Multi-Channel Singular Spectrum Analysis on Geocenter Motion and Its Precise Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. SLR-Derived GCM Products
2.2. Multi-Channel Singular Spectrum Analysis
3. Analysis of GCM
3.1. GCM Seasonal Variations
3.2. GCM Trend Variations
4. Prediction of GCM
4.1. Principle of Prediction
- (1)
- First, perform linear fitting on the GCM series, establish a linear model, and make predictions. Assuming that the GCM time series is , the least squares method is used to linearly fit it, and the model is expressed as:
- (2)
- MSSA is used to decompose the GCM series of the de-linear trend, and the appropriate main component terms are selected for the main components prediction of the GCM. The prediction method for main components by MSSA is as follows:
- The number of predictions of GCM is N; assuming that the time series of GCM without linear trend is , N zeros are added at the end of to form a new prediction sequence ;
- The new predicted sequence is decomposed by MSSA, and the N values at the end of the first RC (RC1) are used to replace the corresponding prediction values of the new sequence. This process is repeated until the RMS value of the two replacements data is less than 0.001 mas;
- RC2 is added to reconstruct the prediction data; that is, the prediction data is obtained by linear superposition of RC1 and RC2. Step 2 is repeated until RC1...RCi is linearly added to the prediction data, and the predictions using MSSA can be obtained.
- (3)
- ARMA is used to model and predict the residual components, which are the differences between the GCM series of the de-linear trend and reconstructed components by MSSA. Assuming that the series of residual items is , the ARMA model is expressed as:
4.2. Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montag, H. Geocenter variations derived by different satellite methods. In IERS Technical Note 25; Ray, J., Ed.; Observatoire de Paris: Paris, France, 1999; pp. 71–74. [Google Scholar]
- Pavlis, H. Fortnightly resolution geocenter series: A combined analysis of Lageos 1 and 2 SLR data (1993–1996). In IERS Technical Note 25; Ray, J., Ed.; Observatoire de Paris: Paris, France, 1999; pp. 75–84. [Google Scholar]
- Soffel, M.H.; Klioner, S.A.; Petit, G.; Wolf, P.G.; Kopeikin, S.M.; Bretagnon, P.; Brumberg, V.A.; Capitaine, N.; Damour, T.; Fukushima, T.; et al. The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: Explanatory Supplement. Astron. J. 2003, 126, 2687–2706. [Google Scholar] [CrossRef]
- Wu, X.; Ray, J.; Van Dam, T. Geocenter motion and its geodetic and geophysical implications. J. Geodyn. 2012, 58, 44–61. [Google Scholar] [CrossRef]
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 2013, 118, 740–747. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS conventions. In IERS Technical Note No. 36; Petit, G., Luzum, B., Eds.; International Earth Rotation and Reference Systems Service: Frankfurt, Germany, 2010. [Google Scholar]
- Blewitt, G. Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res. Space Phys. 2003, 108, 2103. [Google Scholar] [CrossRef] [Green Version]
- Métivier, L.; Greff-Lefftz, M.; Altamimi, Z. On secular geocenter motion: The impact of climate changes. Earth Planet Sci. Lett. 2010, 296, 360–366. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Métivier, L. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geod. 2011, 85, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Wei, N.; Shi, C.; Liu, J.N. Effects of surface loading and heterogeneous GPS network on Helmert transformation. Chin. J. Geophys. 2016, 59, 484–493. [Google Scholar] [CrossRef]
- Riddell, A.R.; King, M.A.; Watson, C.S.; Sun, Y.; Riva, R.E.M.; Rietbroek, R. Uncertainty in geocenter estimates in the context of ITRF2014. J. Geophys. Res. Solid Earth 2017, 122, 4020–4032. [Google Scholar] [CrossRef] [Green Version]
