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ABSTRACT

Mel-frequency cepstral coefficients (MFCCs) are efficient
audio descriptors providing spectral energy measurements
over short time windows of length 23 ms. These measure-
ments, however, lose non-stationary spectral information such
as transients or time-varying structures. It is shown that this
information can be recovered as spectral co-occurrence co-
efficients. Scattering operators compute these coefficients
with a cascade of wavelet filter banks and modulus recti-
fiers. The signal can be reconstructed from scattering coeffi-
cients by inverting these wavelet modulus operators. An ap-
plication to genre classification shows that second-order co-
occurrence coefficients improve results obtained by MFCC
and Delta-MFCC descriptors. 1

1. INTRODUCTION

Many speech and music classifiers use mel-frequency cep-
stral coefficients (MFCCs), which are cosine transforms of
mel-frequency spectral coefficients (MFSCs). Over a fixed
time interval, MFSCs measure the signal frequency energy
over mel-frequency intervals of constant-Q bandwidth. As
a result, they lose information on signal structures that are
non-stationary on this time interval. To minimize this loss,
short time windows of 23 ms are used in most applications
since at this resolution most signals are locally stationary.
The characterization of audio properties on larger time scales
is then done by aggregating MFSC coefficients in time, with
multiple ad-hoc methods such as Delta-MFCC [5] or MFCC
segments [1]. This paper shows that the non-stationary be-
havior lost by MFSC coefficients is captured by a scatter-
ing transform which computes multiscale co-occurrence co-
efficients. A scattering representation includes MFSC-like
measurements together with higher-order co-occurence co-
efficients that can characterize audio information over much
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longer time intervals, up to several seconds. This yields ef-
ficient representations for audio classification.

Section 2 relates MFSCs and wavelet filter bank coeffi-
cients. It is shown that information lost by spectral energy
measurements can be recovered by a scattering operator in-
troduced in [8]. It computes co-occurrence coefficients by
cascading wavelet filter banks and rectifiers calculated with
modulus operators. A scattering transform has strong sim-
ilarities with auditory physiological models based on cas-
cades of constant-Q filter banks and rectifiers [4, 10]. It is
shown that second-order co-occurrence coefficients carry an
important part of the signal information. Section 3 gives
an application to musical genre classification, which shows
that scattering co-occurence coefficients reduce classifica-
tion errors obtained with MFCCs and Delta-MFCCs. A
MATLAB software is available at http://www.cmap.
polytechnique.fr/scattering/.

2. SCATTERING REPRESENTATION

2.1 From Mel-Frequency Spectra to Wavelets

To understand the information lost by mel-frequency spec-
tral coefficients, we relate them to a wavelet transform. The
Fourier transform of x(t) is written x̂(ω) =

∫
x(u)e−iωudu.

A short-time Fourier transform of x is computed as the Fourier
transform of xt,T (u) = x(u)wT (u− t), where wT is a time
window of size T :

x̂t,T (ω) =
∫
xt,T (u)e−iωudu.

MFSCs are obtained by averaging the spectrogram |x̂t,T (ω)|2
over mel-frequency intervals. These intervals have a con-
stant frequency bandwidth below 1000 Hz and a constant
octave bandwidth above 1000 Hz. The MFSCs can thus be
written

MTx(t, j) =
1
2π

∫
|x̂t,T (ω)|2|ψ̂j(ω)|2dω (1)

where each ψ̂j(ω) covers a mel-frequency interval indexed
by j. Applying Parseval’s theorem yields

MTx(t, j) =
∫
|xt,T ? ψj(u)|2du. (2)
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It results thatMTx(t, j) is the energy of x in a neighborhood
of t of size T and in the mel-frequency interval indexed by
j. It is unable to capture non-stationary structures of dura-
tion shorter than T , which is why T is chosen to be small,
typically 23 ms.

