
Mult i -Value-Funct ions: Efficient Automat ic Ac t i on Hierarchies fo r 
Mu l t i p le Goal M D P s 

Andrew W. Moore Leemon C. Ba i rd Leslie Kaelbl ing 
Carnegie Mellon University Carnegie Mellon University Brown University 

Abstract 
If you have planned to achieve one particular goal 
in a stochastic delayed rewards problem and then 
someone asks about a different goal what should 
you do? What if you need to be ready to quickly 
supply an answer for any possible goal? This pa-
per shows that by using a new kind of automata 
caily generated abstract action hierarchy that with 
N states, preparing for all of N possible goals can 
be much much cheaper than N times the work of 
preparing for one goal. In goal-based Markov Deci-
sion Problems, it is usual to generate a policy 
mapping states to actions, and a value function 

mapping states to an estimate of minimum 
expected cost-to-goal, starting at In this paper 
we will use the terminology that a mul t i -po l icy 

(for all state-pairs maps a state  
to the first action it should take in order to reach 
with expected minimum cost and a mult i -value-
funct ion is a definition of this minimum 
cost. Building these objects quickly and with lit­
tle memory is the main purpose of this paper, but 
a secondary result is a natural, automatic, way to 
create a set of parsimonious yet powerful abstract-
actions for MDPs. The paper concludes with a set 
of empirical results on increasingly large MDPs. 

1 In t roduct ion 
In goal-based Markov Decision Problems, it is usual to 
generate a policy and a value function for a single goal. 
In 1993, Kaelbling introduced the HDG (Hierarchical 
Distance to Goal) algorithm [Kaelbling, 1993], which 
considered the more general formalism of arbitrary goal 
states as well as start states. Given N states, HDG 
considered the question of how to generate and execute 
an approximation to the multi-policy without requiring 
, memory for the data structures. 

In this paper we introduce new data structures and 
algorithms that exploit this insight while automatically 
choosing where to place landmarks (points to aim for), 
and choosing which states belong to which landmark, 
without requiring pre-defined distance metrics (such as 
the Euclidean heuristic of the original paper) or prede­

fined partitions. Instead, the measure of closeness used 
is the true minimal expected cost measure. Generating 
these locations, partit ions, and policies from scratch in 
volves some interesting "chicken and egg" problems, es-
pecially if we need to exploit the hierarchy whilst build­
ing it (necessary if we are to save not only memory but 
also computation). We wi l l describe how this can be ad­
dressed wi th a new branch-and-bound procedure in com­
bination wi th prioritized sweeping [Moore and Atkesbn, 
1993], an algorithm for improving value functions in the 
face of small alterations in an MDP structure. 

Another motivation is to help answer the two ques­
tions, "Where should Abstract Actions come from?". Is 
it necessary to have some high-level prior understanding 
of the class of tasks at hand in order to decide which 
abstractions are beneficial? This may be of use to re­
cent algorithms that attempt to exploit abstract actions 
but require them to be predefined (such as [Precup and 
Sutton, 1998; Singh, 1991; Dayan and Hinton, 1993; 
Dietterich, 1998] and HDG itself). 

