
Mult i -Value-Funct ions: Efficient Automat ic Ac t i on Hierarchies fo r
Mu l t i p le Goal M D P s

Andrew W. Moore Leemon C. Ba i rd Leslie Kaelbl ing
Carnegie Mellon University Carnegie Mellon University Brown University

Abstract
If you have planned to achieve one particular goal
in a stochastic delayed rewards problem and then
someone asks about a different goal what should
you do? What if you need to be ready to quickly
supply an answer for any possible goal? This pa-
per shows that by using a new kind of automata
caily generated abstract action hierarchy that with
N states, preparing for all of N possible goals can
be much much cheaper than N times the work of
preparing for one goal. In goal-based Markov Deci-
sion Problems, it is usual to generate a policy
mapping states to actions, and a value function

mapping states to an estimate of minimum
expected cost-to-goal, starting at In this paper
we will use the terminology that a mul t i -po l icy

(for all state-pairs maps a state
to the first action it should take in order to reach
with expected minimum cost and a mult i -value-
funct ion is a definition of this minimum
cost. Building these objects quickly and with lit­
tle memory is the main purpose of this paper, but
a secondary result is a natural, automatic, way to
create a set of parsimonious yet powerful abstract-
actions for MDPs. The paper concludes with a set
of empirical results on increasingly large MDPs.

1 In t roduct ion
In goal-based Markov Decision Problems, it is usual to
generate a policy and a value function for a single goal.
In 1993, Kaelbling introduced the HDG (Hierarchical
Distance to Goal) algorithm [Kaelbling, 1993], which
considered the more general formalism of arbitrary goal
states as well as start states. Given N states, HDG
considered the question of how to generate and execute
an approximation to the multi-policy without requiring
, memory for the data structures.

In this paper we introduce new data structures and
algorithms that exploit this insight while automatically
choosing where to place landmarks (points to aim for),
and choosing which states belong to which landmark,
without requiring pre-defined distance metrics (such as
the Euclidean heuristic of the original paper) or prede­

fined partitions. Instead, the measure of closeness used
is the true minimal expected cost measure. Generating
these locations, partit ions, and policies from scratch in
volves some interesting "chicken and egg" problems, es-
pecially if we need to exploit the hierarchy whilst build­
ing it (necessary if we are to save not only memory but
also computation). We wi l l describe how this can be ad­
dressed wi th a new branch-and-bound procedure in com­
bination wi th prioritized sweeping [Moore and Atkesbn,
1993], an algorithm for improving value functions in the
face of small alterations in an MDP structure.

Another motivation is to help answer the two ques­
tions, "Where should Abstract Actions come from?". Is
it necessary to have some high-level prior understanding
of the class of tasks at hand in order to decide which
abstractions are beneficial? This may be of use to re­
cent algorithms that attempt to exploit abstract actions
but require them to be predefined (such as [Precup and
Sutton, 1998; Singh, 1991; Dayan and Hinton, 1993;
Dietterich, 1998] and HDG itself).

2 The A i rpo r t Hierarchy
This algorithm takes, as input, an MDP which is spec­
ified by a set of N states, and for each state a set
of actions, and for each state-action pair, a set of
outcomes along with the outcome probabilities. The
OUTCOMES() set of a state-action-pair is the set
of states such that P(next state this state =
x} this action We make the strong assump­
tion that the MDP is sparse: for all states the num­
ber of actions is N and for all state-action pairs,
the number of outcomes is N. This assumption is
very frequently true in navigation, dynamics and inven­
tory MDPs. Furthermore, recent work [Reams et al.,
1998] indicates that even non-sparse MDPs may usu­
ally be transformable to sparse MDPs wi th l i t t le loss in
optimality, In addition to the state transition proba­
bilities, the algorithm also inputs the non-negative one-
step cost function specifying the penalty we pay
for applying a in state Note that conventional dy­
namic programming theory tells us that the optimal
policy and mul t i value function must obey
mina and = argmina where

1318 UNCERTAINTY AND PROBABILISTIC REASONING

The new structure is called the Airport Hierarchy. It
differs from HDG and is more similar to Feudal Learn-
ing [Dayan and Hinton, 1993] in that each state is a mem­
ber of many partitions; some large and abstract, others
small and specific. It differs from Feudal Learning and
other partit ioning structures (such as G-leaming [Chap­
man and Kaelbling, 1991] and PartiGame [Moore, 1994])
in that junior partitions are not necessarily subsets of
their seniors, and many partitions are overlapping. We
wil l begin by defining the properties that we do require
from these partitions, before proceeding to execution
and generation algorithms that exploit these properties.
Proofs wil l be included in a later version of this paper.