At high frequencies, the filters ψj are constructed by di-
lating a single filter ψ whose octave bandwidth is 1/Q:

ψj(t) = a−jψ(a−jt) with a = 21/Q and j ≤ J. (3)

These filters can thus be interpreted as dilated wavelets. The
filter ψ is normalized so that its support is about 1 s. It is a
complex filter whose transfer function approximately covers
the frequency interval [2Qπ − π, 2Qπ + π]. For j < J ,
the time support of ψj is thus smaller than aJ and it covers
the frequency interval [2Qπa−j − πa−j , 2Qπa−j + πa−j ].
Frequencies below 2πQa−J are covered by P filters ψj (for
J ≤ j < J + P ), having the same frequency bandwidth
as ψJ , which is 2πa−J , and a time support equal to aJ .
Although these low-frequency filters are not dilations of ψ,
for the sake of simplicity we shall still call them wavelets.
The resulting wavelet transform is a filter bank defined by:

WJx(t) =
(
x ? φJ(t)
x ? ψj(t)

)
j<J+P

.

The first filter φJ is a low-pass filter covering the interval
[−πa−J , πa−J ], which is not covered by other wavelet fil-
ters and whose temporal support is about aJ .

Wavelet filters are designed so that for all frequencies ω

1−ε ≤ |φ̂J(ω)|2+1
2

∑
j<J+P

|ψ̂j(ω)|2+|ψ̂j(−ω)|2 ≤ 1 (4)

for a small ε. The squared norm of a signal is written ‖x‖2 =∫
|x(t)|2dt and the norm of its wavelet transform is defined

by:

‖WJx‖2 = ‖x ? φJ‖2 +
∑

j<J+P

‖x ? ψj‖2.

Thus by applying Parseval’s theorem one can verify that the
filter admissibility condition (4) implies that

(1− ε) ‖x‖2 ≤ ‖WJx‖2 ≤ ‖x‖2 .

The wavelet filter bank is thus contractive and if ε = 0, it
is also unitary. This energy equivalence also implies that x
can be recovered from its wavelet transform.

In numerical applications we use Gabor filters ψ(t) =
θ(t)ei2πQt where θ is Gaussian, with Q = 16 and P = 23,
which satisfy (4) for ε = 0.02. The resulting filter bank is
shown in Figure 1.
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Figure 1. Wavelet filter bank of Gabor filters at sampling
frequency 11025 Hz.

2.2 Scattering Wavelets

An MFSC coefficientMTx(t, j) in (2) gives the squared en-
ergy of wavelet coefficients at the scale aj , over a time inter-
val of size T around t. Let us choose the maximum wavelet
scale to be aJ = T . The square does not play an important
role on the derived MFCC audio descriptors which are cal-
culated with a logarithm. Replacing the squared amplitude
by the amplitude yields similar measurements which can be
computed directly by averaging the wavelet coefficient am-
plitudes of x:

|x ? ψj | ? φJ(t). (5)

This measures the signal amplitude in the frequency interval
covered by ψj , averaged over a neighborhood of t of dura-
tion T = aJ . The larger T , the more information is lost by
this averaging.

To recover the information lost by averaging, observe
that |x ?ψj1 | ? φJ can be written as the low-frequency com-
ponent of the wavelet transform of |x ? ψj1 |:

WJ |x ? ψj1 |(t) =
(
|x ? ψj1 | ? φJ(t)
|x ? ψj1 | ? ψj2(t)

)
j2<J+P

.

Since the wavelet transform is invertible, the information
lost by the convolution with φJ is recovered by the wavelet
coefficients |x ? ψj1 | ? ψj2(t). Averaged measurements are
obtained with a low-pass filtering of the modulus of these
complex wavelet coefficients:

||x ? ψj1 | ? ψj2 | ? φJ(t). (6)

These provide co-occurrence information at the scales aj1
and aj2 . Such coefficients are called scattering coefficients
because they compute the interferences of the signal x with
two successive wavelets ψj1 and ψj2 . They measure the am-
plitude of time variations of |x ? ψj1(t)| in the frequency
intervals covered by the wavelets ψj2 . Figure 2 shows first-
order scattering coefficients of a musical recording sampled
at 11025 Hz, calculated with T = 800 ms. Co-occurrence
coefficients ||x ? ψj1 | ? ψj2 | ? φJ(t) are shown in Figure 2,
for a fixed scale aj1 .