2 The A i rpo r t Hierarchy 
This algorithm takes, as input, an MDP which is spec­
ified by a set of N states, and for each state a set 
of actions, and for each state-action pair, a set of 
outcomes along with the outcome probabilities. The 
OUTCOMES() set of a state-action-pair is the set 
of states such that P( next state this state = 
x} this action We make the strong assump­
tion that the MDP is sparse: for all states the num­
ber of actions is N and for all state-action pairs, 
the number of outcomes is N. This assumption is 
very frequently true in navigation, dynamics and inven­
tory MDPs. Furthermore, recent work [Reams et al., 
1998] indicates that even non-sparse MDPs may usu­
ally be transformable to sparse MDPs wi th l i t t le loss in 
optimality, In addition to the state transition proba­
bilities, the algorithm also inputs the non-negative one-
step cost function specifying the penalty we pay 
for applying a in state Note that conventional dy­
namic programming theory tells us that the optimal 
policy and mul t i value function must obey 
mina and = argmina where 
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The new structure is called the Airport Hierarchy. It 
differs from HDG and is more similar to Feudal Learn-
ing [Dayan and Hinton, 1993] in that each state is a mem­
ber of many partitions; some large and abstract, others 
small and specific. It differs from Feudal Learning and 
other partit ioning structures (such as G-leaming [Chap­
man and Kaelbling, 1991] and PartiGame [Moore, 1994]) 
in that junior partitions are not necessarily subsets of 
their seniors, and many partitions are overlapping. We 
wil l begin by defining the properties that we do require 
from these partitions, before proceeding to execution 
and generation algorithms that exploit these properties. 
Proofs wil l be included in a later version of this paper. 

2.1 Formal i t ies 
We define, for a given state that we have decided to 
turn into an airport: 

states that know how to get to (1) 

Any member of wi l l have, cached away in the air­
ports structure, knowledge of the truly optimal 
first action to take in getting to y and the true 
minimum expected cost of getting to Define 

Level = The "Level" of airport (2) 

Where Level = 0 means that is a maximally senior 
airport: the larger the level, the lower the seniority. As 
part of the construction we wil l insist that 

(3) 
Thus, if y is a level airport then there are at least 

states that know the optimal value and policy for 
reaching We also insist that 

(4) 
Thus, the set of states that knows how to get to are 
the states with minimal expected cost to get to Our 
final two requirements are 

• If 1 then includes at least senior air­
por ts (x is senior to if and only if  

• There are a i rpor ts at level 0, at level 1, at level 
2, etc, w i t h the number of a i rports doubl ing at each level 
un t i l we run ou t of states. 

Because the number of airports doubles at each level, 
the maximum level rises logarithmically with The 
total amount of memory needed to represent all knowl­
edge about all level i airports is thus, in the best case, 

per airport times level i airports, which is 
thus and so the total amount of memory needed 
over all levels is in the best case. 
Examp le : Figures 1 and 2 depict aspects of the airport 
hierarchy for a simple grid-world. 

2.2 Choos ing Ac t ions 
How is approximated by the airport hierarchy? 
Call the approximation To choose the first ac­
tion to take if we hope eventually to reach cheaply, we 
use the HDG insight. If is far enough from that it 

Figure 1: A simple maze con-
structed with = 4 top-level 
airports. The light gray areas 
are cells in which transitions 
are completely random (to a 
random neighbor). In white 
cells, there is a 0.9 probabil­
ity that we'll move in the direc­
tion we request, 
and chance we'll 
move to a random neighbor. 
The disks denote the airports: 
the larger the disk, the more se­
nior the airport. 

Figure 2: Each figure shows 
an airport (circled) and 

(dark grey). The air­
port levels are 1, 3 and 5 re-
spectively. The = 3 senior 
airports that can reach the 
targets are also shown. 

doesn't know how to get to directly (i.e., if 
we pick some intermediate target that we do know how to 
get to, and from which we will be able to make progress 
towards The only remaining question is how to choose 
a good target from the airport hierarchy. 

To do this, we must define one extra object, called 
a special set of states that know how to get to 

y by travelling through increasingly less senior airports. 
Define 

So that, for example, consists of those states 
in that happen to have a more senior airport level 
t o Then w r i t e = Now  
we can define the target that first aims for. We wil l 
deal in turn with three cases: states that immediately 
know how to get to states that are in and 
all other states. 

• If then define and 
define These values can be read, 
in constant time, from the information cached in the 
airport hierarchy. 
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♦ If but then assume that 
was entered into at level so that 

(y) but Then define 

• Finally, if and then define 
Common to be the set of states such 
that And then define 

Common cannot be empty because  
must contain a Level 0 airport. 