2.1 Formal i t ies
We define, for a given state that we have decided to
turn into an airport:

states that know how to get to (1)

Any member of wi l l have, cached away in the air­
ports structure, knowledge of the truly optimal
first action to take in getting to y and the true
minimum expected cost of getting to Define

Level = The "Level" of airport (2)

Where Level = 0 means that is a maximally senior
airport: the larger the level, the lower the seniority. As
part of the construction we wil l insist that

(3)
Thus, if y is a level airport then there are at least

states that know the optimal value and policy for
reaching We also insist that

(4)
Thus, the set of states that knows how to get to are
the states with minimal expected cost to get to Our
final two requirements are

• If 1 then includes at least senior air­
por ts (x is senior to if and only if

• There are a i rpor ts at level 0, at level 1, at level
2, etc, w i t h the number of a i rports doubl ing at each level
un t i l we run ou t of states.

Because the number of airports doubles at each level,
the maximum level rises logarithmically with The
total amount of memory needed to represent all knowl­
edge about all level i airports is thus, in the best case,

per airport times level i airports, which is
thus and so the total amount of memory needed
over all levels is in the best case.
Examp le : Figures 1 and 2 depict aspects of the airport
hierarchy for a simple grid-world.

2.2 Choos ing Ac t ions
How is approximated by the airport hierarchy?
Call the approximation To choose the first ac­
tion to take if we hope eventually to reach cheaply, we
use the HDG insight. If is far enough from that it

Figure 1: A simple maze con-
structed with = 4 top-level
airports. The light gray areas
are cells in which transitions
are completely random (to a
random neighbor). In white
cells, there is a 0.9 probabil­
ity that we'll move in the direc­
tion we request,
and chance we'll
move to a random neighbor.
The disks denote the airports:
the larger the disk, the more se­
nior the airport.

Figure 2: Each figure shows
an airport (circled) and

(dark grey). The air­
port levels are 1, 3 and 5 re-
spectively. The = 3 senior
airports that can reach the
targets are also shown.

doesn't know how to get to directly (i.e., if
we pick some intermediate target that we do know how to
get to, and from which we will be able to make progress
towards The only remaining question is how to choose
a good target from the airport hierarchy.

To do this, we must define one extra object, called
a special set of states that know how to get to

y by travelling through increasingly less senior airports.
Define

So that, for example, consists of those states
in that happen to have a more senior airport level
t o Then w r i t e = Now
we can define the target that first aims for. We wil l
deal in turn with three cases: states that immediately
know how to get to states that are in and
all other states.

• If then define and
define These values can be read,
in constant time, from the information cached in the
airport hierarchy.

MOORE, BAIRD, AND KAELBLING 1317

♦ If but then assume that
was entered into at level so that

(y) but Then define

• Finally, if and then define
Common to be the set of states such
that And then define

Common cannot be empty because
must contain a Level 0 airport.

Intuitively, the process of creating can be
seen as dynamically creating a goal-state-dependent set
of landmarks (using HDG terminology) for getting to

This set of landmarks is useful specifically for be­
cause it has a higher density of landmarks closer to y
(with closeness defined in terms of minimal expected
cost). By construction (easy to prove) this set is small:

Figure 3 shows the set of airports considered during
one such decision. Although the policies resulting from
this scheme may be suboptimal, we can prove that they
will always reach the goal in finite time, and empirically
the regret (mean loss compared with truly optimal be-
havior) is very small.

Figure 3: Planning the next
action from the centrally cir­
cled state. The start state
is the cell surrounded by the
lower large circle. The goal
state is surrounded by the
upper large circle. The set

are depicted by small
discs, w i th radii proportional
to seniority.