Averaging ||x ? ψj1 | ? ψj2 | by φJ in (6) again entails
a loss of high frequencies, which can be recovered by a
new wavelet transform. The same procedure is thus iterated,
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Figure 2. Top: log[|x ? ψj1 | ? φJ(t)] as a function of time
t and of ω1 = 2πQa−j1 for T = aJ = 800 ms. Middle:
graph of |x?ψj1 | for ω1 = 855 Hz. Bottom: log[| |x?ψj1 |?
ψj2 | ? φJ(t)] as a function of t and of ω2 = 2πQa−j2 for
|x ? ψj1 | shown above.

defining a cascade of filter banks and modulus operators il-
lustrated in Figure 3.

Let UJ be the wavelet modulus operator which computes
the modulus of complex wavelet coefficients while keeping
the phase of x ? φJ :

UJx(t) =
(

x ? φJ(t)
|x ? ψj(t)|

)
j<J+P

. (7)

A scattering transform first computes UJx and outputs the
low-frequency signal x?φJ . At the next layer, each |x?ψj1 |
is retransformed by UJ , which outputs |x ? ψj1 | ? φJ and
computes ||x?ψj1 |?ψj2 |. These coefficients are themselves
again transformed by UJ , which outputs ||x?ψj1 |?ψj2 |?φJ
and computes third-order wavelet signals, which are further
subdecomposed by UJ , and so on.

Applying this transformation m times and discarding the
coefficients not filtered by φJ yields a scattering vector of
size m+ 1 at time t:

SJx(t) =


x ? φJ(t)

|x ? ψj1 | ? φJ(t)
||x ? ψj1 | ? ψj2 | ? φJ(t)

...
| | · · · |x ? ψj1 | · · · | ? ψjm | ? φJ(t)


j1,j2,...<J+P

This scattering transform is a cascade of modulated fil-
ter banks and non-linear rectifications, as in the auditory
physiological models studied in [4, 10]. It has an architec-
ture similar to convolutional networks used in computer vi-
sion [6] and to convolutional deep belief networks used in

x

x ! φJ

|x ! ψj1 | ! φJ ∀j1

| |x ! ψj1 | ! ψj2 | ! φJ ∀j1, j2

|x ! ψj1 |
UJ

UJ

| |x ! ψj1 | ! ψj2 |
UJ

| |x ! ψj1 | · · · ! ψjm
|

| |x ! ψj1 | · · · ! ψjm
| ! φJ ∀j1...jm

UJ

· · · · · ·

Figure 3. A scattering operator is a cascade of wavelet mod-
ulus operators UJ . It outputs convolutions with φJ shown
in boxes.

audio classification [7]. However, a scattering gathers out-
puts from all layers as opposed the last one. Indeed, the
energy of coefficients of order q decays to zero when q in-
creases.

The squared norm of this scattering signal is the sum of
the squared norms of its components:

‖SJx‖2 =
∑
q

∑
j1,...,jq<J+P

‖ | |x ? ψj1 | · · · ? ψjq | ? φJ‖2.

Since WJ and the modulus are both contractive operators,
the wavelet modulus operator UJ is also contractive. Be-
cause SJ is calculated with a cascade of UJ , it remains con-
tractive, and thus for any signals x and y

‖SJx− SJy‖ ≤ ‖x− y‖ .
The wavelet transform is unitary if the wavelet filters satisfy
the admissibility condition (4) with ε = 0. For wavelets
satisfying this and additional criteria, it is proved in [8] that
the energy of all scattering coefficients of order q decays to
zero as q increases. It results that the whole signal energy
is carried by a scattering vector consisting of co-occurrence
coefficients of all orders from q = 0 to q =∞:

‖SJx‖ = ‖x‖ .
Table 1 gives the average value of ‖SJx‖/‖x‖ over all

audio signals x in the GTZAN dataset, sampled at 11025 Hz,
as a function of m and T . For m = 0, SJx(t) = f ? φJ(t).
Observe that for T ≤ 6 s, first- and second-order coefficients
carry more than 98% of the energy.

