
1This work is partially supported by the Ministerio Español de Educación y Ciencia, grants TIC 1999-0510-C02-02

MULTIRESOLUTION MODELLING USING CONNECTIVITY IN-
FORMATION

Ó. Belmonte‡, I. Remolar‡, J. Ribelles‡, M. Chover‡, C. Rebollo‡, M. Fernández¶1

‡Departamento de Lenguajes y Sistemas Informáticos. Universitat Jaume I. Castellón. Spain.
Universitat Jaume I, Campus de Riu Sec.

12080, Castellón de la Plana, Spain
{belfern, remolar, ribelles, chover}@uji.es

¶Departamento de Informática. Universitat de Valencia.

46100, Valencia, Spain
marcos@robotica.uv.es

ABSTRACT

Triangles meshes are the most popular standard model used to represent polygonal surfaces in Computer
Graphics. Drawing these meshes as a set of independent triangles involves sending a vast amount of in-
formation to the graphic engine. The use of primitives such as triangle fans and strips, which make use of
the connectivity information between the triangles in the mesh, dramatically reduces the amount of in-
formation sent to the graphic engine. The Multiresolution Triangle Strips scheme takes advantage of this
characteristic in order to represent a multiresolution model as a set of multiresolution triangle strips. A
multiresolution triangle strip is made up of the original strips and all of its Levels of Detail. Each of these
multiresolution strips is represented as a graph that is traversed to recover the demanded LOD. A Mul-
tiresolution Triangle Strip model uses the triangle strip primitive both in the data structure and in the ren-
dering stage. The Multiresolution Triangle Strip is compared against the Progressive Meshes multiresolu-
tion model, probably one of the best multiresolution models known. The performance of the MTS models
in visualising drastically improves PM models.

Keywords : Multiresolution, triangle strip, real time rendering, computer graphics.

1. INTRODUCTION

Triangle meshes have become the standard model
to represent polygonal surfaces. In several Com-
puter Graphics applications, such as real-time visu-
alisation, virtual reality, computer games, etc. sur-
faces are described by very dense triangle meshes.
There are two main reasons for this: the simplicity
of the drawing algorithm, which is easily imple-
mented in hardware, and the fact that any mesh can
be triangulated.

Nowadays, highly detailed geometric models with
hundreds of thousands of triangles are managed in
many Computer Graphics applications. These mod-
els are very expensive to visualise. In some cases, a
simplified version, with a lower number of trian-
gles, retains the visual appearance of the original
model. For example, it is not necessary to represent
an object that is far from the viewer with ten thou-

sand triangles when it only covers one hundred
pixels on the screen. The simplified version is said
to have a lower Level of Detail (LOD).

Multiresolution models support the representation
and processing of geometric entities at different
levels of detail, depending on the specific needs of
the application. The common criteria used to de-
termine the most suitable level of detail are the
distance of the object from the viewer, the projec-
tion area, the eccentricity of the object on the screen
and the intrinsic importance of the object.

Current graphics systems are able to render more
triangles than they actually receive. Nowadays, the
bottleneck in the rendering stage is the throughput
of the graphics systems in receiving the information
to visualise. This amount of information decreases
considerably if the connectivity property between
the triangles is used in the mesh representation.

Some graphic primitives such as triangle fans and
strips take advantage of this property. These appear
as drawing primitives in some graphics libraries,
such as OpenGL .
All the multiresolution models in the literature,
except MOM-FAN [Ribel2000] use the triangle
primitive as a base in both the data structure and in
the rendering stage. Multiresolution Triangle Strip
(MTS) is the first scheme that represents a mul-
tiresolution model using the triangle strip primitive
in these two stages. An MTS model consists in a set
of multiresolution strips. A multiresolution strip
represents the original strip and all its LODs. Each
of these strips is represented as a directed graph
with weights in its arcs.

