. However, there is no need to check the
full subtrees of two nodes to decide whether they should be
assigned the same canonization label or not. We can use the
children’s canonization labels to decide whether two nodes
have the same subtrees or not. Let S(x) be the collection of
the canonization labels of all the children of x, i.e.

Definition 7. S(x) = (C(x′1)...C(x′|x|)), where x′i < x
for 1 ≤ i ≤ |x| and |x| is the total number of node x’s
children.

The collection of the canonization labels may maintain
duplicate labels, since two children may have the same can-
onization labels. Also the canonization labels in a collection
can be lexicographically ordered. Therefore, we have the
following Lemma 2.

Lemma 2. C(x) = C(y) iff S(x) ≡ S(y).

Note that the equivalence ≡ denotes that two collections
S(x) and S(y) contain exactly the same elements.

Algorithm 2: Node Canonization

Input: Two levels Li(u) and Li(v)
Output: C(n), ∀ n ∈ Li(u) ∪ Li(v)

1 Queue q is lexicographically ordered;
2 foreach n ∈ Li(u) ∪ Li(v) do
3 Get collection S(n) = (C(n′) | ∀n′ < n);
4 q ← S(n)

5 Pop the first element in q as q0 = S(x);
6 C(x) = 0;
7 for i← 1 to |Li(u)|+ |Li(v)| − 1 do
8 if qi = S(y) ≡ qi−1 = S(x) then
9 C(y) = C(x)

10 else
11 C(y) = C(x) + 1

Algorithm 2 illustrates the linear process of node canon-
ization which utilizes the lexicographical orders on canon-
ization label collections. Figure 3 shows an example of node
canonization level by level.

The node canonization process guarantees that the nodes
with the same canonization label in the same level must
have isomorphic subtrees. The matching cost computation
can only rely on the instant children without checking all the
descendants. Such process makes levels independent and the
overall algorithm can be polynomially computable.

4.4 Bipartite Graph Construction
To calculate the matching cost, we need to construct a

complete weighted bipartite graph and compute the mini-
mum bipartite graph matching.

The weighted bipartite graph G2
i is a virtual graph. The

two node sets of the bipartite graph are the corresponding
levels from two k-adjacent trees: Li(u) and Li(v). The bi-
partite graph construction is after the node padding. There-
fore Li(u) and Li(v) must have the same number of nodes.
G2
i is a complete weighted bipartite graph which means

that for every node pair (x, y) where x ∈ Li(u) and y ∈ Li(v),
there exists a virtual weighted edge. The key component of
the bipartite graph construction is to assign the weights to
all virtual edges.

In the complete bipartite graph G2
i , the weight of each

edge is decided by the children’s canonization labels of two
nodes that the edge connects. For two nodes x and y, let the
children’s canonization label collections be S(x) and S(y).
We denote S(x) \ S(y) as the difference between collections
S(x) and S(y). The weight w(x, y) is the size of the sym-
metric difference between the collections S(x) and S(y), i.e.

701

Algorithm 3: Bipartite Graph Construction

Input: Two levels Li(u) and Li(v)
Output: Bipartite graph G2

i

1 foreach (x, y), where x ∈ Li(u) & y ∈ Li(v) do
2 Get collection S(x) = (C(x′) | ∀x′ < x);
3 if x is a padding node then S(x) = ∅;
4 Get collection S(y) = (C(y′) | ∀y′ < y);
5 if y is a padding node then S(y) = ∅;
6 w(x, y) = |S(x) \ S(y)| + |S(y) \ S(x)|;
7 (“ \ ” is collection difference)

8 G2
i ← w(x, y);

w(x, y) = |S(x)\S(y)| + |S(y)\S(x)|. Figure 4 gives an ex-
ample of constructing the complete weighted bipartite graph
and Algorithm 3 shows the process of constructing the bi-
partite graph in details.

Since TED* computation goes from the bottom level to
the root level, when constructing the bipartite graph G2

i by
using Li(u) and Li(v), the level Li+1(u) and level Li+1(v)
have already been matched which means the canonization
label collections in Li+1(u) must be the same as in Li+1(v).
Notice that, the padded nodes are not connected to any
parent node to avoid replicated cost.

The weight between a pair of nodes indicates the num-
ber of “moving a node at the same level” edit operations
needed. By calculating the minimum matching, we can get
the minimum number of moving edit operations accordingly.

4.5 Bipartite Graph Matching
The minimal bipartite graph matching is to find a bijective

mapping function fi for G2
i , where fi(x) = y, x ∈ Li(u) and

y ∈ Li(v). The bijective mapping function is to minimize
the summation of weights from all nodes in Li(u) to the
corresponding nodes in Li(v). Let m(G2

i) be the minimal
cost of the matching. Then, we have:

fi : m(G2
i) = Min

∑
∀x∈Li(u)

w(x, fi(x)) (3)

In this paper, we use the Hungarian algorithm to solve the
matching problem. In the bipartite graph matching process,
we get the bijective mapping function fi and the minimal
cost m(G2

i) which we will use in the next step: matching
cost calculation. Notice that, the minimal cost for bipartite
graph matching is not the matching cost in TED* algorithm.