2*3 E f f i c i en t l y b u i l d i n g t h e a i r p o r t
h i e r a r c h y

We say a state is unassigned if it is not an airport at
any level in the hierarchy. The airport construction al­
gorithm begins with all states unassigned, and ends with
no states unassigned. Whenever an airport y becomes
assigned, is chosen, the set is chosen,
and for all are com­
puted. Al l this information is cached permanently away
in the airport hierarchy for future use during the remain­
ing airport construction and policy execution.

We wil l now discuss the A d d A i r p o r t operation,
which picks one state and assigns it.

2.4 Step One: Choose
We defer discussion of this step unti l Section 2.7.

2.5 S tep T w o : Choose L e v e l
This step is trivial. is simply given the most senior air­
port level available, subject to the constraint that there
are no more than airports at level L. Thus, if so far,
m airports have been assigned, level is

2.6 S tep T h r e e ; C o n s t r u c t
To understand the job we must do here, we wil l be-
gin by considering two simplified scenarios: an ineffi­
cient method for non-deterministic MDPs and an ef­
ficient method for deterministic MDPs, Finally, we'll
tackle the efficient non-deterministic case.

Cons t ruc t ing ineff ic ient ly
We would simply take the following steps:

1. Run an MDP solver such as value iteration, policy
iteration, or modified policy iteration [Bertsekas and
Tsitsiklis, 1989] to compute for
all states in the MDP.

2. Define the set is
among the T lowest values. }, with ties broken ar­
bitrarily to ensure T elements in the set. Define
to be the minimum such that
and contains at least k senior airports.
Then simply select and store
the values in the airport hier­
archy only for those for which

The objection to this approach is that it is too expen­
sive: after having computed the set for every
in the MDP, we will have needed to perform full dy­
namic programs, meaning operations in total
to build the hierarchy, where kcrit is the average num-
ber of value iterations needed for dynamic programming
convergence.

Cons t ruc t ing for determin is t ic systems
This too would be simple. We can perform uniform-cost
breadth-first search back from y until the set of states
added during the search become sufficiently large and
contains the required number of senior airports. Now
the work per airport would be small for junior airports
with small state sets, resulting in an algorithm
that in the best case could be as cheap as

The efficient non-determin is t ic case
Again, we will work backwards from y, incremen­
tally adding states. The problem is that for a non-
deterministic system there is always a probability that
the system being controlled will leave the set of states
added so far. How, then, can we compute the optimal
value function that takes into account the possibility of
such exits?

Let us briefly take a break from the larger question of
computing and instead focus on a simpler ques-
tion given an incomplete portion of a goal-based MDP,

1318 UNCERTAINTY AND PROBABILISTIC REASONING

bow can we approximate over the states in this
incomplete portion (which we will call Figure 4 gives
an example of such a problem, with five states (including
the goal state, constituting and several outcomes
that lead to states outside this set marked with ? sym­
bols. We will find an optimistic lower bound,
and a pessimistic upper bound, on
so that

(5)

Figure 4: An example of a sub-MDP
in the process of construction from
five states
The thick polygonal arrows denote ac­
tions. The thin arrows denote the pos­
sible stochastic outcomes if the action
is taken. Assume that all outcomes
cost 1 unit, and for a given state-
action pair, all depicted outcomes are
equiprobable.

Pigure5: The optimistic in­
terpretation of the subMDP
of Figure 4.

C o n s t r u c t i n g
We wi l l construct a new, small, MDP made up of the
states in plus one new state This construction
wil l be guaranteed not to overestimate

Before proceeding, we wi l l partit ion into two subsets
of states. Define

Internals
Borders

where Preds() means "z is an immediate predeces­
sor of , so that Preds(x) ~ 3 a such that P(next
state this state and action

Border states have some predecessor outside while
internal states are ones in which all predecessors are in­
side 5. In Figure 4, assume that and are all
internal states, and and are border states.