In section 2, we review the work carried out up to
now, including algorithms for searching triangle
strips in triangle meshes and multiresolution models
that use the triangle fan or strip primitive during the
rendering stage. In section 3, the MTS model is
presented, together with its data structure and the
recovery algorithm. We show, by means of an ex-
ample, how a graph is constructed and how to re-
cover a specific level of detail. In section 4, the
results are shown and are compared with the results
from Progressive Meshes [Hoppe1996]. Finally, in
section 5, conclusions and future work are pre-
sented.

2. PREVIOUS WORK

In this section, several pieces of work relative to the
multiresolution model presented in this paper are
briefly reviewed. First, algorithms for searching
strips over a polygonal surface are discussed. After
this, we review the simplification algorithm by
Garland and Heckbert [Garla1997a], which has
been used to obtain the coarse meshes of the origi-
nal model. Other multiresolution models that use

triangle fans or strips either in the data structures or
in the rendering stage are discussed.

2.1 Triangle strip search algorithms

A triangle strip uses the connectivity information to
represent a polygonal surface. An example of a
triangle strip is shown in Fig. 1.a. This strip is codi-
fied as the vertex sequence 0,1,2,3,4,5,6,7, where
the triangle i is composed of the vertices i, i+1 and
i+2. In this way, only T+2 vertices need to be sent
to the graphics system to render T triangles, as
opposed to the 3T vertices that need to be sent
when the surface is rendered as a set of independent
triangles. In some vertex sequences, a special op-
eration, called swap is required. Figure 1.b shows
an example of this operation. The vertex sequence
that represents the strip is 0,1,2,3,4,5,6,swap,7,8. As
we can see, it is necessary to exchange vertices 5
and 6 to represent the strip correctly. This operation
can be simulated by repeating some vertices; in this
case, the vertex sequence would be
0,1,2,3,4,5,6,5,7,8. A triangle strip that can be rep-
resented without any swap operation is called a
sequential strip; and a triangle strip that needs this
operation, is called a generalised strip.

The search for the best set of triangle strips in a
mesh is an NP-complete problem [Arkin1996].
Thus, it is necessary to use some heuristic strategies
in the search. The algorithm by Evans et al. [Ev-
ans1996] is used in the construction of/by the MTS
model. This algorithm, called STRIPE, is in the
public domain at http://www.cs.sunysb.edu/~stripe/.
The STRIPE algorithm allows control over some
parameters in the search process, such as the use of
swap operations.

Figure 1: a) Example of a strip, the vertex sequence that represents this strip and its associated graph.

b) Example of a strip with a swap operation and the graph that represents it.

1

0
2

3

4

5

6

7 1

0
2

3

4

5

6
7

8

0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

END OF STRIP

0

1

2

3

4

5

6

7

1

2

3

4

5

6

5

END OF STRIP

7

8

8

0

1

2

3

4

5

6

7

T0 T1
T2

T3
T4

T5

0

1

2

3

4

5

6
7

8

T0 T1

T2

T3

T4
T6

T5

Sequence: 0,1,2,3,4,5,6,7 Sequence: 0,1,2,3,4,5,6,5,7,8

a) b)

2.2 Simplification using vertex pair contraction.

Every multiresolution model needs a simplification
method that provides various geometric descrip-
tions of the original polygonal surface with fewer
geometric primitives. A simplified object has to
maintain the appearance of the original model as
much as possible. Similarity measurements between
an original mesh and a simplified one can be per-
formed using an appearance-based metric
[Linds2000] or a geometric measure[Cigno1998].

There are important surveys where several sim-

plification methods that have appeared in the litera-
ture [Garla1997b] are classified. Simplification
algorithms based on iterative contraction are of
particular interest because they have been used to
construct multiresolution model representations.

The simplification method used in Multiresolu-
tion Triangle Strips is the method proposed by
Garland and Heckbert [Garla1997a]. This method,
called Qslim, is in the public domain at
http://www.cs.cmu.edu/~garland/quadrics/. It is
based on iterative vertex pair contraction. A 4x4
symmetric matrix Qi is associated with each vertex
vi. This matrix represents the distance from the
vertex to the set of planes that share it. When a pair
of vertices is contracted, their matrices are added
together to form the matrix for the resulting vertex.