4.6 Matching Cost Calculation
The matching cost Mi represents the minimal number of

“moving a node at the same level” edit operations needed to
convert level Li(u) to level Li(v). Therefore, the matching
cost Mi is calculated based on the bipartite graph matching
cost m(G2

i) in the same levels and the padding cost Pi+1

from the previous levels as shown in Lemma 3.

Lemma 3. Mi = (m(G2
i)− Pi+1)/2

Proof. There are two situations for calculating Mi: Pi+1

= 0 and Pi+1 6= 0
If there is no padding node in level Li+1(u) and level

Li+1(v), the canonization label collection in Li+1(u) must
be the same as collection in Li+1(v). Then for any z in the
canonization label collection, let C(nu) = z, where nu ∈

Figure 4: Complete Weighted Bipartite Graph

Li+1(u) and C(nv) = z, where nv ∈ Li+1(v). Assume nu
is the child of node x ∈ Li(u) and nv is the child of node
y ∈ Li(v). If fi(x) = y, where fi is the bijective mapping
function in the matching, then node nu and node nv will not
generate any disagreement cost in bipartite graph matching.
Otherwise, the pair of nodes nu and nv will cost 2 in the bi-
partite graph matching, since x is matching to some other
node other than y and y is also matching to some other
node. However, only one “moving a node at the same level”
edit operation is needed to correct the disagreement, for ex-
ample, move node nv from y to fi(x). Thus, the matching
cost should be equal to m(G2

i)/2.
If there exists padding nodes, then we can always pad

the nodes to the optimal parent which will not generate
any matching cost again. When constructing the complete
bipartite graph G2

i , one padding node in level Li+1(u) or
level Li+1(v) will generate 1 disagreement cost because the
padding node is not connected to any node in Li(v) or Li(u).
Therefore, the number of “moving a node at the same level”
operations should be (m(G2

i)− Pi+1)/2.

4.7 Node Re-Canonization
The last step for each level is node re-canonization. This

step ensures that for each level, only the children informa-
tion is needed to perform all 6 steps. Let fi be the bijective
matching mapping function from Li(u) to Li(v). Then, ∀
x ∈ Li(u), fi(x) = y ∈ Li(v). Symmetrically, ∀ y ∈ Li(v),
f−1
i (y) = x ∈ Li(u).
In node re-canonization, without loss of generality, we al-

ways re-canonize based on the level without padding nodes.
Therefore, the node re-canonization criteria is as follows:
• If |Li(u)| < |Li(v)|, ∀ x ∈ Li(u), C(x) ⇐ C(fi(x))
• If |Li(u)| ≤ |Li(v)|, ∀ y ∈ Li(v), C(y) ⇐ C(f−1

i (y))
After the node re-canonization, the canonization labels of

nodes in level Li(u) are the same as the canonization labels
of nodes in level Li(v). Then we can proceed to the next
pair of levels: Li−1(u) and Li−1(v).

5. PROOFS AND ANALYSIS

5.1 Correctness Proof

Lemma 4. Algorithm 1 correctly returns the TED* dis-
tance defined in Definition 4.

Before the proof, we rewrite the formula to calculate TED*
distance as follows:

δT =

k∑
i=1

(Pi +Mi) =

k∑
i=2

Pi/2 +

k−1∑
i=1

m(G2
i)/2 (4)

702

Proof. Let x and z be two trees. To prove δT (x, z) re-
turns minimal number of edit operations transforming from
tree x to tree z, we could prove that for any tree y, δT (x, z)
≤ δT (x, y) + δT (y, z). Because all edit operations preserve
tree structures.

In order to prove δT (x, z) ≤ δT (x, y) + δT (y, z), we can
prove that the following inequalities hold for each level i:

P xzi ≤ P xyi + P yzi (5)

m(G2
i)
xz ≤ m(G2

i)
xy +m(G2

i)
yz (6)

First of all, let Li(x) be the ith level of k-adjacent tree
extracted from node x. Similarly, Li(y) and Li(z) are the
levels for nodes y and z respectively. According to Algorithm
1, Pi =

∣∣|Li(x)| - |Li(z)|
∣∣. Then we have:

P xzi =
∣∣|Li(x)| − |Li(z)|

∣∣
=
∣∣(|Li(x)| − |Li(y)|)− (|Li(z)| − |Li(y)|)

∣∣
≤
∣∣|Li(x)| − |Li(y)|

∣∣+
∣∣|Li(z)| − |Li(y)|

∣∣
= P xyi + P yzi

Therefore, Inequality (5) holds.
Next, let f be the bijective mapping function from level

Li(x) to level Li(z) which satisfies the minimal bipartite
graph matching. Similarly, let g and h be the bijective map-
ping functions from level Li(x) to level Li(y) and from level
Li(y) to level Li(z). Then, for any node α ∈ Li(x), we have
f(α) ∈ Li(z). Also, for any node α ∈ Li(x), we have g(α)
∈ Li(y) and for any node β ∈ Li(y), we have h(β) ∈ Li(z).