- Trupin, A.S.; Meier, M.F.; Wahr, J.M. Effect of melting glaciers on the Earth’s rotation and gravitational field: 1965–1984. Geophys. J. Int. 1992, 108, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Dickey, J.O.; Chao, Y.; Cheng, M.K. Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys. Res. Lett. 1997, 24, 1867–1870. [Google Scholar] [CrossRef]
- Watkins, M.M.; Eanes, R.J. Observations of tidally coherent diurnal and semidiurnal variations in the geocenter. Geophys. Res. Lett. 1997, 24, 2231–2234. [Google Scholar] [CrossRef]
- Bouillé, F.; Cazenave, A.; Lemoine, J.M.; Crétaux, J.F. Geocentre motion from the DORIS space system and laser data to the Lageos satellites: Comparison with surface loading data. Geophys. J. Int. 2000, 143, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Crétaux, J.-F.; Soudarin, L.; Davidson, F.J.M.; Gennero, M.; Bergé-Nguyen, M.; Cazenave, A. Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data. J. Geophys. Res. Space Phys. 2002, 107, ETG-16. [Google Scholar] [CrossRef]
- Blewitt, G.; Clarke, P. Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J. Geophys. Res. Space Phys. 2003, 108, 2311. [Google Scholar] [CrossRef] [Green Version]
- Meindl, M.; Beutler, G.; Thaller, D.; Dach, R.; Jäggi, A. Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv. Space Res. 2013, 51, 1047–1064. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Springer, T. A collinearity diagnosis of the GNSS geocenter determination. J. Geod. 2013, 88, 65–85. [Google Scholar] [CrossRef]
- Kuzin, S.P.; Tatevian, S.K. Determination of seasonal geocenter variations from DORIS, GPS and SLR data. In Proceedings of the Joumees Systemes de Reference Sptio-Temporels, Warsaw, Poland, 19–21 September 2005; pp. 76–77. [Google Scholar]
- Kong, Q.; Guo, J.; Sun, Y.; Zhao, C.; Chen, C. Centimeter-level precise orbit determination for the HY-2A satellite using DORIS and SLR tracking data. Acta Geophys. 2017, 65, 1–12. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the international terrestrial reference frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Appleby, G.; Rodríguez, J.; Altamimi, Z. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: Estimation of systematic errors in LAGEOS observations 1993–2014. J. Geod. 2016, 90, 1371–1388. [Google Scholar] [CrossRef]
- Guo, J.Y.; Chang, X.T.; Han, Y.B.; Sun, J.L. Periodic geocenter motion measured with SLR in 1993–2006. Acta Geod. Cartogr. Sin. 2009, 38, 311–317. [Google Scholar] [CrossRef]
- Vautard, R.; Ghil, M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. D Nonlinear Phenom. 1989, 35, 395–424. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Y.; Wu, S.; Zhang, K. An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement. J. Geophys. Res. Solid Earth 2016, 121, 2193–2211. [Google Scholar] [CrossRef] [Green Version]
- Zotov, L.; Bizouard, C.; Shum, C. A possible interrelation between Earth rotation and climatic variability at decadal time-scale. Geodesy Geodyn. 2016, 7, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.S.; Guo, J.Y.; Shen, Y.; Kong, Q.L.; Yuan, J.J. Extraction of common mode errors of GNSS coordinate time series based on multi-channel singular spectrum analysis. Chin. J. Geophys. 2018, 61, 4383–4395. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, J.; Liu, X.; Wei, X.; Li, W. One hybrid model combining singular spectrum analysis and LS + ARMA for polar motion prediction. Adv. Space Res. 2017, 59, 513–523. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, J.; Liu, X.; Kong, Q.; Guo, L.; Li, W. Long-term prediction of polar motion using a combined SSA and ARMA model. J. Geod. 2018, 92, 333–343. [Google Scholar] [CrossRef]
