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ABSTRACT

We propose a novel model for music structural segmentation
aiming at combining harmonic and timbral information. We
use two-level clustering with splitting initialization and ran-
dom turbulence to produce segment labels using chroma and
MFCC separately as feature. We construct a score matrix to
combine segment labels from both aspects. Finally Non-
negative Matrix Factorization and Maximum Likelihood are
applied to extract the final segment labels. By comparing
sparseness, our method is capable of automatically deter-
mining the number of segment types in a given song. The
pairwise F-measure of our algorithm can reach 0.63 without
rules of music knowledge, running on 180 Beatles songs.
We show our model can be easily associated with more so-
phisticated structural segmentation algorithms and extended
to probabilistic models.

1. INTRODUCTION

Identifying music structural segmentation is one of the most
important and difficult problems in music information re-
trieval (MIR). Its goal is to automatically locate the musi-
cally repetitive parts within a piece of music (e.g. verse,
bridge and chorus in popular music). It has applications
such as music thumbnail, segment-based editing and segment-
based navigation. It may also facilitate other MIR tasks like
beat tracking and chord detection.

There are some noteworthy existing systems, which in-
spire our proposed model. Foote [1] proposed self-similarity
matrix for structure representation. Levy et al [2] proposed a
two-level model for structural segmentation problem. In the
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lower level, they introduced Hidden Markov Models (HMMs)
to quantize audio feature vectors into discrete states; in the
upper level, they formed histograms by counting the HMM
states in local windows and designed a clustering algorithm
to quantize histogram vectors into segment labels. Weiss at
el [3] showed the potential of Non-negative Matrix Factor-
ization (NMF) in the structural segmentation problem. No-
tably, they make use of sparseness constraint to automat-
ically determine the number of segment types in a song.
Kaiser et al [4] exploited NMF on self-similarity matrix and
clustering to differentiate segment types.

Undoubtedly, music structure is perceived based on many
sources of information, among which harmony and timbre
are primary players. Some existing systems use multiple
features as starting points, listed in [5], but few found a good
model to combine them. As is shown in [4], combining har-
monic and timbral information works even worse than using
timbral information alone. In this paper, we focus on build-
ing a model to combine the two sources to reach higher seg-
mentation performance.

Our model is comprised of two parts. The first part is a
two-level clustering algorithm, which produces segment la-
bels using either harmonic or timbral information. The sec-
ond part is a novel algorithm to bring segment labels from
two different aspects together into a score matrix, and ex-
ploiting NMF to extract segment labels and sparseness to
automatically determine the number of segment types in a
given song. We call the score matrix and NMF based algo-
rithm SM-NMF for short.

In Section 2 we describe our two-level clustering algo-
rithm. In Section 3 we describe the SM-NMF algorithm. In
Section 4 we present our experimental results and explain
for them. In Section 5 we introduce possible extension of
our model in future research. For convenience, we define the
following symbols that will be used in the paper. n: number
of frames in a song, each corresponds to a state label. m:
dimension of feature vectors. N : number of windows in a
song, each corresponds to a segment label. k: number of
segment types.
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2. TWO-LEVEL CLUSTERING

Our two-level clustering algorithm is shown in Figure 1. From
the feature extraction module we get frame-based feature
vectors used for the lower-level feature clustering module,
which quantizes feature vectors into states. The histogram
module counts states in windows and forms histogram vec-
tors used for the higher-level histogram clustering module,
which quantizes histogram vectors into segment labels. This
algorithm is similar to [2], except that we substitute HMMs
with another clustering and no constraint is imposed.
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Figure 1. The flowchart and illustration of intermediate re-
sults of two-level clustering. The lower two graphs’ colors
only illustrate different labels for better looking.