According to Algorithm 1, we can rewrite the minimal
cost for bipartite graph matching m(G2

i)
xz, m(G2

i)
xy and

m(G2
i)
yz as follows:

m(G2
i)
xz =

∑
w(α, f(α))

m(G2
i)
xy =

∑
w(α, g(α))

m(G2
i)
yz =

∑
w(β, h(β))

(7)

In equations above, the weights in three bipartite graphs
satisfy the triangular inequality, because the weights are cal-
culated using w(x, y) = |S(x)\S(y)| + |S(y)\S(x)|. There-
fore, we have:

w(α, γ) ≤ w(α, β) + w(β, γ) (8)

Then we prove the inequality (6). Since f , g and h are all
bijective mapping functions, so we know for any node α ∈
Li(x), both f(α) ∈ Li(z) and h(g(α)) ∈ Li(z) hold. Then
according to Inequality (8), we have:

w(α, h(g(α))) ≤ w(α, g(α)) + w(g(α), h(g(α))) (9)

Because m(G2
i)
xz =

∑
w(α, f(α)) is the minimal bipartite

graph matching cost, so we have:

m(G2
i)
xz =

∑
w(α, f(α))

≤
∑

w(α, h(g(α)))

≤
∑

w(α, g(α)) +
∑

w(g(α), h(g(α)))

= m(G2
i)
xy +m(G2

i)
yz

Thus, the Inequality (6) is proved.

Because both Inequality (5) and Inequality (6) hold for
each level, we could prove that TED* returns minimal num-
ber of edit operations. Because there is no intermediate tree
structure can reduce the number of edit operations.

5.2 Metric Proof
The TED* is a metric, if and only if it satisfies all metric

properties: non-negativity, symmetry, identity and triangu-
lar inequality.

By definition, it is straightforward that the TED* sat-
isfies non-negativity, symmetry, and triangular inequality.
Because all edit operations have cost of 1, the distance has
to be non-negative. Because all the edit operations are in-
vertible, the distance is symmetric. Since we prove that
TED* returns minimal number of edit operations in Section
5.1, the TED* has to satisfy triangular inequality.

In the following part, we prove that TED* satisfies the
identity property as well:

Lemma 5. δT (T (x, k), T (y, k)) = 0, iff T (x, k) ' T (y, k)

Proof. If δT (T (x, k), T (y, k)) = 0, there is no edit op-
eration needed to convert T (x, k) to an isomorphic tree of
T (y, k). Then the two trees are isomorphic.

If two k-adjacent trees T (x, k) and T (y, k) are isomorphic,
there exists a bijective mapping function f from all nodes
in tree T (x, k) to the nodes in T (y, k). Then, in each level,
number of nodes from two trees should be the same. Then
the padding cost is 0 for each level. Also in each level,
the bijective mapping function f makes the bipartite graph
matching to return 0. Therefore the matching cost is 0.
Thus, for a pair of isomorphic trees, TED* must be 0.

5.3 Complexity Analysis
The TED* computation in Algorithm 1 is executed level

by level and includes 6 steps sequentially. We analyze the
time complexity of the algorithm level by level. Let m and
n be the number of nodes in the corresponding levels from
two trees. Without losing generality, assume m ≥ n.

The node padding can be executed in O(m − n) time
and the node canonization can be calculated in O((m +
n) log(m+n)) time in our Algorithm 2. The bipartite graph
construction needs O(mn) time to generate all weights for a
completed bipartite graph. The most time consuming part
is the bipartite graph matching. We use the improved Hun-
garian algorithm to solve the bipartite graph matching prob-
lem with time complexity O(m3) which is state-of-art. The
matching cost calculation can be executed in constant time
and node re-canonization is in O(m).

Clearly, the time complexity is dominant by the bipartite
graph matching part which cost O(m3). Notice that, m is
the number of nodes at one level. Therefore, the overall time
complexity of computing TED* should be O(km3), where k
is the number of levels of the tree. Indeed, for the real-
world applications, we demonstrate that there is no need
for a large parameter k in Section 7.3. For small k, the
number of nodes per level is also not large. Therefore, the
TED* can be computed efficiently in practice.

5.4 Parameter K and Monotonicity
In NED, there is only one parameter k which represents

how many levels of neighbors should be considered in the
comparison. There exists a monotonicity property on the
distance and the parameter k in NED:

703

Lemma 6. δT (T (u, x), T (v, x)) ≤ δT (T (u, y), T (v, y)),
∀x, y > 0 and x ≤ y

Proof. The proof of Lemma 6 is based on the procedures
in Algorithm 1. In Lemma 6 , x and y are total number of
levels for k-adjacent trees. According to Equation 4 and the
non-negativity property in TED*.

