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ABSTRACT 
 

Triangles meshes are the most popular standard model used to represent polygonal surfaces in Computer 
Graphics. Drawing these meshes as a set of independent triangles involves sending a vast amount of in-
formation to the graphic engine. The use of primitives such as triangle fans and strips, which make use of 
the connectivity information between the triangles in the mesh, dramatically reduces the amount of in-
formation sent to the graphic engine. The Multiresolution Triangle Strips scheme takes advantage of this 
characteristic in order to represent a multiresolution model as a set of multiresolution triangle strips. A 
multiresolution triangle strip is made up of the original strips and all of its Levels of Detail. Each of these 
multiresolution strips is represented as a graph that is traversed to recover the demanded LOD. A Mul-
tiresolution Triangle Strip model uses the triangle strip primitive both in the data structure and in the ren-
dering stage. The Multiresolution Triangle Strip is compared against the Progressive Meshes multiresolu-
tion model, probably one of the best multiresolution models known. The performance of the MTS models 
in visualising drastically improves PM models. 
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1. INTRODUCTION 
 
Triangle meshes have become the standard model 
to represent polygonal surfaces. In several Com-
puter Graphics applications, such as real-time visu-
alisation, virtual reality, computer games, etc. sur-
faces are described by very dense triangle meshes. 
There are two main reasons for this: the simplicity 
of the drawing algorithm, which is easily imple-
mented in hardware, and the fact that any mesh can 
be triangulated. 
 
Nowadays, highly detailed geometric models with 
hundreds of thousands of triangles are managed in 
many Computer Graphics applications. These mod-
els are very expensive to visualise. In some cases, a 
simplified version, with a lower number of trian-
gles, retains the visual appearance of the original 
model. For example, it is not necessary to represent 
an object that is far from the viewer with ten thou-

sand triangles when it only covers one hundred 
pixels on the screen. The simplified version is said 
to have a lower Level of Detail (LOD). 
 
Multiresolution models support the representation 
and processing of geometric entities at different 
levels of detail, depending on the specific needs of 
the application. The common criteria used to de-
termine the most suitable level of detail are the 
distance of the object from the viewer, the projec-
tion area, the eccentricity of the object on the screen 
and the intrinsic importance of the object. 
 
Current graphics systems are able to render more 
triangles than they actually receive. Nowadays, the 
bottleneck in the rendering stage is the throughput 
of the graphics systems in receiving the information 
to visualise. This amount of information decreases 
considerably if the connectivity property between 
the triangles is used in the mesh representation. 



Some graphic primitives such as triangle fans and 
strips take advantage of this property. These appear 
as drawing primitives in some graphics libraries, 
such as OpenGL . 
All the multiresolution models in the literature, 
except MOM-FAN [Ribel2000] use the triangle 
primitive as a base in both the data structure and in 
the rendering stage. Multiresolution Triangle Strip 
(MTS) is the first scheme that represents a mul-
tiresolution model using the triangle strip primitive 
in these two stages. An MTS model consists in a set 
of multiresolution strips. A multiresolution strip 
represents the original strip and all its LODs. Each 
of these strips is represented as a directed graph 
with weights in its arcs.  
 
In section 2, we review the work carried out up to 
now, including algorithms for searching triangle 
strips in triangle meshes and multiresolution models 
that use the triangle fan or strip primitive during the 
rendering stage. In section 3, the MTS model is 
presented, together with its data structure and the 
recovery algorithm. We show, by means of an ex-
ample, how a graph is constructed and how to re-
cover a specific level of detail. In section 4, the 
results are shown and are compared with the results 
from Progressive Meshes [Hoppe1996]. Finally, in 
section 5, conclusions and future work are pre-
sented.  
 
2. PREVIOUS WORK 
 
In this section, several pieces of work relative to the 
multiresolution model presented in this paper are 
briefly reviewed. First, algorithms for searching 
strips over a polygonal surface are discussed. After 
this, we review the simplification algorithm by 
Garland and Heckbert [Garla1997a], which has 
been used to obtain the coarse meshes of the origi-
nal model. Other multiresolution models that use 

triangle fans or strips either in the data structures or 
in the rendering stage are discussed. 
 