2.3 Multiresolution modelling.

Garland [Garla1999] defines a multiresolution
model as a model representation that captures a
wide range of approximations of an object and
which can be used to reconstruct any one of them
on demand.

The multiresolution models can be classified in two
large groups: discrete multiresolution models,
which contain a lower number of levels of detail
and a control mechanism to determine which is the
most adequate one in each moment, and the con-
tinuous multiresolution models, which capture a
vast range of, virtually continuous, approximations
of an object. These can be subdivided into two main
classes, according to their structure: tree-like mod-
els, and historical models [Puppo1999].

In a discrete multiresolution model, there is no
relation among the levels of detail of the object.
Thus, the size of these models increases rapidly
when some new levels of detail are included. They
usually store between five and ten levels of detail.
Some graphic standards, such as VRML or Open-
Inventor, use discrete multiresolution models.
These models are easily implemented and can be
edited by the users and optimised for rendering.
The main disadvantage is the visual artefact that

occurs during the change between two levels of
detail. One solution to decrease this visual artefact
is to draw both levels of detail of the object using
transparency methods, but rendering time is in-
creased.

In continuous multiresolution models, two consecu-
tive levels of detail differ by a reduced number of
triangles. These small changes introduce a minimal
visual artefact. On the other hand, the size of the
models decreases as compared to the discrete mod-
els because no duplicate information is stored. The
Progressive Meshes model of Hugues Hoppe
[Hoppe1996] is the most well known continuous
multiresolution model nowadays. It is included in
Microsoft’s DirectX 8.0 graphic library.

2.3.1 Multiresolution models using triangle fans
or strips primitives.

In this section, a review of the reduced number of
models that use the triangle fans or strips primitive
are revised. These models use these primitives at
either the storage stage or the rendering stage.

Hoppe [Hoppe1997] has utilised strips in the ren-
dering stage in a view-dependent multiresolution
model. After selecting which triangles to draw,
strips of triangles are searched. Through experi-
mentation, Hoppe concludes that the fastest triangle
strip search algorithm is a greedy one. In this
greedy algorithm, each of the non-drawn triangles
begins a new strip, which grows through its non-
rendered neighbours. In order to reduce the strip
fragmentation, strips are grown in a clockwise spi-
ral manner.

El-Sana et al. [El-San1999] have developed a view-
dependent multiresolution model based on an edge-
collapsing criterion. The first step in constructing
the model is to search triangle strips on it. These
triangle strips are stored in a data structure called a
skip list [Pugh1990]. Once the multiresolution
model has determined which triangles to visualise,
the skip list is processed. If none of its triangles has
been collapsed, the strip is drawn. Otherwise, the
skip list is processed in order to update the strips.
The triangle strips are not the basic primitives of
the model they are used to speed up the rendering
process.

The work presented in [Ribel2000] modifies
[Ribel1998] using triangle fans as its basic repre-
sentation primitive. Using this primitive, the storage
cost is reduced, but the behaviour of this new model
regarding its visualis ation time is similar to its
predecessor. A short average fan length, the high
percentage of degenerate triangles and the need to
adjust the fans to the required LOD in real time all
play a part in producing overall results which do

not lead to a global improvement in visualisation
time.
Neither of the previous models uses the triangle
strip primitive in both the storage and the rendering
stage. Hoppe searches the strips over the simplified
model prior to rendering it. In the work by El-Sana,
we need to know which triangles to render in order
to update the original strips.

3 THE MTS MODEL

The main idea is to build the model as a set of mul-
tiresolution triangle strips. A multiresolution strip is
made of the original strip and all of its levels of
detail. Each multiresolution strip is represented as a
graph. The vertex sequence in a strip induces an
order relationship between them. We conclude that
the graph representing a multiresolution strip is a
directed graph. Based on this fundamental structure,
the level of detail recovery algorithm has graph
traversal as its foundation.

In this section we describe data structures, how to
build a multiresolution triangle strip and the level of
detail recovery algorithm.

3.1 Data structures

A multiresolution strip is made up of a graph, rep-
resenting the strip in all levels of detail, and a list of
strip beginnings (Listing 1: class Multiresolution-
Strip).