For each of the ? symbols in Figure 4, what is the
best thing that could happen? The first thought is that
they might head straight to a state outside paying
their one-step outcome cost, and then this state might
be able to j ump to the goal with zero cost. But this is
not possible. If the goal is an internal state, then no
state outside can jump directly to the goal, nor indeed
to any other internal state. So the best thing that could
happen is that they j ump to some state outside and
then wi th zero cost j ump to the most favorable of the
border states. We model this by adding a new, fake,
state called to the system, which can with zero cost
jump to any of the border states that it chooses. The ?
symbols all j ump to Figure 5 shows this construction
for our example. Having added this extra state, we run
an MDP solver to compute its value function, which we
define to be

C o n s t r u c t i n g
We must now ask "what is the worst thing that can

happen at any of the ? symbols?". Unfortunately, it is
arbitrarily bad. Even if there were an upper bound on a
single transition cost in the MDP, hard-to-escape loops
(caused by a probability-of-transition-to-self very close
to 1) could create arbitrarily expensive expected costs
to the goal.

The good news is that if we may be able
to take advantage of information cached in the partially
constructed airport hierarchy. This requires that at least
one state in have already been added to the hierarchy
as an airport, and that one or more other states in
know how to get to this airport.

If there exists and such that is an air­
port and then we wi l l add an extra action to

with cost (which we can look up in the hier­
archy) and with next state wi th probability 1. Adding
this action simply expresses the already established fact
that we know we can get to from by some (not
necessarily explicitly known) means, and the expected
cost of doing so is Expressing this fact cannot
cause the system to underestimate the cost of travelling
from to Adding these new fake actions can have
a dramatic effect on the worst case cost estimates. In
Figure 4, the worst case value for all states other than
Y is infinite. But suppose we add the extra knowledge
that we already know that travelling from to costs,
say, an expected 3 units (see Figure 6). Then the op­
timal policy in the supplemented MDP wil l have costs

Figure 6: The pessimistic interpretation
of the subMDP of Figure 4, assuming that

Cons t ruc t i ng
We now return to the question of constructing
The algorithm is:

1. Let Borders = Internals —

2, Compute
using the modified versions of described above.

MOORE, BAIRD, AND KAELBLING 1319

3. Define the set such that
is among the lowest values Define to be the
minimum T, if it exists, such that
and contains at least senior airports.
If such a exists, check the tightness on our
lower and upper bounds on for all states
in I f

(6)
then halt, adding y into the airport hierarchy, along
with its chosen level, and
and remembering for future use all the
values for a p p r o x i m a t i n g b y

4. If we did not halt, grow Pick the border state
with minimum add all its predecessors
into and Borders. Check which states have all
their immediate predecessors in and promote
them into Internals. Goto 2.

Remarks:
Each time and are recomputed, few
of the states in change their values significantly, except
for newly added states and their neighbors. To take
advantage of this, we use prioritized sweeping [Moore
and Atkeson, 1993]. This was used in the experiments
reported in Section 3, and without it, the computational
costs were empirically 5 to 100 times slower.

In order to access the immediate predecessors in the
MDP, we must create a backwards model, which is an
array which, for each state maps to This
can be built once, with a construction cost linear in the
number of states.

Why should we expect that the upper and lower
bounds on the value function wil l be tight? Not all
domains will provide tightness: for example, expander
graphs are likely to be problematic. But domains with
a notion of locality are likely to achieve tight bounds on
states close to the goal quite early on.

2.7 Choos ing a i r p o r t l oca t ions
When the hierarchy is being built, level 0 airports are
assigned first, then level 1, etc. The location of a new
airport is always chosen to be the state furthest from any
previous airport (in terms of expected cost). Because
of the construction of the hierarchy, this can always be
found efficiently. Notice that no prior assumptions (such
as Euclidean distance) are needed for airport determina­
tion: it is fully automatic.

3 Results
Table 1 presents results on various stochastic gridworlds
and an inventory management problem. The gridworlds
all obey the same rules as our initial example. Problems
Expandl through Expandl5 are gridworlds of increasing
size, produced by gluing together a short fat maze on

top of itself. This allows us to see how torts increase
as the maze size increases linearly, One Way (middle of
Figure 7) is a maze with one-way wails, and serves to
demonstrate that it is not necessary for actions to be
reversible for airports to be applicable. The table com­
pares the memory needed if a Ml table were used
to that needed by the airport hierarchy. It compares the
time needed to build the airport hierarchy conventionally
with the time needed using our algorithm. And it shows
the mean regret (loss due to using our approximate pol-

instead of the optimal policy, To
give the regret some context it also shows the mean path
cost. Figure 8 graphically depicts the tradeoff as the
number of states is increased. Further empirical results,
for which there is no room here, show that the algorithm
work over a wide range of stochasticity, that there is
not strong sensitivity to the e threshold, and that clever
placement of the airports is beneficial.

