Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery
Abstract
:1. Introduction
2. Methodology
2.1. Selection of Pixels with Coffee Fields
2.2. Filtering the Time Series
2.3. Metrics Derived from Vegetation Indices
2.4. Yield Data
2.5. Correlations
3. Results
3.1. Annual Variation of Vegetation Indices
3.2. Yield Data and Vegetation Index Variation for Each Two Years
4. Discussion
5. Conclusions
Acknowledgments
References
- Embrapa Café. Histórico. Available online: http://www22.sede.embrapa.br/cafe/unidade/historico.htm (accessed on 4 May 2009).
- Cordero-Sancho, S.; Sader, S.A. Spectral analyses and classification accuracy of coffee crops using Landsat and a topographic-environmental model. Int. J. Remote Sens 2007, 28, 1577–1593. [Google Scholar]
- Ramirez, G.M.; Zullo, J.J.; Assad, E.D.; Pinto, H.S. Comparison between Ikonos-II and Landsat/ETM+ satellites data in the study of coffee areas. Pesq. Agropec. Bras 2006, 41, 661–666. [Google Scholar]
- Moreira, M.A.; Adami, M.; Rudorff, B.F.T. Spectral and temporal behavior analysis of coffee crop in Landsat images. Pesq. Agropec. Bras 2004, 39, 223–231. [Google Scholar]
- Nagler, P.; Morino, K.; Murray, R.S.; Osterberg, J.; Glenn, E. An empirical algorithm for estimating agricultural and riparian evapotranspiration using MODIS enhanced vegetation index and ground measurements of ET. I. Description of method. Remote Sens 2009, 1, 1273–1297. [Google Scholar]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens 2010, 2, 562–578. [Google Scholar]
- Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens 2001, 22, 3855–3862. [Google Scholar]
- Sano, E.E.; Ferreira, L.G.; Asner, G.P.; Steinke, E.T. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. Int. J. Remote Sens 2007, 28, 2739–2752. [Google Scholar]
- Maxwell, S.K. Downscaling pesticide use data to the crop field level in California using landsat satellite imagery: Paraquat case study. Remote Sens 2011, 3, 1805–1816. [Google Scholar]
- Funk, C.; Budde, M.E. Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe. Remote Sens. Environ 2009, 113, 115–125. [Google Scholar]
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agr. For. Meteorol 2011, 151, 385–393. [Google Scholar]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ 2010, 114, 1312–1323. [Google Scholar]
- Ren, J.; Chen, Z.; Zhou, Q.; Tang, H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. Geoinf 2008, 10, 403–413. [Google Scholar]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens 2010, 2, 673–696. [Google Scholar]
- Laurila, H.; Karjalainen, M.; Kleemola, J.; Hyypä, J. Cereal yield modeling in Finland using optical and radar remote sensing. Remote Sens 2010, 2, 2185–2239. [Google Scholar]
- Ma, Y.; Wang, S.; Zhang, L.; Hou, Y.; Zhuang, L.; He, Y.; Wang, F. Monitoring winter wheat growth in North China by combining a crop model and remote sensing data. Int. J. Appl. Earth Obs. Geoinf 2008, 10, 426–437. [Google Scholar]
- Wolfe, R.E.; Roy, D.P.; Vermote, E.F. The MODIS land data storage, gridding and compositing methodology: L2 Grid. IEEE Trans. Geosci. Remote Sens 1998, 36, 1324–1338. [Google Scholar]
- Justice, C.; Townshend, J. Special issue on the moderate resolution imaging spectroradiometer (MODIS): A new generation of land surface monitoring. Remote Sens. Environ 2002, 83, 1–2. [Google Scholar]