2.1  Triangle strip search algorithms  
 
A triangle strip uses the connectivity information to 
represent a polygonal surface. An example of a 
triangle strip is shown in Fig. 1.a. This strip is codi-
fied as the vertex sequence 0,1,2,3,4,5,6,7, where 
the triangle i is composed of the vertices i, i+1 and 
i+2. In this way, only T+2 vertices need to be sent 
to the graphics system to render T triangles, as 
opposed to the 3T vertices that need to be sent 
when the surface is rendered as a set of independent 
triangles. In some vertex sequences, a special op-
eration, called swap is required. Figure 1.b shows 
an example of this operation. The vertex sequence 
that represents the strip is 0,1,2,3,4,5,6,swap,7,8. As 
we can see, it is necessary to exchange vertices 5 
and 6 to represent the strip correctly. This operation 
can be simulated by repeating some vertices; in this 
case, the vertex sequence would be 
0,1,2,3,4,5,6,5,7,8. A triangle strip that can be rep-
resented without any swap operation is called a 
sequential strip; and a triangle strip that needs this 
operation, is called a generalised strip. 
 
The search for the best set of triangle strips in a 
mesh is an NP-complete problem [Arkin1996]. 
Thus, it is necessary to use some heuristic strategies 
in the search. The algorithm by Evans et al. [Ev-
ans1996] is used in the construction of/by the MTS 
model. This algorithm, called STRIPE, is in the 
public domain at http://www.cs.sunysb.edu/~stripe/. 
The STRIPE algorithm allows control over some 
parameters in the search process, such as the use of 
swap operations. 
 

 
Figure 1: a) Example of a strip, the vertex sequence that represents this strip and its associated graph. 

b) Example of a strip with a swap operation and the graph that represents it. 
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2.2 Simplification using vertex pair contraction. 
 
Every multiresolution model needs a simplification 
method that provides various geometric descrip-
tions of the original polygonal surface with fewer 
geometric primitives. A simplified object has to 
maintain the appearance of the original model as 
much as possible. Similarity measurements between 
an original mesh and a simplified one can be per-
formed using an appearance-based metric 
[Linds2000] or a geometric measure[Cigno1998]. 

 
There are important surveys where several sim-

plification methods that have appeared in the litera-
ture [Garla1997b] are classified. Simplification 
algorithms based on iterative contraction are of 
particular interest because they have been used to 
construct multiresolution model representations. 
 

The simplification method used in Multiresolu-
tion Triangle Strips is the method proposed by 
Garland and Heckbert [Garla1997a]. This method, 
called Qslim, is in the public domain at 
http://www.cs.cmu.edu/~garland/quadrics/. It is 
based on iterative vertex pair contraction. A 4x4 
symmetric matrix Qi is associated with each vertex 
vi. This matrix represents the distance from the 
vertex to the set of planes that share it. When a pair 
of vertices is contracted, their matrices are added 
together to form the matrix for the resulting vertex. 
 
2.3 Multiresolution modelling. 
 
Garland [Garla1999] defines a multiresolution 
model as a model representation that captures a 
wide range of approximations of an object and 
which can be used to reconstruct any one of them 
on demand.  
 
The multiresolution models can be classified in two 
large groups: discrete multiresolution models, 
which contain a lower number of levels of detail 
and a control mechanism to determine which is the 
most adequate one in each moment, and the con-
tinuous multiresolution models, which capture a 
vast range of, virtually continuous, approximations 
of an object. These can be subdivided into two main 
classes, according to their structure: tree-like mod-
els, and historical models [Puppo1999]. 
 
In a discrete multiresolution model, there is no 
relation among the levels of detail of the object. 
Thus, the size of these models increases rapidly 
when some new levels of detail are included. They 
usually store between five and ten levels of detail. 
Some graphic standards, such as VRML or Open-
Inventor, use discrete multiresolution models. 
These models are easily implemented and can be 
edited by the users and optimised for rendering. 
The main disadvantage is the visual artefact that 

occurs during the change between two levels of 
detail. One solution to decrease this visual artefact 
is to draw both levels of detail of the object using 
transparency methods, but rendering time is in-
creased. 
 
In continuous multiresolution models, two consecu-
tive levels of detail differ by a reduced number of 
triangles. These small changes introduce a minimal 
visual artefact. On the other hand, the size of the 
models decreases as compared to the discrete mod-
els because no duplicate information is stored. The 
Progressive Meshes model of Hugues Hoppe 
[Hoppe1996] is the most well known continuous 
multiresolution model nowadays. It is included in 
Microsoft’s DirectX 8.0 graphic library. 
 
2.3.1 Multiresolution models using triangle fans 
or strips primitives. 
  
In this section, a review of the reduced number of 
models that use the triangle fans or strips primitive 
are revised. These models use these primitives at 
either the storage stage or the rendering stage. 
  