Then to prove Lemma 6, we could prove the following
inequality instead:

x∑
i=1

(P yi +My
i) ≥

x∑
i=1

(P xi +Mx
i) (10)

According to the algorithm, for the levels from 1 to x, P yi
= P xi , since the top x levels of T (u, y) and T (v, y) should
have the same topological structures as T (u, x) and T (v, x)
respectively. Meanwhile, we have My

x ≥Mx
x , because at the

xth level, the children of nodes in T (u, y) and T (v, y) may
have different canonization labels, but the nodes in T (u, x)
and T (v, x) are all leaf nodes. So the matching cost between
T (u, x) and T (v, x) at the xth level should not be larger than
the matching cost between T (u, y) and T (v, y) at the xth
level. For all the levels above the xth level, the matching
cost for two distances should be the same.

The monotonicity property is useful for picking the pa-
rameter k for specific tasks as follows: the node similarity,
NED, for a smaller parameter k is a lower bound of NED
for a larger parameter k. Then, for nearest neighbor simi-
larity node queries, increasing k may reduce the number of
“equal” nearest neighbor nodes in the result set. For top
similarity node ranking, increasing k may break the ties in
the rank. In Section 7.3, we show how the monotonicity
property affects the query quality using real world datasets.

6. TED*, TED AND GED
This section briefly discusses the differences among TED*,

tree edit distance (TED) and graph edit distance (GED).
The major difference among TED*, TED and GED is edit

operations. Basically, since the edit operations are different,
the edit distances are not comparable. The edit operations
for TED* and TED keep the tree structures, whereas, the
operations for GED do not.

One edit operation for TED may be translated into a series
of edit operations for GED. However, every edit operation
in TED* can be exactly represented as two edit operations
in GED: “Inserting a leaf node” in TED* is equivalent to
inserting an isolated node and inserting an edge in GED.
“Deleting a leaf node” in TED* is equivalent to deleting an
edge and deleting an isolated node in GED. “Moving a node
in the same level” in TED* can be represented as deleting
an edge and inserting an edge in GED. Therefore, TED*
can be a bound for GED on tree structures as follows:

δGED(t1, t2) ≤ 2× δTED∗(t1, t2) (11)

However, TED* can be smaller or larger than TED. Since
TED allows to insert or delete intermediate node (with par-
ent and children) in a tree and such operations may be trans-
lated into a series of edit operations in TED*. Then TED
may be smaller than TED*. On the other hand, TED* al-
lows to move a node in the same level but TED does not. So
TED has to use a series of edit operations to mock one “Mov-
ing a node in the same level” operation in TED*. Therefore,
TED may be larger than TED*.

Table 2: Datasets Summary

Dataset # Nodes # Edges

CA Road (CAR) 1,965,206 2,766,607
PA Road (PAR) 1,088,092 1,541,898
Amazon (AMZN) 334,863 925,872
DBLP (DBLP) 317,080 1,049,866
Gnutella (GNU) 62,586 147,892
Pretty Good Privacy (PGP) 10,680 24,316

Whereas, we can propose a weighted TED* that can be
an upper-bound of TED, for example:

δT (W) =

k∑
i=1

(w1
i ∗ Pi + w2

i ∗Mi)

If w1
i = 1 and w2

i = 4i, δT (W) is an upper-bound for TED.
Since weighted TED* is not the major discussion in this

paper and due to the space limitation, we leave the upper-
bound and metric proof in [34].

7. EXPERIMENTS
In this section, we empirically evaluate the efficiency and

effectiveness of the inter-graph node similarity. All exper-
iments are conducted on a computing node with 2.9GHz
CPU and 32GB RAM running 64-bit CentOS 7 operating
system. All experiments are implemented in Java.

In particular, we evaluate TED* and NED over 5 as-
pects: 1) Compare the efficiency and distance values of
TED* against TED and GED; 2) Evaluate the performance
of TED* with different sizes of trees; 3) Analyze the ef-
fects of parameter k on NED; 4) Compare the computation
and nearest neighbor query performance of NED with HITS-
based similarity [4] (HITS) and Feature-based similarity [7]
(Feature) which are state-of-art inter-graph node similarity
measurements; and 5) Provide a case study of graph de-
anonymization. Notice that, the Feature-based similarity
here is ReFeX [7]. As mention in [7], the means and sums
of degrees for each level are recursively collected as features.
The details of these state-of-art inter-graph node similarity
measurements are introduced in Section 8.

The datasets used in the experiments are real-world graphs
that come from the KONECT [14] and SNAP [15] datasets.
Table 2 summarizes the statistical information and the ab-
breviations used in this section.

All the distances in the experiments are computed be-
tween pairs of nodes from two different graphs. For each
graph, we random sample the nodes uniformly and treat all
the nodes equally.

7.1 TED*, TED and GED Comparison
In this section, we check the efficiency of TED* and com-

pare how close is the computed distance to TED and GED
on the same unordered trees.

