Computer Science > Machine Learning
[Submitted on 31 May 2022]
Title:Multi-task Optimization Based Co-training for Electricity Consumption Prediction
View PDFAbstract:Real-world electricity consumption prediction may involve different tasks, e.g., prediction for different time steps ahead or different geo-locations. These tasks are often solved independently without utilizing some common problem-solving knowledge that could be extracted and shared among these tasks to augment the performance of solving each task. In this work, we propose a multi-task optimization (MTO) based co-training (MTO-CT) framework, where the models for solving different tasks are co-trained via an MTO paradigm in which solving each task may benefit from the knowledge gained from when solving some other tasks to help its solving process. MTO-CT leverages long short-term memory (LSTM) based model as the predictor where the knowledge is represented via connection weights and biases. In MTO-CT, an inter-task knowledge transfer module is designed to transfer knowledge between different tasks, where the most helpful source tasks are selected by using the probability matching and stochastic universal selection, and evolutionary operations like mutation and crossover are performed for reusing the knowledge from selected source tasks in a target task. We use electricity consumption data from five states in Australia to design two sets of tasks at different scales: a) one-step ahead prediction for each state (five tasks) and b) 6-step, 12-step, 18-step, and 24-step ahead prediction for each state (20 tasks). The performance of MTO-CT is evaluated on solving each of these two sets of tasks in comparison to solving each task in the set independently without knowledge sharing under the same settings, which demonstrates the superiority of MTO-CT in terms of prediction accuracy.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.