- Brunsell, N.A.; Pontes, P.P.B.; Lamparelli, R.A.C. Remotely sensed phenology of coffee and its relationship to yield. GISci. Remote Sens 2009, 46, 289–304. [Google Scholar]
- Avelino, J.; Zelaya, H.; Merlo, A.; Pineda, A.; Ordoñez, M.; Savary, S. The intensity of a coffee rust epidemic is dependent on production situations. Ecol. Model 2006, 197, 431–447. [Google Scholar]
- Costa, M.J.N.; Zambolim, L.; Rodrigues, F.A. Effect of levels of coffee berry removals on the incidence of rust and on the level of nutrients, carbohydrates and reductor sugar. Fitopatol. Bras 2006, 31, 564–571. [Google Scholar]
- Chalfoun, S.M. Relationship of different indices of rust infection (Hemileia vastatrix Berk. & Br.) on the production of coffee (Coffea arabica L.) in some localities of the State of Minas Gerais. Fitopatol. Bras 1981, 6, 137–142. [Google Scholar]
- Eskes, A.B.; Carvalho, A. Variation for incomplete resistance to Hemileia vastatrix in Coffea Arábica. Euphytica 1983, 32, 625–637. [Google Scholar]
- Brown, J.S.; Whan, J.H.; Kenny, M.K.; Merriman, P.R. The effect of coffee leaf rust on foliation and yield of coffee in Papua New Guinea. Crop Prot 1995, 14, 589–592. [Google Scholar]
- Zambolim, L.; do Vale, F.X.R.; Costa, H.; Pereira, A.A.; Chaves, G.M. Epidemiology and Integrated Control of Coffee Rust. In The State of the Art Technology in the Production of Coffee; Zambolim, L., Ed.; UFV: Viçosa, MG, Brazil, 2002; pp. 369–450. [Google Scholar]
- Carvalho, L.G.; Sediyama, G.C.; Cecon, P.R.; Alves, H.M.R. Evaluation of an agrometeorological model to predict coffee productivity on three sites in southern Minas Gerais State, Brazil. Rev. Bras. Agrometeorol 2003, 11, 343–352. [Google Scholar]
- Picini, A.G.; Camargo, M.B.P.; Ortolani, A.A.; Fazuoli, L.C.; Bollergallo, P. Test and analysis of agrometeorological models for predicting coffee yield. Bragantia 1999, 58, 157–170. [Google Scholar]
- Camargo, A.P.; Camargo, M.B.P. Definition and outline for the phenological phases of arabic coffee under brazilian tropical conditions. Bragantia 2001, 60, 65–68. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W.J.D. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ 1997, 59, 440–451. [Google Scholar]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ 1994, 49, 224–234. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation; Texas A&M University: College Station, TX, USA, 1974. [Google Scholar]
- Moreira, M.A.; Rudorff, B.F.T.; Barros, M.A.; Faria, V.G.C.; Adami, M. Geotecnologies to map coffee fields in the states of minas gerais and são paulo. Agr. Eng 2010, 30, 1123–1135. [Google Scholar]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ 2008, 112, 3112–3120. [Google Scholar]
- Câmara, G.; Souza, R.C.M.; Freitas, U.M.; Garrido, J.C.P. Spring: Integrating remote sensing and GIS with object-oriented data modelling. Comput. Graph 1996, 15, 13–22. [Google Scholar]
- Freitas, R.M.; Arai, E.; Adami, M.; Ferreira, A.F.; Sato, F.Y.; Shimabukuro, Y.E.; Rosa, R.R.; Anderson, L.O.; Rudorff, B.F.T. Virtual laboratory of remote sensing time series: visualization of MODIS EVI2 data set over South America. J. Comput. Interdiscipl. Sci 2011, 31, 57–68. [Google Scholar]
- Sakamoto, T.; van Nguyen, N.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Spatio-temporal distribution of rice phenology and cropping systems in the mekong delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens. Environ 2006, 100, 1–16. [Google Scholar]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ 2005, 96, 366–374. [Google Scholar]
- Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math 1988, 41, 909–996. [Google Scholar]
- Marsden, C.; le Maire, G.; Stape, J.-L.; Seen, D.L.; Roupsard, O.; Cabral, O.; Epron, D.; Lima, A.M.N.; Nouvellon, Y. Relating MODIS vegetation index time-series with structure, light absorption and stem production of fast-growing eucalyptus plantations. For. Ecol. Manag 2010, 259, 1741–1753. [Google Scholar]
- Kastens, J.H.; Kastens, T.L.; Kastens, D.L.A.; Price, K.P.; Martinko, E.A.; Lee, R.Y. Image masking for crop yield forecasting using AVHRR NDVI time series imagery. Remote Sens. Environ 2005, 99, 341–356. [Google Scholar]
- Damatta, F.M.; Ramalho, J.D.C. Impacts of drought and temperature stress on coffee physiology and production: A review. Braz. J. Plant Physiol 2006, 18, 55–81. [Google Scholar]
- Carr, M.K.V. The water relations and irrigation requirements of coffee. Exp. Agr 2001, 37, 1–36. [Google Scholar]
- Silva, F.M.D.; Alves, M.C.; Souza, J.C.S.; Oliveira, M.S. Effects of manual harvesting on coffee (coffea arabica L.) crop biannuality in Ijaci, Minas Gerais. Cienc. Agrotec 2010, 34, 625–632. [Google Scholar]
- Birky, A.K. NDVI and a simple model of deciduous forest seasonal dynamics. Ecol. Model 2001, 143, 43–58. [Google Scholar]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ 2005, 94, 244–255. [Google Scholar]
- Damatta, F.M.; Ronchi, C.P.; Maestry, M.; Barros, S.R. Ecophysiology of coffee growth and production. Braz. J. Plant Physiol 2007, 19, 485–510. [Google Scholar]
- Delalieux, S.; Somers, B.; Hereijgers, S.; Verstraeten, W.W.; Keulemans, W.; Coppin, P. A near infrared narrow-waveband ratio to determine Leaf Area Index in orchards. Remote Sens. Environ 2008, 112, 3762–3772. [Google Scholar]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ 2002, 8, 179–193. [Google Scholar]
- Huete, A.; Didan, K.; Muira, T.; Rodriguez, E.P.; Gao, X.; Ferrerra, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213. [Google Scholar]
Table | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
---|---|---|---|---|---|---|---|---|
ni | 20 | 25 | 27 | 32 | 37 | 37 | 37 | 35 |
ni–ni−1 | - | 20 | 25 | 27 | 32 | 37 | 37 | 35 |
Metric | 2002/03 | 2003/04 | 2004/05 | 2005/06 | 2006/07 | 2007/08 | 2008/09 | |
---|---|---|---|---|---|---|---|---|
N a | 20 | 25 | 27 | 32 | 37 | 37 | 35 | |
ampEVI | r b | 0.56 | 0.50 | 0.48 | 0.32 | 0.40 | 0.20 | 0.41 |
r-sq c | 0.32 | 0.25 | 0.23 | 0.10 | 0.16 | 0.04 | 0.17 | |
p-value d | 0.01 | 0.01 | 0.01 | 0.07 | 0.01 | 0.23 | 0.01 | |
SE e | 0.50 | 0.48 | 0.50 | 0.52 | 0.51 | 0.49 | 0.55 | |
sumEVI | r b | −0.33 | 0.12 | −0.06 | −0.20 | −0.49 | −0.40 | −0.47 |
r-sq c | 0.11 | 0.01 | 0.00 | 0.04 | 0.24 | 0.16 | 0.22 | |
p-value d | 0.15 | 0.59 | 0.78 | 0.26 | <0.01 | 0.01 | <0.01 | |
SE e | 0.57 | 0.55 | 0.57 | 0.53 | 0.48 | 0.46 | 0.53 | |
maxEVI | r b | 0.29 | 0.34 | 0.24 | 0.12 | −0.05 | −0.15 | −0.10 |
r-sq c | 0.08 | 0.11 | 0.06 | 0.01 | 0.00 | 0.02 | 0.01 | |
p-value d | 0.22 | 0.11 | 0.22 | 0.53 | 0.78 | 0.38 | 0.56 | |
SE e | 0.58 | 0.52 | 0.55 | 0.54 | 0.55 | 0.49 | 0.60 | |
minEVI | r b | −0.46 | −0.38 | −0.50 | −0.45 | −0.65 | −0.54 | −0.55 |
r-sq c | 0.21 | 0.14 | 0.25 | 0.20 | 0.42 | 0.30 | 0.31 | |
p-value d | 0.04 | 0.07 | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 | |