Intuitively, the process of creating can be 
seen as dynamically creating a goal-state-dependent set 
of landmarks (using HDG terminology) for getting to 

This set of landmarks is useful specifically for be­
cause it has a higher density of landmarks closer to y 
(with closeness defined in terms of minimal expected 
cost). By construction (easy to prove) this set is small: 

Figure 3 shows the set of airports considered during 
one such decision. Although the policies resulting from 
this scheme may be suboptimal, we can prove that they 
will always reach the goal in finite time, and empirically 
the regret (mean loss compared with truly optimal be-
havior) is very small. 

Figure 3: Planning the next 
action from the centrally cir­
cled state. The start state 
is the cell surrounded by the 
lower large circle. The goal 
state is surrounded by the 
upper large circle. The set 

are depicted by small 
discs, w i th radii proportional 
to seniority. 

2*3 E f f i c i en t l y b u i l d i n g t h e a i r p o r t 
h i e r a r c h y 

We say a state is unassigned if it is not an airport at 
any level in the hierarchy. The airport construction al­
gorithm begins with all states unassigned, and ends with 
no states unassigned. Whenever an airport y becomes 
assigned, is chosen, the set is chosen, 
and for all are com­
puted. Al l this information is cached permanently away 
in the airport hierarchy for future use during the remain­
ing airport construction and policy execution. 

We wil l now discuss the A d d A i r p o r t operation, 
which picks one state and assigns it. 

2.4 Step One: Choose  
We defer discussion of this step unti l Section 2.7. 

2.5 S tep T w o : Choose L e v e l 
This step is trivial. is simply given the most senior air­
port level available, subject to the constraint that there 
are no more than airports at level L. Thus, if so far, 
m airports have been assigned, level is  

2.6 S tep T h r e e ; C o n s t r u c t  
To understand the job we must do here, we wil l be-
gin by considering two simplified scenarios: an ineffi­
cient method for non-deterministic MDPs and an ef­
ficient method for deterministic MDPs, Finally, we'll 
tackle the efficient non-deterministic case. 

Cons t ruc t ing ineff ic ient ly 
We would simply take the following steps: 

1. Run an MDP solver such as value iteration, policy 
iteration, or modified policy iteration [Bertsekas and 
Tsitsiklis, 1989] to compute for 
all states in the MDP. 

2. Define the set is 
among the T lowest values. }, with ties broken ar­
bitrarily to ensure T elements in the set. Define  
to be the minimum such that  
and contains at least k senior airports. 
Then simply select and store 
the values in the airport hier­
archy only for those for which  

The objection to this approach is that it is too expen­
sive: after having computed the set for every 
in the MDP, we will have needed to perform full dy­
namic programs, meaning operations in total 
to build the hierarchy, where kcrit is the average num-
ber of value iterations needed for dynamic programming 
convergence. 

Cons t ruc t ing for determin is t ic systems 
This too would be simple. We can perform uniform-cost 
breadth-first search back from y until the set of states 
added during the search become sufficiently large and 
contains the required number of senior airports. Now 
the work per airport would be small for junior airports 
with small state sets, resulting in an algorithm 
that in the best case could be as cheap as  

The efficient non-determin is t ic case 
Again, we will work backwards from y, incremen­
tally adding states. The problem is that for a non-
deterministic system there is always a probability that 
the system being controlled will leave the set of states 
added so far. How, then, can we compute the optimal 
value function that takes into account the possibility of 
such exits? 

Let us briefly take a break from the larger question of 
computing and instead focus on a simpler ques-
tion given an incomplete portion of a goal-based MDP, 
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bow can we approximate over the states in this 
incomplete portion (which we will call Figure 4 gives 
an example of such a problem, with five states (including 
the goal state, constituting and several outcomes 
that lead to states outside this set marked with ? sym­
bols. We will find an optimistic lower bound, 
and a pessimistic upper bound, on 
so that  

(5) 

Figure 4: An example of a sub-MDP 
in the process of construction from 
five states 
The thick polygonal arrows denote ac­
tions. The thin arrows denote the pos­
sible stochastic outcomes if the action 
is taken. Assume that all outcomes 
cost 1 unit, and for a given state-
action pair, all depicted outcomes are 
equiprobable. 