TED* is not only polynomially computable but is also
very efficient. On the other hand, computing the exact
values of TED and GED is extremely expensive since the
computations of TED and GED are NP-Complete prob-
lems. The most widely used method for computing exact
values is the A*-based algorithm. However, this method
can only deal with small topological structures with merely
up to 10-12 nodes. Whereas, TED* is able to compare un-
ordered trees up to hundred nodes in milliseconds as shown

704

(a) Computation Time (b) Distance Values (c) Distance Difference (d) Equivalency Ratio

Figure 5: Comparisons among TED*, TED and GED

in Section 7.2. In this experiment, we extract 20 nodes from
(CAR) graph and 20 nodes from (PAR) graph. Totally 400
pairs of nodes are used to calculate TED*, TED and GED.

In Figure 5a, we show the computation time of TED*,
exact TED, and exact GED. Actually, among 400 pairs of
nodes, more than half of pairs cannot return any result for
TED and GED due to the exponential number of branches
in A* algorithm.

In Figure 5b, we show the differences of distance values in
TED*, TED, and GED for unordered trees. In this experi-
ment, we would like to demonstrate two claims: (1) TED*
could be an upper bound for half GED because there is a
“1-to-2” mapping from the edit operations of TED* to the
edit operations of GED as illustrated in Section 6. (2) TED*
is pretty similar to TED even though TED* may be smaller
or larger than TED as shown Section 6. According to the
Figure 5b, TED* is slightly smaller than TED only because
for the computable pairs of trees (small trees) there are more
“move a node” operations in TED* which should be series
of edit operations in TED.

In Figure 5c, we further show the differences between
TED* and TED in details as a complement for Figure 5b
that shows TED* is pretty similar to TED. Figure 5c shows
the average and standard deviation of the relative errors
between TED* and TED. The difference is calculated by

|TED − TED∗|/TED

The average is from 0.04 to 0.14 and the deviation is below
0.2. This means that in most cases the TED and TED*
values are almost the same, since the minimal cost for the
edit distances is 1 (one edit operation).

In Figure 5d we show how many pairs the TED* are ex-
actly the same as TED. It is clear that more than 40% of the
cases the two distances are exactly the same and for some
cases the ratio can be up to 80%. This shows that TED*
could be a good approximation to TED. Notice that, there
exists low equivalency percentage for k = 4/5, because we
can only compare the computable trees on both TED and
TED* due to the hardness of TED and when k = 4/5, it is
more likely to have “complex” structures where TED* has
more “moving nodes in the same level” operations. When
k = 2/3, the number of levels is too small to have “moving
nodes in the same level” operations and when k > 5, the
computable trees for TED are generally in simple structures
and also few “moving nodes in the same level” operations
can happen. That’s why we can observe that for the com-
putable trees with k = 4/5, the equivalency percentage is
relatively low.

(a) TED* Computation Time (b) NED Computation Time

Figure 6: Computation Time of TED* and NED

7.2 TED* and NED Computation
In Figure 6a, we plot the time to compute TED* with dif-

ferent tree sizes. In this experiment, we extract 3-adjacent
trees from nodes in (AMZN) graph and (DBLP) graphs re-
spectively. As shown in the Section 7.1, the exact TED and
GED cannot deal with trees and graphs with more than 10
nodes. However, TED* is able to compute the distance be-
tween a pair of trees with up to 500 nodes in one millisecond.

Figure 6b plots the NED computation time for differ-
ent tree levels as k changes. Firstly the time of k-adjacent
tree retrieval is negligible compared to TED* computation.
Thus, according to the experiments, there is no time differ-
ence between TED* and NED. Also along with increasing
k, the computation time increases exponentially. Basically
number of nodes per level increases exponentially and the
performance is dominated by Hungarian algorithm. In the
figure, when the value of k is under 5, the computation time
is within one millisecond. Next, we show that, the parame-
ter k does not need to be very large (5 is large enough) for
nearest neighbor queries and top-n ranking queries to give
meaningful results.

7.3 Analysis of Parameter k
There is only one parameter k in NED which is number

of levels to be considered in the comparison. In this section,
we use nearest neighbor and top-n ranking queries to show
the effects of parameter k on the query results.

The nearest neighbor query task is the following: for a
given node in one graph, find the l most similar nodes in
another graph. When the parameter k is small, more nodes
in the graph can have the same minimal distance (usually 0)
to a given node. When k increases, the NED increases mono-
tonically as proved in Section 5.4. Therefore, by choosing
different parameter k, we can control the number of nodes

705

(a) Nearest Neighbor Query (b) Top-n Ranking

Figure 7: Analysis of Parameter k in NED

(a) Computation Time (b) NN Query Time

Figure 8: Node Similarity Comparison

in the nearest neighbor result set. Figure 7a shows the num-
ber of nodes in the nearest neighbor result set for different
values of k. In the experiment, we randomly pick 100 nodes
from (CAR) and (PAR) graphs as queries and the nodes in
the other graph are computed. It is obvious that when the
parameter k increases, the number of nodes in the nearest
neighbor result set decreases.