- Zhao, C.; Qiao, L.; MA, T. Estimation and prediction of geocenter motion based on GNSS weekly solutions of IGS. In Proceedings of the Union, Fall Meeting, San Francisco, CA, USA, 9–13 December 2019; p. G12A-05. [Google Scholar]
- Deng, L.; Li, Z.; Wei, N.; Ma, Y.; Chen, H. GPS-derived geocenter motion from the IGS second reprocessing campaign. Earth Planets Space 2019, 71, 1–17. [Google Scholar] [CrossRef]
- Cheng, M.K.; Ries, J.C.; Tapley, B.D. Geocenter variations from analysis of SLR Data. In Proceedings of the IAG Commission Symposium 2010, Reference Frames for Applications in Geosciences (REFAG2010), Mame-La-Vallee, France, 4–8 October 2010; pp. 19–25. [Google Scholar] [CrossRef]
- Pearlman, M.; Arnold, D.; Davis, M.; Barlier, F.; Biancale, R.; Vasiliev, V.; Ciufolini, I.; Paolozzi, A.; Pavlis, E.C.; Sośnica, K.; et al. Laser geodetic satellites: A high-accuracy scientific tool. J. Geod. 2019, 93, 2181–2194. [Google Scholar] [CrossRef]
- Ries, J.C. Reconciling estimates of annual geocenter motion from space geodesy. In Proceedings of the 20th International Workshop on Laser Ranging, Potsdam, Germany, 9–14 October 2016; pp. 10–14. [Google Scholar]
- Brumberg, V.A.; Kopejkin, S.M. Relativistic reference systems and motion of test bodies in the vicinity of the earth. Il Nuovo Cim. B 1989, 103, 63–98. [Google Scholar] [CrossRef]
- Oropeza, V.; Sacchi, M.D. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 2011, 76, V25–V32. [Google Scholar] [CrossRef]
- Hassani, H. Singular spectrum analysis: Methodology and comparison. J. Data Sci. 2007, 5, 239–257. [Google Scholar]
- Golyandina, N.; Nekrutkin, V.; Zhigljavsky, A. Analysis of Time Series Structure; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kong, Q.; Zhang, L.; Han, L.; Guo, J.; Zhang, D.; Fang, W. Analysis of 25 years of polar motion derived from the DORIS space geodetic technique using FFT and SSA methods. Sensors 2020, 20, 2823. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.K.; Ries, J.C.; Tapley, B.D. Geocenter Variations from Analysis of SLR Data. In Reference Frames for Applications in Geosciences; Springer: Berlin/Heidelberg, Germany, 2013; pp. 19–25. [Google Scholar]
- Wu, X.; Collilieux, X.; Altamimi, Z. Data sets and inverse strategies for global surface mass variations. Geophy. Res. Abstr. 2010, 12, EGU2010. [Google Scholar]
- Wu, X.; Heflin, M.B. Global surface mass variations from multiple geodetic techniques—Comparison and assessment. In Proceedings of the AGU Fall Meeting, Sang Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Zhang, X.; Jin, S. Uncertainties and effects on geocenter motion estimates from global GPS observations. Adv. Space Res. 2014, 54, 59–71. [Google Scholar] [CrossRef]
- Guo, J.; Han, Y.; Hwang, C. Analysis on motion of Earth’s center of mass observed with CHAMP mission. Sci. China Ser. G Phys. Mech. Astron. 2008, 51, 1597–1606. [Google Scholar] [CrossRef]
- Feissel-Vernier, M.; Le Bail, K.; Berio, P.; Coulot, D.; Ramillien, G.; Valette, J.-J. Geocentre motion measured with DORIS and SLR, and predicted by geophysical models. J. Geod. 2006, 80, 637–648. [Google Scholar] [CrossRef]
- Blewitt, G.; Lavallée, D.; Clarke, P.; Nurutdinov, K. A new global mode of earth deformation: Seasonal cycle detected. Science 2001, 294, 2342–2345. [Google Scholar] [CrossRef] [Green Version]
- Baur, O.; Kuhn, M.; Featherstone, W.E. Continental mass change from GRACE over 2002–2011 and its impact on sea level. J. Geod. 2012, 87, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Klemann, V.; Martinec, Z. Contribution of glacial-isostatic adjustment to the geocenter motion. Tectonophysics 2011, 511, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Heflin, M.B.; Schotman, H.; Vermeersen, B.L.A.; Dong, D.; Gross, R.S.; Ivins, E.R.; Moore, A.W.; Owen, S.E. Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat. Geosci. 2010, 3, 642–646. [Google Scholar] [CrossRef]