Pigure5: The optimistic in­
terpretation of the subMDP 
of Figure 4. 

C o n s t r u c t i n g  
We wi l l construct a new, small, MDP made up of the 
states in plus one new state This construction 
wil l be guaranteed not to overestimate  

Before proceeding, we wi l l partit ion into two subsets 
of states. Define 

Internals 
Borders  

where Preds( ) means "z is an immediate predeces­
sor of , so that Preds(x) ~ 3 a such that P( next 
state this state and action  

Border states have some predecessor outside while 
internal states are ones in which all predecessors are in­
side 5. In Figure 4, assume that and are all 
internal states, and and are border states. 

For each of the ? symbols in Figure 4, what is the 
best thing that could happen? The first thought is that 
they might head straight to a state outside paying 
their one-step outcome cost, and then this state might 
be able to j ump to the goal with zero cost. But this is 
not possible. If the goal is an internal state, then no 
state outside can jump directly to the goal, nor indeed 
to any other internal state. So the best thing that could 
happen is that they j ump to some state outside and 
then wi th zero cost j ump to the most favorable of the 
border states. We model this by adding a new, fake, 
state called to the system, which can with zero cost 
jump to any of the border states that it chooses. The ? 
symbols all j ump to Figure 5 shows this construction 
for our example. Having added this extra state, we run 
an MDP solver to compute its value function, which we 
define to be  

C o n s t r u c t i n g  
We must now ask "what is the worst thing that can 

happen at any of the ? symbols?". Unfortunately, it is 
arbitrarily bad. Even if there were an upper bound on a 
single transition cost in the MDP, hard-to-escape loops 
(caused by a probability-of-transition-to-self very close 
to 1) could create arbitrarily expensive expected costs 
to the goal. 

The good news is that if we may be able 
to take advantage of information cached in the partially 
constructed airport hierarchy. This requires that at least 
one state in have already been added to the hierarchy 
as an airport, and that one or more other states in 
know how to get to this airport. 

If there exists and such that is an air­
port and then we wi l l add an extra action to 

with cost (which we can look up in the hier­
archy) and with next state wi th probability 1. Adding 
this action simply expresses the already established fact 
that we know we can get to from by some (not 
necessarily explicitly known) means, and the expected 
cost of doing so is Expressing this fact cannot 
cause the system to underestimate the cost of travelling 
from to Adding these new fake actions can have 
a dramatic effect on the worst case cost estimates. In 
Figure 4, the worst case value for all states other than 
Y is infinite. But suppose we add the extra knowledge 
that we already know that travelling from to costs, 
say, an expected 3 units (see Figure 6). Then the op­
timal policy in the supplemented MDP wil l have costs 

Figure 6: The pessimistic interpretation 
of the subMDP of Figure 4, assuming that 

Cons t ruc t i ng  
We now return to the question of constructing  
The algorithm is: 

1. Let Borders = Internals —  

2, Compute 
using the modified versions of described above. 
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3. Define the set such that 
is among the lowest values Define to be the 
minimum T, if it exists, such that  
and contains at least senior airports. 
If such a exists, check the tightness on our 
lower and upper bounds on for all states 
in I f 

(6) 
then halt, adding y into the airport hierarchy, along 
with its chosen level, and  
and remembering for future use all the  
values for a p p r o x i m a t i n g b y  

4. If we did not halt, grow Pick the border state 
with minimum add all its predecessors 
into and Borders. Check which states have all 
their immediate predecessors in and promote 
them into Internals. Goto 2. 