The effect of parameter k for the top-n ranking query in-
dicates how many identical distances (ties) that appear in
the ranking. As shown in Figure 7b, the ties start to break
when k increases. Intuitively, it is more likely to have iso-
morphic neighborhood structures if fewer levels of structures
are considered. Figure 7b shows the number of ties in the
top-n ranking for different values of k. The experimental
setting is the same as in the nearest neighbor query.

Choosing a proper value for the parameter k depends on
the query speed and quality. When k increases, the compu-
tation time of NED increases as shown in Section 7.2. On
the other hand, when k increases, both the number of nodes
in the nearest neighbor result set and the number of ties in
the ranking decreases. So it is clear that there exists a trade-
off between the query speed and quality. Furthermore, the
proper value of k depends on the specific applications that
the graphs come from. For example, the denser graphs with
nodes having larger average degrees usually need smaller k.

7.4 Query Comparison
In this section, we compare the performance of NED with

other existing inter-graph node similarity measures: HITS-
based similarity and Feature-based similarity.

Figure 8a shows the distance computation time for NED,
HITS-based similarity, and Feature-based similarity. In this
experiment, we extract 5-adjacent trees for the nodes in
(CAR) and (PAR) graphs and 3-adjacent trees for the nodes
in (PGP), (GNU), (AMZN) and (DBLP) graphs. NED,

HITS-based similarity, and Feature-based similarity are com-
puted over random pairs of nodes and the average compu-
tation time for different measures are shown in Figure 8a.

From this figure, it is clear that HITS-based similarity
is the slowest among all three methods, because the HITS-
based similarity iteratively updates the similarity matrix un-
til the matrix converges. Feature-based similarity is faster
than NED which makes sense since Feature-based similarity
only collects statistical information from the neighborhood.
NED pays a little extra overhead to take into account more
topological information and be a metric. We show later why
more topological information and metric matter.

As discussed, the Feature-based similarity discards certain
topological information which makes it not precise. We use
graph de-anonymization in Section 7.5 to show that, with
more topological information, NED can achieve a higher pre-
cision in de-anonymization compared to the Feature-based
similarity since NED captures more topological information.

Also since the Feature-based similarity uses different fea-
tures for different pairs, the similarity values of two pairs of
nodes are not comparable. When using the Feature-based
similarity for nearest neighbor queries, a full scan is nec-
essary. However, as a metric, NED has the advantage in
being used with existing metric indices for efficient query
processing. Figure 8b shows that although NED pays a lit-
tle bit more time than Feature-based similarity in distance
computation, by combining with a metric index (existing
implementation of the VP-Tree), NED is able to execute a
nearest neighbor query much faster (orders of magnitude)
than the Feature-based similarity.

7.5 Case Study: De-anonymizing Graphs
In this section, we use graph de-anonymization as a case

study to show the merits of NED. Graph de-anonymization
is a popular privacy topic in database and data mining [22].
When publishing data, the data owners tend to anonymize
the original data firstly by using anonymization techniques
such as naive anonymization, sparsification, perturbation
and so on. However, there may be certain information in-
ferred by using domain knowledge. Using small portion of
exposed information to de-anonymize the anonymous graph
is a typical privacy risk in database and data mining. Also
the ease of de-anonymization can be used to check the qual-
ity of anonymization. Ji et al. [9] provides an extensive
survey on graph de-anonymization which analyze the state-
of-art techniques comprehensively. Basically for the seed-
free and auxiliary graph-free approaches, the feature-based
similarity is the major technique to adopt.

In this experiment, we simulate the de-anonymization pro-
cess by splitting (PGP) and (DBLP) graphs into two parts:
training data and testing data. The training data is the
subgraph with identification, while the testing data is the
anonymous subgraph with naive anonymization, sparsifica-
tion, and perturbation. For each node in the anonymous
graph, we try to assign the identity by finding top similar
nodes in the training data (guess-based approach). Since
NED captures more topological information, it is capable
to detect more sophisticated differences between structures.
Therefore, NED can achieve much higher precision than the
feature-based similarity. Note that HITS similarity has lim-
itations on performance which prevent it to be a feasible
solution on de-anonymization.

706

(a) De-Anonymize PGP (b) De-Anonymize DBLP (c) Permutation Ratio (d) Top-n Finding

Figure 9: Graph De-Anonymization

In Figure 9a and Figure 9b, we show the precision of de-
anonymization using NED and feature-based similarity. In
the experiment, the parameter k is set to 3 and we examine
the top-5 similar nodes (best 5 matches) in (PGP) data and
the top-10 similar nodes in (DBLP) data. The permutation
ratio in (PGP) is 1% and in (DBLP) is 5%. Based on the re-
sults, NED is able to identify anonymized nodes with better
accuracy than the feature-based similarity.