Conceptually, each node on the graph represents a
strip vertex and each directed arc of the graph
represents an inner edge of the strip. The arc direc-
tion is determined by the order of vertices in the
sequence representing the strip. Two nodes joined
by an arc in a graph are called adjacent. If the graph
is a directed one, an arc that joins a node v to an-
other node w is incident from v and incident to w.
In practice, a graph is represented by an adjacency
list [Brass1996], (see Fig. 2.c). In this representa-
tion, all nodes on the graph are elements of an ar-
ray, and all incident nodes form another node be-
longing to its adjacency list.

Each strip vertex, represented by a graph node, has
three fields. The first field is an index to the mem-
ory address where the geometric data of the vertex
is allocated. The second field is a pointer to the
adjacency list of the node. The third field is an
index pointing to the next node to be visited in the
level of detail extraction process. See Listing 1,
class ColumnNode.

Each inner edge of the strip, represented by an
adjacency list element, has two fields. The first
field is an index to the element in the column vector
where the next vertex in the strip sequence is. The

second field is an integer specifying the maximum
level of detail at which the arc can be traversed in
the level of detail extraction process. See Listing 1,
class RowNode. In section 3.2, the use of this field
will be shown with an example.
The list of strip beginnings specifies, for each level
of detail, which is the initial vertex of the strip. The
initial vertex changes as the strip is simplified. Each
strip beginnings element has three fields. The first
field specifies the index to the element in the col-
umn vector that is the beginning of the strip. The
second field specifies the maximum level of detail
to where the vertex is the beginning of the strip.
This structure has the same fields as the elements in
the adjacency list, class RowNode, so it has not
been necessary to implement a specific class.

class ColummNode {
 unsigned long vIndex;

unsigned int currentInd;
 RowNode * neighbours;
};
class RowNode {
 unsigned int colIndex;
 unsigned long res;
};
class MultiresolutionStrip {
 RowNode * sBegin;
 ColummNode * colVertices;
};

Listing 1: MTS data structures.

3.1.1 Construction examples

The construction of multiresolution strips starts
from the initial strip. As the strip is simplified by
means of a vertex pair contraction, the vertex se-
quence changes. These changes in the vertex se-
quence should be introduced into the graph repre-
senting the strip.

Let's take the strip in Fig. 2.a) as an example. In this
figure, the initial graph and the strip beginning list
are shown. Let's label the maximum level of detail
at which a strip can be represented as level of detail
0 (LOD 0). The vertex sequence at LOD 0 is
0,1,2,3,4,5,6,7,–3. The special label –3 specifies
that the end of the strip has been reached. After the
first vertex pair contraction the resulting vertex
sequence is 1,2,3,4,5,6,7,–3. The beginning of the
strip has become vertex 1. This change is achieved
by adding a new element to the list of strip begin-
nings; this element has 1 in its coIndex field and
also has 1 in its res field. After the second vertex
pair contraction the new vertex sequence is
1,2,3,4,3,5,6,7,–3. At LOD 2 a swap operation
between vertices 3 and 4 is needed. This change is
achieved by adding two new elements, one to the
adjacency list of vertex 4 (colIndex = 3, res = 2) and
the other to the adjacency list of vertex 3 (colIndex
= 5, res = 2). After the third vertex pair contraction
two strips appear that have the common vertex 4.

The special label –1 specifies that vertex 4 is the
end of one strip and also the beginning of the other
one, so the vertex sequence at LOD 3 is 1,2,4,–
1,6,7,–3. The new changes in the vertex sequence
are achieved by adding the new elements as shown
in Fig 2. After the last vertex pair contraction, the
new vertex sequence is 1,2,6,–3 at LOD 4.

3.2 Level of detail recovery algorithm

The level of detail recovery algorithm traverses the
graph, which represents the multiresolution strip, in
order to extract the demanded level of detail. The
algorithm proceeds in two steps. First, the algo-
rithm seeks out the vertex at the beginning of the
strip, from the list of strip beginnings, with a reso-
lution compatible with the demanded level of detail.
Here, compatible means that the element in the
adjacency list has a res field that is larger or equal
to the demanded level of detail. Second, the graph
is traversed from the vertex at the beginning until a
special –3 node is reached. The pseudo code of the
algorithm is shown in Listing 2.