Figure 7: TopLeft: The
Medium Maze. TopRight:
The One Way Maze
(state transitions are permit­
ted rightwards through the
grey vertical bars, but not
leftwards). BottomLeft: The
ExpanderMaze of size five.

Figure 8; The relative perfor­
mance of using versus not using
airports for different sizes of the
Expand maze of Figure 7. Top
graph: number of times by which
the airports are faster than non-
airports in computing and

Middle graph: the num­
ber of times more memory that
non-airports need. Bot tom graph
the average regret of the airports
policy, expressed as a fraction of
path length.

4 Conclusion
This paper has been about efficiently computing and
caching a hierarchy that allows us to approximate

for all pair of states When is

UNCERTAINTY AND PROBABILISTIC REASONING

this ability to access and useful? Cer­
tainly in domains in which we must perform multiple
sequential tasks, and in which we need to very quickly
switch from task to task. But we believe the greatest
use wil l come in hierarchical control systems in which a
higher level controller wishes to not merely call one of
a set of atomic lower level controllers, but instead one
of a set of lower level controllers that can be parameter­
ized with a subgoal. The full paper and presentation of
this work includes an example of hierarchical control of
hunters and prey which would not have been otherwise
computationally feasible.

Multi-values are primitive in comparison with Parr's
approach [Parr and Russell, 1998], which permits arbi­
trary reward functions instead of merely arbitrary goals.
However, multi-value functions may be more computa­
tionally practical on large problems. Like other hierar­
chical RL algorithms, Airports uses abstract actions, and
can be thought of as creating an entire plan, and then
replanning on each time step. But Airports differs from
other algorithms such as MAXQ [Dietterich, 1998] in the
nature of those abstract actions, and this can be seen by
looking at the plans produced. In MAXQ, the problem
is solved by a sequence of level-1 actions. Each level-1
action is, in turn, a sequence of level-2 actions, and so
on down to the level of primitive actions. The cost of a
level-1 action is unknown until the lower levels have com­
puted. In Airports, the plan at a given time might be a
single level-3 action ("go to this level-3 airport/'), then a
single level-7 action, then a single level-10 action. The
sequence is constrained to always be in increasing numer­
ical order (decreasing levels of abstraction), with at most
one action at each level, guaranteeing short plans. Each
abstract action is composed directly of primitive actions,
not lower-level abstract actions, and the complete hier­
archy of abstract actions—what they do and where they
are applicable—is constructed automatically and parsi­
moniously. This restriction means that a good plan to
get from state to state can be found by exhaustively

searching all legal plans, and this is fast enough to be
done in real time on every step. It might be interesting
to combine airports with MAXQ or with Precup's and
Sutton's abstract actions [Precup and Sutton, 1998], us­
ing the abstract actions generated by Airports as some
of the "primitive" actions in the other algorithm.

References
[Bertsekas and Tsitsikl is, 1989] D. P. Bertsekas and J . N Tsi ts ik l is.

Parallel and Distributed Computation. Prentice Ha l l , 1989.

[Chapman and Kaelbl ing, 199l] D. Chapman and L. P. Kaelbl ing.
Learning from Delayed Reinforcement In a Complex Domain . In
I J C A I 9 1 , 1991.

[Dayan and Hin ton, 1993] P. Dayan and G. E. H in ton. Feudal Rein­
forcement Learning. In S J. Hanson, J. D Cowan, and C. L. Giles,
editors, Advances in Neural Information Processing Systems 5.
Morgan Kaufmann, 1993.

[Dietter ich, 1998] T. G. Diet ter ich. Hierarchical reinforcement learn­
ing wi th the M A X Q value funct ion decomposit ion. In Jude Shavlik,
editor, International Conference on Machine Learning, 1998.