2.1 Feature Extraction

We extract two types of vector features separately from au-
dio files. Chroma is a 12-dimension representation indicat-
ing the power within each of the 12 pitch classes. So chroma
has a close relationship with the harmonic characteristics of
music. See [6] for algorithm of extracting chroma. Mel-
frequency Cepstrum Coefficients (MFCC) is usually a 13-
dimension representation describing the spectral envelope.
It is easy to calculate and potential to reveal timbral simi-
larity in feature space. See [7] for algorithm of extracting
MFCC.

We divide the whole song with fixed frame length of Lf

ms and hop size of Lfh ms, then calculate feature for each
frame.

2.2 Clustering Algorithm

Clustering is a process of gathering points in the feature
space to a fixed number of clusters so that hopefully neigh-
boring points would have the same cluster label. K-means
is one of the most straightforward algorithms to perform
clustering [8]. Firstly, a fixed number of k cluster centers
µ1, µ2 . . . µk are initialized, often randomly. Then two steps

alternate iteratively: a) assign each point xj to its closest
cluster center; b) recalculate each cluster center, until the
objective function

G(x, µ) =

k∑
i=1

∑
xj∈Ci

DistanceMeasure(xj , µi)

converges, where Ci is the set of feature vectors assigned to
the ith cluster. Note that k-means is the coordinate descent
of G(x, µ) so only local minimum is guaranteed.

In our experiments, we find that using uniform distribu-
tion to randomly initialize cluster centers sometimes con-
verges to unreasonable local minima, so we apply an “ini-
tial guess by splitting” method described in [9] instead. If
the target number of clusters is not power of 2, we split the
cluster with largest variance until we achieve the right num-
ber. We find that using this technique most unreasonable
results are avoided.

We have described one level of clustering. Now we move
to two-level clustering. Firstly, we perform clustering on ei-
ther chroma or MFCC into kl clusters, using Euclidean dis-
tance as distance measure, to obtain a state label for each
frame, which can be interpreted as harmonic unit or timbre
unit. Then we slide a window with length of Lw frames
and hop size of Lwh frames throughout the whole song, and
count the occurrence of every state. Now we have an ar-
ray of histogram vectors, which are further normalized to
be probabilistic. We perform clustering on histogram vec-
tors into kh clusters, using symmetric Kullback-Leiber (KL)
divergence [10] as distance measure.

KL(P ||Q) =
1

Lw

kl∑
i=1

Pi log
2Pi

Pi +Qi
+Qi log

2Qi

Pi +Qi

Symmetric KL divergence describes how dissimilar P and
Q are to the assumed actual distribution (P + Q)/2. The
resulting labels indicate segment types.

To further reduceG(x, µ), we insert a random turbulence
module between splitting initialization and two-step itera-
tion, for both levels of clustering. To do this, we add a vector
with tiny norm and random direction to each cluster center.
Make sure the shifted centers satisfy probability constraints
for KL divergence. Then we perform clustering for T times
to get T slightly different solutions. We can pick out the
solution with lowest G(x, µ).

In our experiments, we notice in most cases the solutions
with lowest G(x, µ) do not necessarily correspond to good
results (see Table 2 for results). Therefore, to further im-
prove the performance, we have to keep all T solutions for
further analysis.
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3. COMBINING HARMONIC AND TIMBRAL
INFORMATION

In this section, we describe how to combine harmonic and
timbral information, i.e. the two-level clustering results from
chroma and MFCC, to produce better segmentation results.
For convenience, we name the segment labels produced by
chroma as chroma solution. Similarly we have MFCC so-
lution. We name the segment labels produced by the SM-
NMF algorithm described below as final solution.

To motivate our idea, we show the typical results from
chroma and MFCC respectively in Figure 2. Although both
features produce fair results (pairwise F-measure 0.61 and
0.62), they are from completely different perspectives. For
example, the chroma solution fails to distinguish verse and
verse(instrumental) because the underlying harmonic pat-
terns are exactly the same, but is good at distinguishing
verse and bridge because of different harmonic patterns; the
MFCC solution separates verse(instrumental) successfully
because the timbre in this segment is very different from oth-
ers, but cannot distinguish verse and bridge for their similar
timbres.