In Figure 9c, we show how the precision changes by vary-
ing permutation ratio. The precision of NED reduces slower
than feature-based similarity when the permutation ratio
increases. The Figure 9d shows that when more nodes in
top-n results are examined, how the de-anonymization pre-
cision changes. It is clear that if fewer nodes are checked
which means there are less nodes in the top-n results, NED
can still achieve a higher precision.

8. RELATED WORK
One major type of node similarity measure is called link-

based similarity or transitivity-based similarity and is de-
signed to compare intra-graph nodes. SimRank [8] and
a number of SimRank variants like SimRank* [30], Sim-
Rank++ [2], RoleSim [10], just to name a few, are typi-
cal link-based similarities which have been studied exten-
sively. Other link-based similarities include random walks
with restart [27], influence-based similarity [13], and path-
based similarity [25]. A comparative study for link-based
node similarities can be found in [16]. Unfortunately, those
link-based node similarities are not suitable for comparing
inter-graph nodes since these nodes are not connected and
the distances will be always 0.

To compare inter-graph nodes, neighborhood-based sim-
ilarities have been used. Some primitive methods directly
compare the ego-nets (direct neighbors) of two nodes using
Jaccard coefficient, Sørensen–Dice coefficient, or Ochiai co-
efficient [29]. Ness [11] and NeMa [12] expand on this idea
and they use the structure of the k-hop neighborhood for
each node. However, for all these methods, if two nodes do
not share common neighbors (or neighbors with the same la-
bels), the distance will always be 0. Similarly, graph kernel-
based methods [24, 23] also rely on the labels or attributes
to align the nodes when using Weisfeiler-Lehman test.

An approach that can work for inter-graph nodes is to ex-
tract features from each node using the neighborhood struc-
ture and compare these features. OddBall [1] and NetSimile
[3] construct the feature vectors by using the ego-nets (di-
rect neighbors) information such as the degree of the node,
the number of edges in the ego-net and so on. ReFeX [7] is

an improved framework to construct the structural features
recursively which is the state-of-art feature-based similar-
ity measurement. The main problem with this approach is
that the choice of features is ad-hoc and the distance values
are hard to interpret. Furthermore, for the more advanced
method, ReFeX, the distance function is not a metric due
to the pruning process.

Another method that has been used for comparing biolog-
ical networks, such as protein-protein interaction networks
(PPI) and metabolic networks, is to extract a feature vec-
tor using graphlets [17, 6]. Graphlets are small connected
non-isomorphic induced subgraphs of a large network [20].
However, these methods require expert knowledge for the
pruning, otherwise are limited to extremely small neighbor-
hood around each node.

Another node similarity for inter-graph nodes based only
on the network structure is proposed by Blondel et al. [4]
which is called HITS-based similarity. In HITS-based simi-
larity, all pairs of nodes between two graphs are virtually
connected. The similarity between a pair of inter-graph
nodes is calculated using the following similarity matrix:

Sk+1 = BSkA
T +BTSkA

where A and B are the adjacency matrices of graphs and Sk
is the similarity matrix in the k iteration.

Both HITS-based and Feature-based similarities are capa-
ble to compare inter-graph nodes without any additional as-
sumption. However, HITS-based similarity is neither metric
nor efficient. On the other hand, Feature-based similarities
use ad-hoc statistical information which cannot distinguish
minor topological differences. This means that Feature-
based similarities may treat two nodes as equivalent even
though they have different neighborhood structures.

9. CONCLUSION
In this paper, we study the inter-graph node similarity

problem. A major application of inter-graph node similar-
ity is transfer learning on graphs, i.e., learning a new graph
based on the existing knowledge from another one. To ad-
dress this problem, this paper proposes a novel distance
function called NED. In NED, the k-adjacent trees between
two nodes to be compared are firstly extracted. Then, a
newly proposed modified tree edit distance called TED*
is used to calculate the distance between two k-adjacent
trees. TED* is a generic distance function for comparing
trees which is easy to compute in polynomial time and sat-
isfies the metric properties of the edit distance. Therefore,
NED is a node metric. Due to the metric properties, NED

707

is compatible with existing metric indexing methods. More-
over, since NED captures more structural information, it is
demonstrated to be more effective and precise for graph de-
anonymization. NED, as an inter-graph node similarity, can
be used to compare two nodes in two different graphs with
totally different labeling systems (or even without any label
at all), since NED is a pure neighborhood-topology-based
metric.

10. ACKNOWLEDGMENTS
This work was partially supported by NSF grants IIS-

1320542 and CNS-1414119.

11. REFERENCES
[1] L. Akoglu, M. McGlohon, and C. Faloutsos. oddball:

Spotting anomalies in weighted graphs. In PAKDD,
pages 410–421, 2010.

[2] I. Antonellis, H. Garcia-Molina, and C. Chang.
Simrank++: query rewriting through link analysis of
the click graph. PVLDB, 1(1):408–421, 2008.