// First we search the strip beginning
while BeginNotFound and NodesBeginning
 NextBeginning;
endwhile

if BeginNotFound exit //This strip does not
else //exist at
this resolution
 while not EndStrip //While there are
 //vertices in the strip
 while Neighbour.res < ResolutionDemmand
 nextNeighbour;
 endwhile

 if Node is not special node then
 DrawVertex;
 else if Node is -1 or Node is -2 then
 NewStrip;
 else if Node is -3 then
 EndStrip = true;
 endif
 endwhile
endif.

Listing 2: Recovery algorithm.

Figure 2: Construction of a multiresolution strip. a) Original and the sequence of vertex pair contraction. b) The
detailed process of a multiresolution strip construction. c) The final multiresolution strip.

0

1

2
3

4

5

6
7

1

2 3

4
5

6
7

1

2
3

4

7

1

2

4

6
7

1

2

6

0

1

2

3

4

5

6

7

1(0)

2(1)

3(1)

4(1)

5(1)

6(1)

7(1)

-3(1)

0

1

2

3

4

5

6

7

1(0)

2(2)

3(2)

4(2)

5(1)

7(2)

-3(2)

3(2)

6(2)

0

1

2

3

4

5

7

1(0)

2(3)

3(2)

4(2)

5(1)

6(1)

7(3)

-3(3)

3(2)

6(2)

4(3)

-1(3) 6(3)

0

1

3

4

5

6

7

1(0)

2(4)

3(2)

4(2)

5(1)

6(1)

7(3)

-3(3)

3(2)

6(2)

4(3)

-1(3) 6(3)

6(4)

-3(4)

0

1

2

3

4

5

6

7

1(0)

2(0)

3(0)

4(0)

5(0)

6(0)

7(0)

-3(0)

0(0) 0(0) 1(1) 0(0) 1(2) 0(0) 1(3) 0(0) 1(4)

MULTIRESOLUTION
STRIP

0,1,2,3,4,5,6,7 1,2,3,4,5,6,7 1,2,3,4,3,6,7 1,2,4,-1,4,6,7 1,2,6

Level 0 Level 1 Level 2 Level 3 Level 4

Level 0 Level Level 2 Level 3
Level 4

Strip Beginnings

a)

b)
c)

Figure 3: Two examples of the LOD recovery algorithm. a) The demanded resolution is 2. b) The demanded
resolution is 4. The visited nodes are shown with a grey background.

3.2.1 Recovery example

Given the multiresolution shown in Fig. 2, let's
suppose that the demanded LOD is 2. The first step
of the algorithm is to find the vertex at the begin-
ning of the strip at this resolution. The search be-
gins at the first element in the list of strip begin-
nings, and sequentially it searches the first element
which res filed as larger or equal to the demanded
LOD. In this example, the first compatible element
is 1, so this is the beginning of the strip at LOD 2.

A previous step, before the extraction, is to update
the currentInd field of each element in the column
vector. In this way, the search always begins at the
first element in the adjacency list.

The next step is to search through the list of adja-
cencies of the node at the beginning of the strip
with a res field compatible with the demanded
LOD. In this example, the only node on the adja-
cency list has a res field compatible with the LOD
demanded, so 2 is the next vertex in the sequence
that represents the strip. After that, the currentInd
field in the element at the column vector is updated
in order to point to the next element on the list. The
extraction continues until a vertex labelled –3 is
reached, which, as we know, indicates the end of
the strip. Figure 3.a shows the nodes extracted to
recover the LOD 2. Figure 3.b shows the nodes
extracted to recover the LOD 4.

4 RESULTS

The MTS model has been subjected to several tests.
These tests are addressed at evaluating the visuali-
zation time in a real-time application. The results
are compared with those of Progressive Meshes
(PM) – probably one of the best-known models.
PM uses the triangle primitive both in the data
structures and at the rendering stage. Here we use
our own implementation of PM, this has been tested

and the same results were obtained as those pub-
lished by the author.