Therefore, we set up the following rule for combination:
two windows should have identical segment labels only if
the two windows are both harmonically and timbrally simi-
lar. However, we cannot simply mix a chroma solution and
an MFCC solution because segments from two aspects usu-
ally do not have common boundaries. There will often be
lots of fragments in the outcoming results. In order to obtain
a result with the same level of detail as chroma or MFCC so-
lution, we make use of all T chroma solutions and T MFCC
solutions to smooth the boundaries. Now we describe how
to bring all 2T solutions into one final solution.

chroma 

MFCC 

intro  verse     bridge half  verse    bridge      verse      bridge  outro 
intro (instrumental) 

Figure 2. The results of clustering using chroma and MFCC
respectively, along with the ground truth, of “In My Life”.

3.1 Score Matrix

By analyzing T different chroma or MFCC solutions from
clustering with random turbulence, we find that typically
some pairs of windows always have identical labels. These

windows are lying within steady regions of a song. By con-
trast, some pairs occasionally have identical labels. Then ei-
ther of them is lying within boundary regions (for example
the short transition between segments with complicated in-
strumentation changes). Therefore, counting the times two
windows having identical labels can reveal the steady re-
gions and boundary regions in a song. We can construct a
score matrix to describe how likely it is for two windows to
have identical labels. This idea can be directly extended to
a score matrix describing how likely it is for two windows
to have identical labels in both chroma solution and MFCC
solution.

To implement this, initialize anN×N matrix with all ze-
ros. Perform two-level clustering using chroma and MFCC
as feature separately, with splitting initialization and random
turbulence, for T times. Then investigate all the T 2 chroma-
MFCC solution pairs: If the ith and jth windows in both
chroma solution and MFCC solution have identical labels,
the corresponding element in the score matrix increases by
one. Finally, normalize all the elements by dividing by T 2.

The resulting score matrix serves the same purpose of
visualizing music structure as Foote’s self-similarity matrix,
but the score matrix is much more well-structured and smooth.
See Figure 3 for a graphical example.

Figure 3. The score matrix of “Help!”. The same song’s
self-similarity matrix is shown in [4].

3.2 Non-Negative Matrix Factorization

We can view the score matrix as an array of column vec-
tors. Each vector corresponds to a window. Suppose we
have a set of vector templates. Vectors in the steady regions
of a song may be directly found in the set, while vectors in
the boundary regions may be approximated by linear com-
bination of vector templates. This observation pushes us to
Non-negative Matrix Factorization (NMF) [11].

TheN×N score matrix is approximately factorized into
product of a N × k matrix W and a k ×N matrix H. The
jth column of W can be viewed as the vector template for
the jth segment type. The jth column of H describes the
intensities of the k segment types for the jth window. An
example in shown in Figure 4.

479



Poster Session 4

We implement NMF using the multiplicative update rules
[11]. Similar to clustering, NMF can only guarantee a local
minimum of the sum of errors between the score matrix and
W ×H. So we run NMF for several times with uniformly
distributed random initialization and pick out the factoriza-
tion result with lowest sum of errors.

After we obtain H , we apply Maximum Likelihood by
assigning the segment label associated with the largest en-
ergy to each window. Note that in [4], clustering was used
for the same purpose. In our experiment, we find that clus-
tering and Maximum Likelihood produce almost the same
performance. We choose Maximum Likelihood because it’s
simpler and more consistent.

  

score matrix ( × )   ( ×  )   ( ×  ) 

Figure 4. The score matrix is approximately factorized into
the product of W and H , from “Drive My Car”.