Hoppe [Hoppe1997] has utilised strips in the ren-
dering stage in a view-dependent multiresolution 
model. After selecting which triangles to draw, 
strips of triangles are searched. Through experi-
mentation, Hoppe concludes that the fastest triangle 
strip search algorithm is a greedy one. In this 
greedy algorithm, each of the non-drawn triangles 
begins a new strip, which grows through its non-
rendered neighbours. In order to reduce the strip 
fragmentation, strips are grown in a clockwise spi-
ral manner. 
 
El-Sana et al. [El-San1999] have developed a view-
dependent multiresolution model based on an edge-
collapsing criterion. The first step in constructing 
the model is to search triangle strips on it. These 
triangle strips are stored in a data structure called a 
skip list [Pugh1990]. Once the multiresolution 
model has determined which triangles to visualise, 
the skip list is processed. If none of its triangles has 
been collapsed, the strip is drawn. Otherwise, the 
skip list is processed in order to update the strips. 
The triangle strips are not the basic primitives of 
the model they are used to speed up the rendering 
process. 
 
The work presented in [Ribel2000] modifies 
[Ribel1998] using triangle fans as its basic repre-
sentation primitive. Using this primitive, the storage 
cost is reduced, but the behaviour of this new model 
regarding its visualis ation time is similar to its 
predecessor. A short average fan length, the high 
percentage of degenerate triangles and the need to 
adjust the fans to the required LOD in real time all 
play a part in producing overall results which do 



not lead to a global improvement in visualisation 
time. 
Neither of the previous models uses the triangle 
strip primitive in both the storage and the rendering 
stage. Hoppe searches the strips over the simplified 
model prior to rendering it. In the work by El-Sana, 
we need to know which triangles to render in order 
to update the original strips. 
 
3 THE MTS  MODEL 
 
The main idea is to build the model as a set of mul-
tiresolution triangle strips. A multiresolution strip is 
made of the original strip and all of its levels of 
detail. Each multiresolution strip is represented as a 
graph. The vertex sequence in a strip induces an 
order relationship between them. We conclude that 
the graph representing a multiresolution strip is a 
directed graph. Based on this fundamental structure, 
the level of detail recovery algorithm has graph 
traversal as its foundation. 
 
In this section we describe data structures, how to 
build a multiresolution triangle strip and the level of 
detail recovery algorithm. 
 
3.1 Data structures 
 
A multiresolution strip is made up of a graph, rep-
resenting the strip in all levels of detail, and a list of 
strip beginnings (Listing 1: class Multiresolution-
Strip). 
 
Conceptually, each node on the graph represents a 
strip vertex and each directed arc of the graph 
represents an inner edge of the strip. The arc direc-
tion is determined by the order of vertices in the 
sequence representing the strip. Two nodes joined 
by an arc in a graph are called adjacent. If the graph 
is a directed one, an arc that joins a node v to an-
other node w is incident from v and incident to w. 
In practice, a graph is represented by an adjacency 
list [Brass1996], (see Fig. 2.c). In this representa-
tion, all nodes on the graph are elements of an ar-
ray, and all incident nodes form another node be-
longing to its adjacency list. 
 
Each strip vertex, represented by a graph node, has 
three fields. The first field is an index to the mem-
ory address where the geometric data of the vertex 
is allocated. The second field is a pointer to the 
adjacency list of the node. The third field is an 
index pointing to the next node to be visited in the 
level of detail extraction process. See Listing 1, 
class ColumnNode. 
 
Each inner edge of the strip, represented by an 
adjacency list element, has two fields. The first 
field is an index to the element in the column vector 
where the next vertex in the strip sequence is. The 

second field is an integer specifying the maximum 
level of detail at which the arc can be traversed in 
the level of detail extraction process. See Listing 1, 
class RowNode. In section 3.2, the use of this field 
will be shown with an example. 
The list of strip beginnings specifies, for each level 
of detail, which is the initial vertex of the strip. The 
initial vertex changes as the strip is simplified. Each 
strip beginnings element has three fields. The first 
field specifies the index to the element in the col-
umn vector that is the beginning of the strip. The 
second field specifies the maximum level of detail 
to where the vertex is the beginning of the strip. 
This structure has the same fields as the elements in 
the adjacency list, class RowNode, so it has not 
been necessary to implement a specific class. 
 
class ColummNode { 
   unsigned long vIndex; 

unsigned int currentInd; 
   RowNode * neighbours; 
}; 
class RowNode { 
   unsigned int colIndex; 
   unsigned long res; 
}; 
class MultiresolutionStrip { 
   RowNode * sBegin; 
   ColummNode * colVertices; 
}; 
 

Listing 1: MTS data structures. 
 