Remarks: 
Each time and are recomputed, few 
of the states in change their values significantly, except 
for newly added states and their neighbors. To take 
advantage of this, we use prioritized sweeping [Moore 
and Atkeson, 1993]. This was used in the experiments 
reported in Section 3, and without it, the computational 
costs were empirically 5 to 100 times slower. 

In order to access the immediate predecessors in the 
MDP, we must create a backwards model, which is an 
array which, for each state maps to This 
can be built once, with a construction cost linear in the 
number of states. 

Why should we expect that the upper and lower 
bounds on the value function wil l be tight? Not all 
domains will provide tightness: for example, expander 
graphs are likely to be problematic. But domains with 
a notion of locality are likely to achieve tight bounds on 
states close to the goal quite early on. 

2.7 Choos ing a i r p o r t l oca t ions 
When the hierarchy is being built, level 0 airports are 
assigned first, then level 1, etc. The location of a new 
airport is always chosen to be the state furthest from any 
previous airport (in terms of expected cost). Because 
of the construction of the hierarchy, this can always be 
found efficiently. Notice that no prior assumptions (such 
as Euclidean distance) are needed for airport determina­
tion: it is fully automatic. 

3 Results 
Table 1 presents results on various stochastic gridworlds 
and an inventory management problem. The gridworlds 
all obey the same rules as our initial example. Problems 
Expandl through Expandl5 are gridworlds of increasing 
size, produced by gluing together a short fat maze on 

top of itself. This allows us to see how torts increase 
as the maze size increases linearly, One Way (middle of 
Figure 7) is a maze with one-way wails, and serves to 
demonstrate that it is not necessary for actions to be 
reversible for airports to be applicable. The table com­
pares the memory needed if a Ml table were used 
to that needed by the airport hierarchy. It compares the 
time needed to build the airport hierarchy conventionally 
with the time needed using our algorithm. And it shows 
the mean regret (loss due to using our approximate pol-

instead of the optimal policy, To 
give the regret some context it also shows the mean path 
cost. Figure 8 graphically depicts the tradeoff as the 
number of states is increased. Further empirical results, 
for which there is no room here, show that the algorithm 
work over a wide range of stochasticity, that there is 
not strong sensitivity to the e threshold, and that clever 
placement of the airports is beneficial. 

Figure 7: TopLeft: The 
Medium Maze. TopRight: 
The One Way Maze 
(state transitions are permit­
ted rightwards through the 
grey vertical bars, but not 
leftwards). BottomLeft: The 
ExpanderMaze of size five. 

Figure 8; The relative perfor­
mance of using versus not using 
airports for different sizes of the 
Expand maze of Figure 7. Top 
graph: number of times by which 
the airports are faster than non-
airports in computing and 

Middle graph: the num­
ber of times more memory that 
non-airports need. Bot tom graph 
the average regret of the airports 
policy, expressed as a fraction of 
path length. 

4 Conclusion 
This paper has been about efficiently computing and 
caching a hierarchy that allows us to approximate 

for all pair of states When is 
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this ability to access and useful? Cer­
tainly in domains in which we must perform multiple 
sequential tasks, and in which we need to very quickly 
switch from task to task. But we believe the greatest 
use wil l come in hierarchical control systems in which a 
higher level controller wishes to not merely call one of 
a set of atomic lower level controllers, but instead one 
of a set of lower level controllers that can be parameter­
ized with a subgoal. The full paper and presentation of 
this work includes an example of hierarchical control of 
hunters and prey which would not have been otherwise 
computationally feasible. 