3.3 Automatic Determination of the Number of
Segment Types

Automatically determining of the number of segment types
in a song is hard for two-level clustering, because clustering
is a process of hard decision and all information about a win-
dow is its associated cluster label. However, using NMF, we
have the matrix H whose columns involve intensities of all
segment types. An example is shown in Figure 5. Intuitively
one will agree k = 3 is the optimal number of segment types
because the H with k = 3 is the most “resolute” one with
least windows having much energy spread into multiple seg-
ment types. So we want a measure to quantify how much
energy of a column is concentrated in as few components
as possible. Sparseness [12] is a good measure which can
satisfy the need.

sparseness(h) =

√
k − (

∑
|hi|)/

√∑
hi

2

√
k − 1

where h is a column of H. The sparseness listed in Figure 5
is the average sparseness of all N columns. We hope the
columns of H to be as sparse as possible, so we factorize
the score matrix with different k, then we pick out the H
with largest average sparseness.

To summarize, we show the whole process of our model
in Figure 6.

 = 2,           = 0.789 

 = 3,           = 0.939 

 = 4,           = 0.881 

 = 5,           = 0.879 

(optimal) 

Figure 5. Obtaining H with different k, we can use the
result with largest average sparseness.
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Figure 6. The complete flowchart of our proposed model.
See Figure 1 for detail of two-level clustering.

4. EVALUATION

4.1 Parameters Configuration

We describe how to set up parameters (shown in Table 1)
for two-level clustering. Lf and Lfh are set by assuming
the audio signal is stationary for all frequency components
in this short time duration. kl should be set a large num-
ber according to [2]. In our experiment, we see kl = 64
works best. Lw and Lwh are not affecting the performance
(pairwise F-measure) much, except that too small Lw might
make a very short segment longer than its actual length.
kh can be viewed as the number of types of harmoni-

cally similar segment or timbrally similar segment. kh = 3
is a reasonable number, because a typical song has about 3
harmonic patterns (such as intro, verse and bridge) and also
about 3 timbral patterns (such as intro, verse/bridge and in-
strument solo).

frame length Lf 100 ms
frame hop size Lfh 50 ms
# of states kl 64
slide window length Lw 10 s
slide window hop size Lwh 1 s
# of segment types kh 3
# of loops T 7

Table 1. Parameters used in two-level clustering.
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4.2 Overall Results

Our database comprises 180 Beatles’ songs, consistent with
the available ground truth annotations in Isophonics 1 . All
songs are in the wav format of 16kHz/16bit/mono. We eval-
uate pairwise F-measure (PFM) [2] of our algorithms on the
whole database referencing Isophonics annotations. Clus-
tering processes with chroma and MFCC share the same set
of parameters in Table 1.

Table 2 shows the PFM of two-level clustering with split-
ting initialization and without random turbulence, and the
PFM of running two-level clustering with splitting initial-
ization and random turbulence for T times and minimiza-
tion with regard to G(x, µ). k cannot be automatically de-
termined in clustering, so we fix k = 3, which can produce
highest PFM in our experiments.

chroma MFCC
random no yes no yes
PFM 0.58 0.58 0.58 0.60

Table 2. PFM of two-level clustering with and without ran-
dom turbulence.

We note that minimizing with regard to G(x, µ) can re-
duceG(x, µ) dramatically, but not necessarily improve PFM.
So the relationship between PFM andG(x, µ) is not straight-
forward.

Then we evaluate our proposed SM-NMF algorithm. k is
automatically selected from {3, 4, 5} according to the largest
sparseness in the corresponding H. We note that although
many songs have more than 5 segment types according to
annotations, such as the one shown in Figure 2, intro and
half-intro are both harmonically and timbrally identical so
it is impossible to discriminate them using only harmonic
and timbral information. Therefore it is normal that the au-
tomatically determined k is smaller than the actual number
of segment types in annotations. In Table 3, besides SM-
NMF, we also show the results using NMF with fixed k for
comparison. We see that SM-NMF produces better results
than two-level clustering (Table 2) and sparseness is a good
measure for the number of segment types.

fix k automatically
k = 3 k = 4 k = 5 determine k

PFM 0.62 0.62 0.61 0.63

Table 3. PFM of SM-NMF.