3.1.1 Construction examples 
 
The construction of multiresolution strips starts 
from the initial strip. As the strip is simplified by 
means of a vertex pair contraction, the vertex se-
quence changes. These changes in the vertex se-
quence should be introduced into the graph repre-
senting the strip. 
 
Let's take the strip in Fig. 2.a) as an example. In this 
figure, the initial graph and the strip beginning list 
are shown. Let's label the maximum level of detail 
at which a strip can be represented as level of detail 
0 (LOD 0). The vertex sequence at LOD 0 is 
0,1,2,3,4,5,6,7,–3. The special label –3 specifies 
that the end of the strip has been reached. After the 
first vertex pair contraction the resulting vertex 
sequence is 1,2,3,4,5,6,7,–3. The beginning of the 
strip has become vertex 1. This change is achieved 
by adding a new element to the list of strip begin-
nings; this element has 1 in its coIndex field and 
also has 1 in its res field. After the second vertex 
pair contraction the new vertex sequence is 
1,2,3,4,3,5,6,7,–3. At LOD 2 a swap operation 
between vertices 3 and 4 is needed. This change is 
achieved by adding two new elements, one to the 
adjacency list of vertex 4 (colIndex = 3, res  = 2) and 
the other to the adjacency list of vertex 3 (colIndex 
= 5, res  = 2). After the third vertex pair contraction 
two strips appear that have the common vertex 4. 



The special label –1 specifies that vertex 4 is the 
end of one strip and also the beginning of the other 
one, so the vertex sequence at LOD 3 is 1,2,4,–
1,6,7,–3. The new changes in the vertex sequence  
are achieved by adding the new elements as shown 
in Fig 2. After the last vertex pair contraction, the 
new vertex sequence is 1,2,6,–3 at LOD 4. 
 
3.2 Level of detail recovery algorithm 
 
The level of detail recovery algorithm traverses the 
graph, which represents the multiresolution strip, in 
order to extract the demanded level of detail. The 
algorithm proceeds in two steps. First, the algo-
rithm seeks out the vertex at the beginning of the 
strip, from the list of strip beginnings, with a reso-
lution compatible with the demanded level of detail. 
Here, compatible means that the element in the 
adjacency list has a res  field that is larger or equal 
to the demanded level of detail. Second, the graph 
is traversed from the vertex at the beginning until a 
special –3 node is reached. The pseudo code of the 
algorithm is shown in Listing 2. 
 

// First we search the strip beginning 
while BeginNotFound and NodesBeginning 
  NextBeginning; 
endwhile 
 
if BeginNotFound exit //This strip does not 
else    //exist at 
this resolution 
  while not EndStrip //While there are 
                    //vertices in the strip 
    while Neighbour.res < ResolutionDemmand 
      nextNeighbour; 
    endwhile 
 
    if Node is not special node then 
      DrawVertex; 
    else if Node is -1 or Node is -2 then 
      NewStrip; 
    else if Node is -3 then 
      EndStrip = true; 
    endif 
  endwhile 
endif. 
 

Listing 2: Recovery algorithm. 

Figure 2: Construction of a multiresolution strip. a) Original and the sequence of vertex pair contraction. b) The 
detailed process of a multiresolution strip construction. c) The final multiresolution strip. 
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Figure 3: Two examples of the LOD recovery algorithm. a) The demanded resolution is 2. b) The demanded 
resolution is 4. The visited nodes are shown with a grey background. 

 
3.2.1 Recovery example 
 
Given the multiresolution shown in Fig. 2, let's 
suppose that the demanded LOD is 2. The first step 
of the algorithm is to find the vertex at the begin-
ning of the strip at this resolution. The search be-
gins at the first element in the list of strip begin-
nings, and sequentially it searches the first element 
which res filed as larger or equal to the demanded 
LOD. In this example, the first compatible element 
is 1, so this is the beginning of the strip at LOD 2. 
 
A previous step, before the extraction, is to update 
the currentInd field of each element in the column 
vector. In this way, the search always begins at the 
first element in the adjacency list. 
 
The next step is to search through the list of adja-
cencies of the node at the beginning of the strip 
with a res field compatible with the demanded 
LOD. In this example, the only node on the adja-
cency list has a res field compatible with the LOD 
demanded, so 2 is the next vertex in the sequence 
that represents the strip. After that, the currentInd 
field in the element at the column vector is updated 
in order to point to the next element on the list. The 
extraction continues until a vertex labelled –3 is 
reached, which, as we know, indicates the end of 
the strip. Figure 3.a shows the nodes extracted to 
recover the LOD 2. Figure 3.b shows the nodes 
extracted to recover the LOD 4. 
 