Multi-values are primitive in comparison with Parr's 
approach [Parr and Russell, 1998], which permits arbi­
trary reward functions instead of merely arbitrary goals. 
However, multi-value functions may be more computa­
tionally practical on large problems. Like other hierar­
chical RL algorithms, Airports uses abstract actions, and 
can be thought of as creating an entire plan, and then 
replanning on each time step. But Airports differs from 
other algorithms such as MAXQ [Dietterich, 1998] in the 
nature of those abstract actions, and this can be seen by 
looking at the plans produced. In MAXQ, the problem 
is solved by a sequence of level-1 actions. Each level-1 
action is, in turn, a sequence of level-2 actions, and so 
on down to the level of primitive actions. The cost of a 
level-1 action is unknown until the lower levels have com­
puted. In Airports, the plan at a given time might be a 
single level-3 action ("go to this level-3 airport/'), then a 
single level-7 action, then a single level-10 action. The 
sequence is constrained to always be in increasing numer­
ical order (decreasing levels of abstraction), with at most 
one action at each level, guaranteeing short plans. Each 
abstract action is composed directly of primitive actions, 
not lower-level abstract actions, and the complete hier­
archy of abstract actions—what they do and where they 
are applicable—is constructed automatically and parsi­
moniously. This restriction means that a good plan to 
get from state to state can be found by exhaustively 

searching all legal plans, and this is fast enough to be 
done in real time on every step. It might be interesting 
to combine airports with MAXQ or with Precup's and 
Sutton's abstract actions [Precup and Sutton, 1998], us­
ing the abstract actions generated by Airports as some 
of the "primitive" actions in the other algorithm. 
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Num Slow Ai rpor ts Memory Slow A i r p o r t i Speed Mean A i r p o r t s Fract ion 
Name States Memory Memory Saving T ime T ime •up Mean Regret 

(Words) (Word.) 
0.011 

Factor (secs) (secs) Factor cost Regret 
Small 246 0,061 

(Word.) 
0.011 5.4 18 7 2.6 30 0.28 0 009 

Med ium 1477 2 18 0.055 39.3 3064 216 14.2 39 0.46 0.012 
Big 6480 41.990 0.700 60.0 69822 1429 48.9 104 0.51 0005 
One Way 1180 1.392 0.085 16.4 2301 219 10.5 99 2.84 0.029 
Inventory 5313 28.228 2.507 11.3 55653 7518 7.4 62 6.90 0.111 
Expand 1 485 0.235 0.025 9.5 97 33 2.9 39 0.25 0.006 
Expand2 970 0.941 0.061 15.5 557 95 5.9 41 0.38 0.009 
Expand3 1455 2.117 0.102 20.8 1600 174 9.2 44 0.56 0.013 
Expand 4 1940 3.764 0.145 25.9 2570 258 10.0 49 0.76 0.016 
Expands 2425 5.881 0.191 30.8 4910 331 14.8 52 0.74 0.014 
Expands 2910 8.468 0.239 35.5 6838 424 16.1 55 1.27 0.023 
Expand 7 3395 11526 0.289 39.9 10185 535 19.0 58 1 38 0.024 
Expands 3680 15.054 0.330 45.6 12940 630 20.5 60 1.18 0.020 
Expands 4365 19.053 0.395 48.3 16914 750 22.6 62 1.17 0.019 
Expand 10 4850 23.523 0.446 52.8 22916 860 26.6 64 1.36 0.021 
Expand 11 5335 28.462 0.502 56.7 30809 962 32.0 65 1.64 0.025 
Expand 12 5820 33.872 0.559 606 34774 1100 316 66 1.51 0.023 
Expand l3 6305 39.753 0.614 64.7 42243 1220 34.6 73 1.88 0026 
Expand 14 6790 46.100 0.674 68.4 51643 1400 369 76 1.38 0.018 
Expand l5 7275 52.926 0 732 72.3 62746 1549 40.5 78 1.20 0.015 

Table 1: Results on vanous problems. In these experiments, (the number of senior airports) is 3, (the stopping criterion of Equation 6) is 0.05 and 
Pcand (the Probability of the requested move in the maze being replaced by a random move) i» 0.1. The Small maze is shown in Figure 1. Medium, 
Big, Oneway and Expand5 are all shown in Figure 7. 