In Table 4 we show the results of a different way to form
score matrix – by counting how many times two windows
have identical labels using only one type of feature. The
results indicate it is combining harmonic and timbral infor-

1 www.isophonics.net

mation that actually makes the main contribution to the per-
formance of SM-NMF.

only chroma only MFCC both
PFM 0.59 0.61 0.63

Table 4. Forming score matrix with either harmonic or tim-
bral information versus both information.

Finally, in Table 5, we compare our results with other
state-of-the-art methods, which use the same Isophonics an-
notation, listed in [3]. To be more informative, we also
list pairwise precision rate (PPR) and pairwise recall rate
(PRR).

System PFM PPR PRR
Mauch et al [13] 0.66 0.61 0.77
SM-NMF 0.63 0.61 0.69
Weiss et al [3] 0.60 0.58 0.68
Levy et al [2] 0.54 0.58 0.53

Table 5. Segmentation performance of SM-NMF and other
state-of-the-art methods on the Beatles data set.

Our algorithm does not involve any post-processes based
on music knowledge such as eliminating too short segments
or restricting segment length to multiples of 4 beats [13].
These rules can help reduce fragments, so we can expect
our algorithm to produce higher PRR, and thus higher PFM,
if we consider them.

4.3 Case Study

We study an example shown in Figure 7. In the chroma
solution, we see that a verse is oversegmented into three
segments (blue, red, green). We see in the score matrix
that the red-labeled segment is tolerated in larger boxes but
the green-labeled segment is not. This is because the red-
labeled segment is a correctable mistake produced by some
unstable clustering results, while the green-labeled segment
is an uncorrectable mistake produced by the interference
from heavy drumming. In the MFCC solution, we see that
the first and second verse are given different label from the
third and fourth verse. This is produced by the differences
in background choir, by which MFCC solution is confident
that they have two distinct timbres. So we see in the score
matrix the upper left four large boxes are completely sep-
arated from the lower right four large boxes. The final so-
lution will hide all correctable mistakes but display all un-
correctable mistakes. Therefore, SM-NMF performs well
when the front-end structural segmentation algorithm (two-
level clustering for this paper) makes as few uncorrectable
mistakes as possible.
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intro  verse    verse   bridge   verse  bridge  verse outro 

  

Figure 7. Example:“You Won’t See Me”. The last four la-
bels are respectively final solution, chroma solution, MFCC
solution and ground truth.

5. SUMMARY AND FUTURE WORKS

We have described a novel model for music structural seg-
mentation, to bring the results of two-level clustering using
chroma and MFCC separately into one final solution, aim-
ing at combining harmonic and timbral information. We
use splitting initialization and random turbulence to pro-
duce slightly different chroma and MFCC solutions from
two-level clustering. Then we construct a score matrix to
exhibit the pairwise relation between chroma solutions and
MFCC solutions. We apply NMF and Maximum Likelihood
to reveal music structure and sparseness to automatically de-
termine the number of segment types in a given song. The
PFM of our proposed SM-NMF method outperforms two-
level clustering using single feature.

There is lots of space for improvement. We have shown
in Section 4.3 that one obstacle in SM-NMF method is the
reliability of solutions of the front-end algorithm. The two-
level clustering can be replaced by any structural segmen-
tation algorithm as long as random turbulence is included
to produce slightly different solutions. We note that the re-
liability is not equivalent to the value of PFM, because for
example we cannot expect MFCC alone to identify harmon-
ically different segments or discriminate intro and half-intro.
We need ground truth directly related to harmonically simi-
lar segments or timbrally similar segments.

Besides, NMF might produce better results with some

constraints exploiting symmetry and sparsity. The score ma-
trix is a flexible representation, which might be associated
with probabilistic models. For example, if we view the score
matrix as a “term frequency-inverse document frequency (tf-
idf)” matrix, we might make use of Probabilistic Latent Se-
mantic Analysis [14] to give a more elegant algorithm. We
might also introduce constraints such as segment length and
inter-segment transition probabilities to produce more mu-
sically meaningful results.
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