@inproceedings{lin-etal-2017-multi,
title = "Multi-channel {B}i{LSTM}-{CRF} Model for Emerging Named Entity Recognition in Social Media",
author = "Lin, Bill Y. and
Xu, Frank and
Luo, Zhiyi and
Zhu, Kenny",
editor = "Derczynski, Leon and
Xu, Wei and
Ritter, Alan and
Baldwin, Tim",
booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4421",
doi = "10.18653/v1/W17-4421",
pages = "160--165",
abstract = "In this paper, we present our multi-channel neural architecture for recognizing emerging named entity in social media messages, which we applied in the Novel and Emerging Named Entity Recognition shared task at the EMNLP 2017 Workshop on Noisy User-generated Text (W-NUT). We propose a novel approach, which incorporates comprehensive word representations with multi-channel information and Conditional Random Fields (CRF) into a traditional Bidirectional Long Short-Term Memory (BiLSTM) neural network without using any additional hand-craft features such as gazetteers. In comparison with other systems participating in the shared task, our system won the 2nd place.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2017-multi">
<titleInfo>
<title>Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bill</namePart>
<namePart type="given">Y</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyi</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenny</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Noisy User-generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present our multi-channel neural architecture for recognizing emerging named entity in social media messages, which we applied in the Novel and Emerging Named Entity Recognition shared task at the EMNLP 2017 Workshop on Noisy User-generated Text (W-NUT). We propose a novel approach, which incorporates comprehensive word representations with multi-channel information and Conditional Random Fields (CRF) into a traditional Bidirectional Long Short-Term Memory (BiLSTM) neural network without using any additional hand-craft features such as gazetteers. In comparison with other systems participating in the shared task, our system won the 2nd place.</abstract>
<identifier type="citekey">lin-etal-2017-multi</identifier>
<identifier type="doi">10.18653/v1/W17-4421</identifier>
<location>
<url>https://aclanthology.org/W17-4421</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>160</start>
<end>165</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media
%A Lin, Bill Y.
%A Xu, Frank
%A Luo, Zhiyi
%A Zhu, Kenny
%Y Derczynski, Leon
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%S Proceedings of the 3rd Workshop on Noisy User-generated Text
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F lin-etal-2017-multi
%X In this paper, we present our multi-channel neural architecture for recognizing emerging named entity in social media messages, which we applied in the Novel and Emerging Named Entity Recognition shared task at the EMNLP 2017 Workshop on Noisy User-generated Text (W-NUT). We propose a novel approach, which incorporates comprehensive word representations with multi-channel information and Conditional Random Fields (CRF) into a traditional Bidirectional Long Short-Term Memory (BiLSTM) neural network without using any additional hand-craft features such as gazetteers. In comparison with other systems participating in the shared task, our system won the 2nd place.
%R 10.18653/v1/W17-4421
%U https://aclanthology.org/W17-4421
%U https://doi.org/10.18653/v1/W17-4421
%P 160-165
Markdown (Informal)
[Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media](https://aclanthology.org/W17-4421) (Lin et al., WNUT 2017)
ACL