- Greff-Lefftz, M.; Legros, H. Fluid core dynamics and degree-one deformations: Slichter mode and geocenter motions. Phys. Earth Planet Inter. 2007, 161, 150–160. [Google Scholar] [CrossRef]
- Kuzin, S.; Tatevian, S.; Valeev, S.; Fashutdinova, V. Studies of the geocenter motion using 16-years DORIS data. Adv. Space Res. 2010, 46, 1292–1298. [Google Scholar] [CrossRef]
- Rietbroek, R.; Fritsche, M.; Brunnabend, S.-E.; Daras, I.; Kusche, J.; Schroter, J.; Flechtner, F.; Dietrich, R. Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J. Geodyn. 2012, 59, 64–71. [Google Scholar] [CrossRef]
- Sun, Y.; Riva, R.; Ditmar, P. Optimizing estimates of annual variations and trends in geocenter motion and J 2 from a combination of GRACE data and geophysical models. J. Geophys. Res. Solid Earth 2016, 121, 8352–8370. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Ma, T. The Estimation and Prediction of Geocenter Motion Based on GNSS/SLR Weekly Solutions. In Proceedings of the 42nd COSPAR Scientific Assembly, Pasadena, CA, USA, 14–22 July 2018; p. B2-1. [Google Scholar]
Order/RC | Singular Spectrum Value | Variance Contribution | Cumulation |
---|---|---|---|
1 | 139,651.7 | 24.90% | 24.90% |
2 | 134,495.7 | 23.98% | 48.88% |
3 | 24,465 | 4.36% | 53.24% |
4 | 17,625.2 | 3.14% | 56.38% |
5 | 10,608.3 | 1.89% | 58.27% |
6 | 10,477.4 | 1.87% | 60.14% |
7 | 8517.8 | 1.52% | 61.66% |
8 | 8476.8 | 1.51% | 63.17% |
9 | 7423.4 | 1.32% | 64.49% |
10 | 7285.8 | 1.30% | 65.79% |
Literature | Data | X | Y | Z |
---|---|---|---|---|
This paper | SLR(L1/L2) | 1.7 ± 0.1 | 2.8 ± 0.1 | 4.4 ± 0.1 |
Altamimi et al. (2011) [9] | SLR(ILRS) | 2.6 ± 0.1 | 3.1 ± 0.1 | 5.5 ± 0.3 |
Cheng et al. (2013) [41] | SLR(5 satellites) | 2.7 ± 0.2 | 2.8 ± 0.2 | 5.2 ± 0.2 |
Ries et al. (2016) [35] | SLR(L1/L2) | 2.8 | 2.5 | 5.8 |
Wu et al. (2010) [42] | GPS loading/OBP/ GRACE | 1.8 ± 0.1 | 2.7 ± 0.1 | 4.2 ± 0.2 |
Wu et al. (2014) [43] | GPS loading/OBP/ GRACE | 1.9 | 3.3 | 3.7 |
Literature | Data | X | Y | Z | Time Span |
---|---|---|---|---|---|
This paper | SLR | 0.05 ± 0.003 | 0.04 ± 0.004 | −0.10 ± 0.01 | 1993–2017.2 |
Guo et al. (2009) [24] | SLR | −0.26 ± 0.02 | 0.43 ± 0.02 | 0.50 ± 0.02 | 1993–2006 |
Kuzin et al. (2010) [52] | DORIS/INA | −1.19 ± 0.07 | −0.12 ± 0.07 | −0.28 ± 0.31 | 1993–2009 |
Rietbroek et al. (2012) [53] | GRACE/Jason1/GIA | −0.28 | 0.43 | −1.08 | 2003–2008 |
Sun et al. (2016) [54] | GRACE/OMCT/ICE-5G_VM2 | −0.03 ± 0.03 | 0.11 ± 0.02 | −0.21 ± 0.04 | 2002.6–2014.5 |
Sun et al. (2016) [54] | GRACE/OMCT/ICE-6G_VM5a | −0.06 ± 0.03 | 0.07 ± 0.02 | −0.33 ± 0.04 | 2002.6–2014.5 |
Lead Prediction | 6 Month | 12 Month | 24 Month | ||||||
---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | X | Y | Z | |
Max | 2.92 | 1.53 | 7.11 | 3.28 | 2.34 | 7.11 | 3.28 | 2.34 | 7.34 |
Min | −2.34 | −2.19 | −6.23 | −2.34 | −2.19 | −6.60 | −4.80 | −2.19 | −6.60 |
Mean | 0.14 | −0.15 | 0.58 | 0.08 | −0.14 | 0.86 | −0.32 | −0.07 | 0.91 |
RMSE | 1.29 | 1.03 | 3.29 | 1.35 | 1.08 | 3.45 | 1.53 | 1.08 | 3.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Liu, X.; Guo, J.; Shen, Y. Multi-Channel Singular Spectrum Analysis on Geocenter Motion and Its Precise Prediction. Sensors 2021, 21, 1403. https://doi.org/10.3390/s21041403
Jin X, Liu X, Guo J, Shen Y. Multi-Channel Singular Spectrum Analysis on Geocenter Motion and Its Precise Prediction. Sensors. 2021; 21(4):1403. https://doi.org/10.3390/s21041403
Chicago/Turabian StyleJin, Xin, Xin Liu, Jinyun Guo, and Yi Shen. 2021. "Multi-Channel Singular Spectrum Analysis on Geocenter Motion and Its Precise Prediction" Sensors 21, no. 4: 1403. https://doi.org/10.3390/s21041403
APA StyleJin, X., Liu, X., Guo, J., & Shen, Y. (2021). Multi-Channel Singular Spectrum Analysis on Geocenter Motion and Its Precise Prediction. Sensors, 21(4), 1403. https://doi.org/10.3390/s21041403