2.3 Second-Order Scattering Decomposition and
Reconstruction

In the following, the scattering transform is computed for
m = 2 because first- and second-order scattering coeffi-
cients carry most of the signal energy in the interesting range
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T m = 0 m = 1 m = 2 m = 3
23 ms 23.7% 98.9% 99.6% 99.6%
93 ms 1.9% 97.7% 99.4% 99.4%
370 ms 1.2% 92.7% 99.3% 99.4%
1.5 s 1.0% 82.0% 98.9% 99.3%
5.9 s 0.99% 73.0% 98.1% 99.1%
22 s 0.97% 67.5% 96.5% 99.0%

Table 1. Averaged ratio ‖SJx‖/‖x‖ on the GTZAN dataset,
as a function of the maximum scattering order m and of
T = aJ .

of window sizes T . The signals |f ? ψj1 | ? φJ(t) and ||x ?
ψj1 |?ψj2 |?φJ(t) are uniformly sampled at intervals T = aJ

because the frequency bandwidth of φ̂J is 2πa−J . A sam-
pled second-order scattering vector is thus defined by:

SJx(naJ) =
(

|x ? ψj1 | ? φJ(naJ)
||x ? ψj1 | ? ψj2 | ? φJ(naJ)

)
j1,j2<J+P

.

(8)
We now show that if j2 < j1 +logaQ/2 then ||x?ψj1 |?

ψj2 | ? φJ(t) ≈ 0, so second-order coefficients need only be
calculated for j2 ≥ j1 + logaQ/2. Indeed, since ψ(t) =
θ(t)ei2πQt, it results that

|x?ψj1(t)| = |xj1 ?θj1(t)|with xj1(t) = x(t)e−i2πQa
−j1 t .

The Fourier transform of |x ? ψj1(t)| is thus approximately
located in the low-frequency interval covered by θ̂j1 where
θj(t) = a−jθ(a−jt). One can verify that if j2 < j1 +
logaQ/2 then the supports of ψ̂j2 and θ̂j1 barely overlap,
which implies that ||x ? ψj1 | ? ψj2 | ? φJ(t) ≈ 0. Non-zero
scattering coefficients (8) are computed with the following
algorithm.

Algorithm 1 Second-order scattering calculations
for j1 < J + P − 1 do

Compute ||f ? ψj1(aj1n)| ∀n
Output ||f ? ψj1 | ? φJ(aJn) ∀n
for j2 = j1 + loga(Q/2) to J + P − 1 do

Compute and output ||f ? ψj1 | ? ψj2 | ? φJ(aJn) ∀n
end for

end for

An audio frame of duration T = aJ containing N sam-
ples yields aboutQ log2(N/Q) andQ2/2 log2

2(N/Q
2) first-

order and second-order scattering coefficients, respectively.
If N = 8192, there are 150 first-order coefficients and 5500
second-order coefficients, approximately. Using FFTs, these
coefficients are computed withO(N log(N/Q)) operations.

Since the scattering transform is computed by iterating
the wavelet modulus operator UJ , its inversion is reduced to

inverting UJ . The wavelet transform WJ is invertible with a
stable inverse but UJ loses the complex phase of wavelet
coefficients. Inverting UJ then amounts to retrieving the
complex phase from the modulus information. A surpris-
ing new result [12] proves that for appropriate wavelets, the
operator UJ is invertible and that its inverse is continuous,
which is a weak stability result. This inversion is made pos-
sible because of the redundancy of wavelet signals x?ψj(t),
which can be exploited with a reproducing kernel projector.
Numerical reconstructions are computed with an alternating
projection algorithm, which alternates between a projector
on the modulus constraint and the wavelet transform repro-
ducing kernel projector [12]. However, this algorithm does
not compute the exact inverse of UJ because it is a non-
convex optimisation which can be trapped in local minima.

Even though UJ is invertible, x cannot be recovered ex-
actly from SJx calculated at a finite order m because all
scattering coefficients of order larger than m are set to 0.
For T ≤ 100 ms most of the audio signal energy is con-
centrated in first-order coefficients according to Table 1 and
the reconstruction from these first-order coefficients (which
correspond to MFSCs) is indeed of good audio quality. As T
increases, reconstructions from first-order coefficients pro-
gressively lose more information on transient structures and
lose all melodic structures for T ≥ 3 s. Second-order coef-
ficients recover this transient information and fully restores
melodic structures when T = 3 s. Reconstruction examples
are available at http://www.cmap.polytechnique.
fr/scattering/audio/.