[Kaelbl ing, 1993] L. Kaelbl ing. Hierarchicial Learning in Stochastic
Domains: Prel iminary Results In Machine Learning: Proceedings
of the Tenth International Workshop. Morgan Kaufmann, June
1993

[Kearns et a/., 1998] M. Kearns, Y. Mansour, and A. Ng. Sparse Sam­
pling Methods for Planning and Learning in Large and Part ia l ly
Observable Markov Decision Processes. Draf t Report , 1998.

[Moore and Atkeson, 1993] A. W Moore and C G. Atkeson. Pr ior i ­
tized Sweeping: Reinforcement Learning w i th Less Data and Less
Real T ime. Machine Learning, 13, 1993.

[Moore, 1994] A W Moore. The Part i-game A lgor i thm for Var i ­
able Resolution Reinforcement Learning in Mult id imensional State-
spaces. In S J. Hanson, J. D Cowan, and C. L. Giles, editors,
Advances in Neural information Processing Systems 6. Morgan
Kaufmann, Apr i l 1994.

[Parr arid Russell, 1998] R Parr and S, Russell. Reinforcement Learn­
ing w i th Hierarchies of Machines. In Neural Information Processing
Systems 10, 1997. Morgan Kaufmann, 1998.

[Precup and Sutton, 1998] D Precup and R. Sut ton. Mu l t i -T ime
Models for Temporal ly Abstract Planning. In Neural Information
Processing Systems 10, 1997 Morgan Kaufmann, 1998.

[Singh, 1991] S. P. Singh. Transfer of learning across compositions
of sequential tasks. In L. Bi rnbaum and G. Coll ins, editors, Ma-
chine Learning: Proceedings of the Eighth International Work­
shop, Morgan Kaufmann, June 1991.

MOORE, BAIRD, AND KAELBLING 1321

Num Slow Ai rpor ts Memory Slow A i r p o r t i Speed Mean A i r p o r t s Fract ion
Name States Memory Memory Saving T ime T ime •up Mean Regret

(Words) (Word.)
0.011

Factor (secs) (secs) Factor cost Regret
Small 246 0,061

(Word.)
0.011 5.4 18 7 2.6 30 0.28 0 009

Med ium 1477 2 18 0.055 39.3 3064 216 14.2 39 0.46 0.012
Big 6480 41.990 0.700 60.0 69822 1429 48.9 104 0.51 0005
One Way 1180 1.392 0.085 16.4 2301 219 10.5 99 2.84 0.029
Inventory 5313 28.228 2.507 11.3 55653 7518 7.4 62 6.90 0.111
Expand 1 485 0.235 0.025 9.5 97 33 2.9 39 0.25 0.006
Expand2 970 0.941 0.061 15.5 557 95 5.9 41 0.38 0.009
Expand3 1455 2.117 0.102 20.8 1600 174 9.2 44 0.56 0.013
Expand 4 1940 3.764 0.145 25.9 2570 258 10.0 49 0.76 0.016
Expands 2425 5.881 0.191 30.8 4910 331 14.8 52 0.74 0.014
Expands 2910 8.468 0.239 35.5 6838 424 16.1 55 1.27 0.023
Expand 7 3395 11526 0.289 39.9 10185 535 19.0 58 1 38 0.024
Expands 3680 15.054 0.330 45.6 12940 630 20.5 60 1.18 0.020
Expands 4365 19.053 0.395 48.3 16914 750 22.6 62 1.17 0.019
Expand 10 4850 23.523 0.446 52.8 22916 860 26.6 64 1.36 0.021
Expand 11 5335 28.462 0.502 56.7 30809 962 32.0 65 1.64 0.025
Expand 12 5820 33.872 0.559 606 34774 1100 316 66 1.51 0.023
Expand l3 6305 39.753 0.614 64.7 42243 1220 34.6 73 1.88 0026
Expand 14 6790 46.100 0.674 68.4 51643 1400 369 76 1.38 0.018
Expand l5 7275 52.926 0 732 72.3 62746 1549 40.5 78 1.20 0.015

Table 1: Results on vanous problems. In these experiments, (the number of senior airports) is 3, (the stopping criterion of Equation 6) is 0.05 and
Pcand (the Probability of the requested move in the maze being replaced by a random move) i» 0.1. The Small maze is shown in Figure 1. Medium,
Big, Oneway and Expand5 are all shown in Figure 7.