[3] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and
C. Faloutsos. Network similarity via multiple social
theories. In ASONAM, pages 1439–1440, 2013.

[4] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart,
and P. V. Dooren. A measure of similarity between
graph vertices: Applications to synonym extraction
and web searching. SIAM Rev., 46(4):647–666, 2004.

[5] C. Clark and J. Kalita. A comparison of algorithms
for the pairwise alignment of biological networks.
Bioinformatics, 30(16):2351–2359, 2014.

[6] D. Davis, Ö. N. Yaveroglu, N. Malod-Dognin,
A. Stojmirovic, and N. Przulj. Topology-function
conservation in protein-protein interaction networks.
Bioinformatics, 31(10):1632–1639, 2015.

[7] K. Henderson, B. Gallagher, L. Li, L. Akoglu,
T. Eliassi-Rad, H. Tong, and C. Faloutsos. It’s who
you know: graph mining using recursive structural
features. In KDD, pages 663–671, 2011.

[8] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In KDD, pages 538–543,
2002.

[9] S. Ji, P. Mittal, and R. Beyah. Graph data
anonymization, de-anonymization attacks, and
de-anonymizability quantification: A survey. IEEE
Communications Surveys Tutorials, PP(99), 2016.

[10] R. Jin, V. E. Lee, and H. Hong. Axiomatic ranking of
network role similarity. In KDD, pages 922–930, 2011.

[11] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and
S. Tao. Neighborhood based fast graph search in large
networks. In SIGMOD, pages 901–912, 2011.

[12] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema:
Fast graph search with label similarity. PVLDB,
6(3):181–192, 2013.

[13] D. Koutra, N. Shah, J. T. Vogelstein, B. Gallagher,
and C. Faloutsos. Deltacon: Principled massive-graph
similarity function with attribution. TKDD, 10(3):28,
2016.

[14] J. Kunegis. KONECT: the koblenz network collection.
In WWW, pages 1343–1350, 2013.

[15] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection, June 2014.

[16] H. Liu, J. He, D. Zhu, C. X. Ling, and X. Du.
Measuring similarity based on link information: A
comparative study. IEEE Trans. Knowl. Data Eng.,
25(12):2823–2840, 2013.

[17] N. Malod-Dognin and N. Przulj. L-GRAAL:
lagrangian graphlet-based network aligner.
Bioinformatics, 31(13):2182–2189, 2015.

[18] M. Neuhaus, K. Riesen, and H. Bunke. Fast
suboptimal algorithms for the computation of graph
edit distance. In SSPR, pages 163–172, 2006.

[19] M. Pawlik and N. Augsten. Rted: A robust algorithm
for the tree edit distance. PVLDB, 5(4):334–345, 2011.

[20] N. Przulj, D. G. Corneil, and I. Jurisica. Modeling
interactome: scale-free or geometric. Bioinformatics,
20(18):3508–3515, 2004.

[21] K. Riesen and H. Bunke. Approximate graph edit
distance computation by means of bipartite graph
matching. Image Vision Comp., 27(7):950–959, 2009.

[22] K. Sharad and G. Danezis. An automated social graph
de-anonymization technique. In WPES, pages 47–58,
2014.

[23] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen,
K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research,
12:2539–2561, 2011.

[24] N. Shervashidze, S. V. N. Vishwanathan, T. Petri,
K. Mehlhorn, and K. M. Borgwardt. Efficient graphlet
kernels for large graph comparison. In AISTATS,
pages 488–495, 2009.

[25] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu.
Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. PVLDB,
4(11):992–1003, 2011.

[26] K. Tai. The tree-to-tree correction problem. J. ACM,
26(3):422–433, 1979.

[27] H. Tong, C. Faloutsos, and J. Pan. Fast random walk
with restart and its applications. In ICDM, pages
613–622, 2006.

[28] G. Wang, B. Wang, X. Yang, and G. Yu. Efficiently
indexing large sparse graphs for similarity search.
IEEE Trans. Knowl. Data Eng., 24(3):440–451, 2012.

[29] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger.
SCAN: a structural clustering algorithm for networks.
In KDD, page 8240833, 2007.

[30] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More
is simpler: Effectively and efficiently assessing
node-pair similarities based on hyperlinks. PVLDB,
7(1):13–24, 2013.

[31] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and
L. Zhou. Comparing stars: On approximating graph
edit distance. PVLDB, 2(1):25–36, 2009.

[32] K. Zhang and T. Jiang. Some MAX snp-hard results
concerning unordered labeled trees. Inf. Process. Lett.,
49(5):249–254, 1994.

[33] K. Zhang, R. Statman, and D. Shasha. On the editing
distance between unordered labeled trees. Inf. Process.
Lett., 42(3):133–139, 1992.

[34] H. Zhu, X. Meng, and G. Kollios. NED: An
inter-graph node metric on edit distance. CoRR,

abs/1602.02358, 2016.

708