The polygonal objects used in the test come from
the Stanford University Computer Graphics Labo-
ratory (http://www-
graphics.stanford.edu/data/3Dscanrep/) and Cyber-
ware (http://www.ciberware.com/models/).

Table 1: Characteristics of the models.

The tests were performed on an HP Kayak XU with
two Pentium III processors at 550 MHz and 1 Gb.
of main memory. A GALAXY video card by Evans
& Sutherland with 15 Mb. of video memory was
used.

4.1 Construction time and graph size

A previous step is the construction of the model.
This task is performed just once for every object. In
order to obtain the size of the model graphs, it is
supposed that an integer is 2 bytes in size and a
pointer or long integer is 4 bytes in size. Table 2
shows the construction time and the object size for
the objects used in the tests.

Model Time (MTS) MTS (Mb.) PM (Mb.)
Cow 31’’ 0.286 0.256

Sphere 1 h. 36’ 44’’ 2.145 1.318
Bunny 3 h. 19’ 6’’ 5.301 2.993
Phone 37h 52’ 20’’ 15.598 7.144

Table 2: Construction time for the MTS models and
their size compared with those for PM.

Model #Strips #Triangles #Vertices
Cow 136 5804 2904

Bunny 1229 69451 34834
Sphere 173 30624 15314
Phone 1747 165963 83044

1

2
3

4

6
7

1

2

6
0

1

2

3

4

5

6

7

1(0)

2(4)

3(2)

4(2)

5(1)

6(1)

7(3)

–3(3)

3(2)

6(2)

4(3)

–1(3) 6(3)

6(4)

–3(4)

0(0) 1(4)

0

1

2

3

4

5

6

7

1(0)

2(4)

3(2)

4(2)

5(1)

6(1)

7(3)

–3(3)

3(2)

6(2)

4(3)

–1(3) 6(3)

6(4)

–3(4)

0(0) 1(4)

a) Demanded LOD = 2 b) Demanded LOD = 4

4.3 Visualization time

The distance between the object and the viewer has
been used as a criterion in selecting the demanded
LOD. MTS models have been compared with PM
models using this criterion. The greater the distance
between the object and the viewer, the greater the
LOD demanded. Exponential and linear behaviours
have been used in this crit erion. The exponential
behaviour produces large variations in the LOD
when the object is close to the viewer and small
variations when the object is far from the viewer.
This behaviour simulates that of the real world.

Results are shown in Fig 5. Figures 5.a,c,e,g show
the frame rate in a 'walkthrough' of each model with
an exponential behaviour. Figures 5.b,d,f,h show
the 'walkthrough' with a linear behaviour. The
model moves away from the viewer as time passes.
The x-axis is the walkthrough time; the y-axis is the
frame rate.

The larger the number of triangles in the model, the
lower the frame rate is. MTS model frame rates are
always above 10 frames per second. PM Phone
model frame rate is 5 for LODs close to 0, where
the model has more triangles. Start ing from an
LOD of 58,000 (the Phone model has 82,000
LODs), the MT Phone model obtains better frame
rates than the MTS model. This is because the sav-
ing in the visualization time in MTS is lost in the
recovery algorithm.

5 CONCLUSIONS AND FUTURE WORK

This paper presents a new multiresolution model.
The main contribution is the use of the triangle strip
primitive as the basis in both the data structure and
the rendering stage. The decrease in the amount of
information sent to the graphic engine is the main
advantage. This reduces the bottleneck towards the
graphic engine, thus speeding up the rendering
stage.

MTS has been compared against PM. The MTS
model sizes are bigger than PM models. A task for
future work is to reduce the size of the model by
taking advantage of the duplicated information
stored in the graph that represents a multiresolution
triangle strip.

The MTS visualization time is lower than that of
PM. This can be extrapolated to all multiresolution
models having the triangle primitive as their basis
in the data structure. A task for future work is to
check this statement by comparing MTS with other
multiresolution models based on the triangle strips
primitive.