4 RESULTS 
 
The MTS model has been subjected to several tests. 
These tests are addressed at evaluating the visuali-
zation time in a real-time application. The results 
are compared with those of Progressive Meshes 
(PM) – probably one of the best-known models. 
PM uses the triangle primitive both in the data 
structures and at the rendering stage. Here we use 
our own implementation of PM, this has been tested 

and the same results were obtained as those pub-
lished by the author. 
 
The polygonal objects used in the test come from 
the Stanford University Computer Graphics Labo-
ratory (http://www-
graphics.stanford.edu/data/3Dscanrep/) and Cyber-
ware (http://www.ciberware.com/models/).  

Table 1: Characteristics of the models. 
 
The tests were performed on an HP Kayak XU with 
two Pentium III processors at 550 MHz and 1 Gb. 
of main memory. A GALAXY video card by Evans 
& Sutherland with 15 Mb. of video memory was 
used. 
 

 
4.1 Construction time and graph size 
 
A previous step is the construction of the model. 
This task is performed just once for every object. In 
order to obtain the size of the model graphs, it is 
supposed that an integer is 2 bytes in size and a 
pointer or long integer is 4 bytes in size. Table 2 
shows the construction time and the object size for 
the objects used in the tests. 
 

Model Time (MTS) MTS (Mb.) PM (Mb.) 
Cow 31’’ 0.286 0.256 

Sphere 1 h. 36’ 44’’ 2.145 1.318 
Bunny 3 h. 19’ 6’’ 5.301 2.993 
Phone 37h 52’ 20’’ 15.598 7.144 

Table 2: Construction time for the MTS models and 
their size compared with those for PM. 
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4.3 Visualization time 
 
The distance between the object and the viewer has 
been used as a criterion in selecting the demanded 
LOD. MTS models have been compared with PM 
models using this criterion. The greater the distance 
between the object and the viewer, the greater the 
LOD demanded. Exponential and linear behaviours 
have been used in this crit erion. The exponential 
behaviour produces large variations in the LOD 
when the object is close to the viewer and small 
variations when the object is far from the viewer. 
This behaviour simulates that of the real world. 
 
Results are shown in Fig 5. Figures 5.a,c,e,g show 
the frame rate in a 'walkthrough' of each model with 
an exponential behaviour. Figures 5.b,d,f,h show 
the 'walkthrough' with a linear behaviour. The 
model moves away from the viewer as time passes. 
The x-axis is the walkthrough time; the y-axis is the 
frame rate. 
 
The larger the number of triangles in the model, the 
lower the frame rate is. MTS model frame rates are 
always above 10 frames per second. PM Phone 
model frame rate is 5 for LODs close to 0, where 
the model has more triangles. Start ing from an 
LOD of 58,000 (the Phone model has 82,000 
LODs), the MT Phone model obtains better frame 
rates than the MTS model. This is because the sav-
ing in the visualization time in MTS is lost in the 
recovery algorithm. 
 
5 CONCLUSIONS AND FUTURE WORK 
 
This paper presents a new multiresolution model. 
The main contribution is the use of the triangle strip 
primitive as the basis in both the data structure and 
the rendering stage. The decrease in the amount of 
information sent to the graphic engine is the main 
advantage. This reduces the bottleneck towards the 
graphic engine, thus speeding up the rendering 
stage. 
 
MTS has been compared against PM. The MTS 
model sizes are bigger than PM models. A task for 
future work is to reduce the size of the model by 
taking advantage of the duplicated information 
stored in the graph that represents a multiresolution 
triangle strip. 
 
The MTS visualization time is lower than that of 
PM. This can be extrapolated to all multiresolution 
models having the triangle primitive as their basis 
in the data structure. A task for future work is to 
check this statement by comparing MTS with other 
multiresolution models based on the triangle strips 
primitive. 
 
The main disadvantage of MTS as compared to PM 
is the longer recovery time needed to extract the 

demanded LOD. This is because PM uses coher-
ence between two consecutive LOD extractions. 
Future work is to introduce coherence in MTS. 
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APPENDIX A 
 

Cow Model. Exponential test.
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Cow Model. Linear test.
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Sphere Model. Exponential test.
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Sphere Model. Linear test
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Bunny Model. Exponential test.
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Bunny Model. Linear test.
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Phone Model. Exponential test.
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Phone Model. Linear test

0

20

40

60

80

100

120

140

160

0 5 10 15 20

Time (seconds)

Fr
am

e 
R

at
e

PM

MTS

 
 

Figure 4: Experimental tests. 