2.4 Cosine Log-Scattering

MFCC coefficients are computed as a cosine transform of
the logarithm of MFSC coefficients. Indeed, many musi-
cal and voiced sounds can be approximated by an excita-
tion e(t) filtered by resonator corresponding to a filter h(t):
x(t) = e ? h(t) [2]. MFCCs separate h from e with a log-
arithm and a discrete cosine transform (DCT). The same
property applies to scattering coefficients, which are there-
fore retransformed with a logarithm and a DCT.

The impulse response h(t) is typically very short so ĥ(ω)
is a regular function of ω. Supposing that ĥ(ω) is nearly
constant over the frequency support of ψ̂j1 , one can verify
that

x ? ψj1(t) ≈ ĥ(2πQa−j1) · e ? ψj1(t). (9)

It results that

log |x ? ψj1 | ? φJ(t) ≈ log |ĥ(2πQa−j1)| (10)

+ log [|e ? ψj1(t)| ? φJ(t)] .

Since |ĥ(ω)| is a regular function of ω, log |ĥ(2πQa−j1)| is
also a regular function of j1 whereas this is typically false
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Figure 4. Variances, in decreasing order, of log-scattering
coefficients in different bases for q = 1 and q = 2 computed
on GTZAN for T = 1.5 s. Solid curve: Variance of log-
scattering coefficients. Dashed curve: Variance of a PCA
basis computed on log-scattering coefficients. Dotted curve:
Variance of cosine log-scattering coefficients.

for |e ? ψj1(t)|. Both components can thus be partially sep-
arated with a DCT along j1, which carries the information
depending on h over to low-frequency DCT coefficients.

Similarly, (9) implies

||x?ψj1 |?ψj2 |?φJ(t) ≈ |ĥ(2πQa−j1)|·|e?ψj1 |?ψj2 |?φJ(t),

and hence

log [||x ? ψj1 | ? ψj2 | ? φJ(t)] ≈ log |ĥ(2πQa−j1)|
+ log [|e ? ψj1 | ? ψj2 | ? φJ(t)] .

These coefficients are transformed with a DCT along j2 and
then along j1, yielding a representation parametrized by k2

and k1 respectively. The first term, depending only on j1,
only contributes to the zero DCT coefficient (k2 = 0) along
j2. The second DCT along j1 separates the remaining low-
frequency components along j1 from high-frequency ones.

Figure 4 indicates that the DCTs efficiently decorrelate
log-scattering coefficients and concentrate the energy over
fewer coefficients. Variances were calculated for q = 1 and
q = 2 on part of the GTZAN dataset in three bases: standard
log-scattering (solid), a PCA basis computed on another part
of the dataset (dashes), and the DCT basis (dotted). The
PCA basis decorrelates the log-scattering coefficients and
since the variances in the DCT basis closely follow those in
PCA basis, the DCT basis decorrelates them as well.

For classification, the final representation using cosine
log-scattering (CLS) coefficients is obtained by keeping only
the low-frequency DCT coefficients as with MFCCs. For
q = 1, the first a1 coefficients are retained. When q = 2,
a square defined by k1 < a1 and k2 < a2 is selected. This
adds a2 bands of information on the non-stationary part cor-
responding to the coefficients in q = 1. In addition, for

k1 < b1, where b1 � a1 (capturing the spectral outline),
b2 � a2 bands are included instead of a2 to better model
the time-varying aspects of the spectral shape (e.g. the fil-
ter h mentioned). For the numerical results presented in this
paper, we have a1 = 100, b1 = 10, a2 = 2 and b2 = 10
(chosen so that classification errors do not differ from the
uncompacted representation for relevant scales). The size
of the representation is then at most 100 coefficients for
m = 1 and 380 coefficients for m = 2. For m = 1, this
is larger than the standard MFCC vector of 20 coefficients
when T = 23 ms since the compacitification is optimized
for all scales and smaller scales need less coefficients.