The main disadvantage of MTS as compared to PM
is the longer recovery time needed to extract the

demanded LOD. This is because PM uses coher-
ence between two consecutive LOD extractions.
Future work is to introduce coherence in MTS.

REFERENCES

[Arkin96] E. M. Arkin, M. Held, J. S. B. Mitchell
and S. Skiena, Hamiltonian Triangulations for fast
Rendering, Visual Computer, 12(9), 429–444, 1996.

[Puppo1999] E. Puppo and R. Scopigno, Simplifi-
cation, LOD and Multiresolution – Principles and
Applications, Tutorial Notes of EUROGRAPH-
ICS'99, 1999.

[Brass1996] G. Brassard and P. Bratley, Fundamen-
tals of algorithmics, Prentice Hall, 1996.

[Hoppe1996] Hugues Hoppe, Progressive Meshes,
Proceedings of SIGGRAPH '96, 99–108, 1996.

[Hoppe1997] Hugues Hoppe, View-dependent
refinement of progressive meshes, Proceedings of
SIGGRAPH ’97 , 189–197, 1997.

[El-San1999] J. El-Sana E. Azanli and A. Varsh-
ney, Skip Strips: Maintaining Triangle Strips for
View-dependent Rendering, IEEE Visualisa-
tion '99, 131–138, 1999.

[Ribel2000] J. Ribelles, A. López, I. Remolar, O.
Belmonte and M. Chover, Multiresolution Model-
ling of Polygonal Surface Meshes Using Triangle
Fans. Proceedings of 9th Discrete Geometry for
Computer Imagery Conference, 431–442, 2000.

[Ribel1998] J. Ribelles, M. Chover, J. Huerta and
R. Quirós, Multiresolution Ordered Meshes, Pro-
ceedings of 1998 IEEE Conference on Information
Visualization IV '98, 198–204, 1998.

[Garla1999] M. Garland, Multiresolution Model-
ling: Survey & Future Opportunities, State of the
Art Reports of EUROGRAPHICS '99 , 111–131,
1999.

[Garla1997b] M. Garland and P. Heckbert, Survey
of polygonal surface simplification algorithms.
Course Notes of SIGGRAPH'97, 1997.

[Garla1997a] M. Garland and P. Heckbert, Surface
Simplification Using Quadric Error Metrics, Pro-
ceedings of SIGGRAPH ’97, 209–216, 1997.

[Cigno1998] P. Cignoni, C. Rocchini and R.
Scopigno, Metro: measuring error on simplified
surfaces, Computer Graphics Forum, 167–174,
1998.

[Pugh1990] W. Pugh, Skip lists: A probabilistic
alternative to balanced trees, Communications of
the ACM, Vol 33(6), 668–678, 1990.

APPENDIX A

Cow Model. Exponential test.

0
50

100
150

200
250

300
350

400
450

0 5 10 15 20

Time (seconds)

Fr
am

e
R

at
e

PM

MTS

Cow Model. Linear test.

0

200

400

600

800

1000

1200

0 5 10 15 20

Time (seconds)

Fr
am

e
R

at
e

PM

MTS

Sphere Model. Exponential test.

0
20
40

60
80

100
120
140

160
180

0 5 10 15 20

Time (seconds)

Fr
am

e
R

at
e

PM

MTS

Sphere Model. Linear test

0
50

100
150
200
250
300
350
400
450
500

0 5 10 15 20

Time (seconds)

Fr
am

e
R

at
e

PM

MTS

Bunny Model. Exponential test.

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20

Time (seconds)

Fr
am

e
R

at
e

PM

MTS

Bunny Model. Linear test.

0

50

100

150

200

250

300

0 5 10 15 20

Time (seconds)

Fr
am

e
R

at
e

PM

MTS

Phone Model. Exponential test.

0

5

10

15

20

25

30

0 5 10 15 20

Time (seconds)

Fr
am

e
R

at
e

PM

MTS

Phone Model. Linear test

0

20

40

60

80

100

120

140

160

0 5 10 15 20

Time (seconds)

Fr
am

e
R

at
e

PM

MTS

Figure 4: Experimental tests.