3. CLASSIFICATION

Music and speech classification algorithms are often based
on MFCCs computed over 23 ms time windows. To capture
longer-range structures, these MFCCs are either aggregated
in segments [1] that cover longer time intervals or are com-
plemented with other features such as Delta-MFCCs [5].
Sophisticated GMM, HMM, AdaBoost, sparse coding clas-
sifiers have been developed on such feature vectors to op-
timize audio classification. The next section studies classi-
fications results obtained with simple classifiers to concen-
trate on the properties of feature vectors as opposed to a
specific classifier.

3.1 Musical Genre Classification

The performance of MFCC and log-scattering vectors are
compared for musical genre classification, on the GTZAN
genre database [11]. This database includes 10 genres, each
containing 100 clips of 30 seconds each.

Delta-MFCC coefficients [5] are defined as the differ-
ence between MFCC coefficients of two consecutive au-
dio frames and thus cover a time interval of twice the size.
These complement the ordinary MFCCs, providing infor-
mation on the temporal audio dynamics over longer time
intervals. The classification performances of feature vectors
are evaluated with an SVM classifier computed with a Gaus-
sian kernel k(x1, x2) = exp(−γ‖x1 − x2‖2) or an affine
space classifier.

Each audio track is decomposed in frames of duration
T which are represented using MFCCs, Delta-MFCCs, or
cosine log-scattering. A multi-class SVM is implemented
over the audio frames with a 1vs1 approach which trains
an SVM to discriminate each pair of classes. To classify
a whole track, each frame is classified using the SVM and
the class with the largest number of frames in the track is
selected. The Gaussian kernel parameter γ and the SVM
slack variable C are optimized with a cross-validation on a
subset of the training set.

Due to the large number of training examples available
for small window sizes, training an SVM in these circum-
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T/classifier 0.023 s/PCA 0.19 s/PCA 1.5 s/SVM
MFCC 46 36 28

Delta-MFCC 37 33 26
CLS, m = 1 46 36 28
CLS, m = 2 34 23 18

Table 2. Error rates (in percent) on GTZAN using five-fold
cross-validation for different window sizes (T) and features.

stances is infeasible. Therefore, we also compare the per-
formance of the features using an affine space classifier [3]
which uses a PCA to create an affine space approximation
for each class and then assigns a given track to the class
whose affine space model best approximates the feature vec-
tor.

The results of five-fold cross-validation on the GTZAN
dataset are shown in Table 2. As expected, the error rates
for MFCC and first-order CLS are close since they mea-
sure similar quantities. Second-order CLS vectors achieve
significantly higher accuracy since they recover lost non-
stationary structure of the signal. Delta-MFCC perform bet-
ter than regular MFCCs, but are outperformed by CLS vec-
tors which provide richer representations. With increasing
T , the error decreases as larger-scale musical information is
encoded, yielding the lowest error of 18% for T = 1.5 s
with an SVM. At larger time scales, however, classifica-
tion suffers since even second-order CLS vectors are un-
able to accurately represent the signal, as seen during recon-
struction. Incorporating third-order scattering coefficients
(m = 3) marginally improves the classification results while
greatly increasing the computational load.

State-of-the-art results on GTZAN are obtained with clas-
sifiers better adapted than SVMs. These classifiers can also
be applied to CLS vectors to improve classification results.
With MFCCs on 23 ms and other local features, an Ad-
aBoost classifier yields an error of 17% in [1]. The cascade
filter bank of cortical representations in [10], which is simi-
lar to a scattering representation, yields an error of 7.6% [9]
with a sparse coding classifier.

4. CONCLUSION

Scattering representations are shown to provide complemen-
tary co-occurence information which refines MFCC descrip-
tors. We demonstrated that second-order scattering coeffi-
cients can bring an important improvement over MFCCs for
classification. The ability to characterize non-stationary sig-
nal structures opens the possibility to discriminate more so-
phisticated phenomena such as transients, time-varying fil-
ters and rhythms with co-occurrence scattering coefficients,
which is not possible with MFCCs. It opens a wide range of
applications for music and speech signal processing.
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