SE e | 0.54 | 0.51 | 0.49 | 0.49 | 0.42 | 0.42 | 0.51 | |
avrgEVI | r b | −0.33 | 0.12 | −0.06 | −0.20 | −0.49 | −0.40 | −0.47 |
r-sq c | 0.11 | 0.01 | 0.00 | 0.04 | 0.24 | 0.16 | 0.22 | |
p-value d | 0.15 | 0.59 | 0.78 | 0.26 | <0.01 | 0.01 | <0.01 | |
SE e | 0.57 | 0.55 | 0.57 | 0.53 | 0.48 | 0.46 | 0.53 |
Metric | 2002/03 | 2003/04 | 2004/05 | 2005/06 | 2006/07 | 2007/08 | 2008/09 | ||
---|---|---|---|---|---|---|---|---|---|
N a | 20 | 25 | 27 | 32 | 37 | 37 | 35 | ||
ampNDVI | r b | 0.44 | 0.33 | 0.10 | 0.41 | 0.42 | 0.26 | 0.11 | |
r-sq c | 0.20 | 0.11 | 0.01 | 0.17 | 0.18 | 0.07 | 0.01 | ||
p-value d | 0.05 | 0.11 | 0.61 | 0.02 | 0.01 | 0.12 | 0.52 | ||
SE e | 0.54 | 0.52 | 0.57 | 0.50 | 0.50 | 0.48 | 0.60 | ||
sumNDVI | r b | −0.15 | 0.25 | 0.10 | 0.07 | −0.36 | −0.40 | −0.23 | |
r-sq c | 0.02 | 0.06 | 0.01 | 0.01 | 0.13 | 0.16 | 0.05 | ||
p-value d | 0.52 | 0.23 | 0.61 | 0.69 | 0.03 | 0.01 | 0.18 | ||
SE e | 0.60 | 0.54 | 0.57 | 0.54 | 0.51 | 0.46 | 0.59 | ||
maxNDVI | r b | 0.11 | 0.07 | 0.07 | 0.37 | −0.20 | −0.30 | −0.19 | |
r-sq c | 0.01 | 0.00 | 0.00 | 0.14 | 0.04 | 0.09 | 0.04 | ||
p-value d | 0.64 | 0.75 | 0.73 | 0.03 | 0.23 | 0.07 | 0.28 | ||
SE e | 0.60 | 0.55 | 0.57 | 0.51 | 0.54 | 0.48 | 0.60 | ||
minNDVI | r b | −0.45 | −0.52 | −0.30 | −0.36 | −0.66 | −0.45 | −0.21 | |
r-sq c | 0.20 | 0.27 | 0.09 | 0.13 | 0.43 | 0.20 | 0.04 | ||
p-value d | 0.05 | 0.01 | 0.12 | 0.04 | <0.01 | <0.01 | 0.23 | ||
SE e | 0.54 | 0.48 | 0.54 | 0.51 | 0.42 | 0.44 | 0.59 | ||
avrgNDVI | r b | −0.15 | 0.25 | 0.10 | 0.07 | −0.36 | −0.40 | −0.23 | |
r-sq c | 0.02 | 0.06 | 0.01 | 0.01 | 0.13 | 0.16 | 0.05 | ||
p-value d | 0.52 | 0.23 | 0.61 | 0.69 | 0.03 | 0.01 | 0.18 | ||
SE e | 0.60 | 0.54 | 0.57 | 0.54 | 0.51 | 0.46 | 0.59 |
Metric | 2002/03 | 2003/04 | 2004/05 | 2005/06 | 2006/07 | 2007/08 | |
---|---|---|---|---|---|---|---|
N a | 20 | 25 | 27 | 32 | 37 | 37 | |
ampEVI | r b | −0.57 | −0.55 | −0.56 | −0.33 | −0.48 | −0.24 |
r-sq c | 0.33 | 0.30 | 0.31 | 0.11 | 0.23 | 0.06 | |
p-value d | 0.01 | 0.01 | <0.01 | 0.06 | <0.01 | 0.17 | |
SE e | 0.61 | 0.51 | 0.57 | 0.55 | 0.55 | 0.45 | |
sumEVI | r b | 0.52 | 0.06 | 0.10 | 0.18 | 0.49 | 0.47 |
r-sq c | 0.27 | 0.00 | 0.01 | 0.03 | 0.24 | 0.22 | |
p-value d | 0.02 | 0.79 | 0.61 | 0.31 | <0.01 | <0.01 | |
SE e | 0.61 | 0.57 | 0.58 | 0.55 | 0.48 | 0.44 | |
maxEVI | r b | −0.17 | −0.29 | −0.27 | −0.16 | 0.01 | 0.20 |
r-sq c | 0.03 | 0.08 | 0.07 | 0.02 | 0.00 | 0.04 | |
p-value d | 0.49 | 0.17 | 0.18 | 0.39 | 0.93 | 0.25 | |
SE e | 0.61 | 0.57 | 0.59 | 0.55 | 0.54 | 0.48 | |
minEVI | r b | 0.62 | 0.55 | 0.53 | 0.29 | 0.74 | 0.62 |
r-sq c | 0.39 | 0.30 | 0.28 | 0.09 | 0.55 | 0.39 | |
p-value d | <0.01 | 0.01 | <0.01 | 0.10 | <0.01 | <0.01 | |
SE e | 0.61 | 0.48 | 0.57 | 0.55 | 0.46 | 0.42 | |
avgEVI | r b | 0.52 | 0.06 | 0.10 | 0.18 | 0.49 | 0.47 |
r-sq c | 0.27 | 0.00 | 0.01 | 0.03 | 0.24 | 0.22 | |
p-value d | 0.02 | 0.79 | 0.61 | 0.31 | <0.01 | <0.01 | |
SE e | 0.61 | 0.57 | 0.58 | 0.55 | 0.48 | 0.44 |
Metric | 2002/03 | 2003/04 | 2004/05 | 2005/06 | 2006/07 | 2007/08 | |
---|---|---|---|---|---|---|---|
N a | 20 | 25 | 27 | 32 | 37 | 37 | |
ampNDVI | r b | −0.63 | −0.47 | −0.26 | −0.34 | −0.40 | −0.30 |
r-sq c | 0.39 | 0.22 | 0.07 | 0.12 | 0.16 | 0.09 | |
p-value d | <0.01 | 0.02 | 0.19 | 0.06 | 0.01 | 0.08 | |
SE e | 0.59 | 0.48 | 0.57 | 0.54 | 0.52 | 0.47 | |
sumNDVI | r b | 0.34 | 0.03 | −0.04 | −0.12 | 0.38 | 0.42 |
r-sq c | 0.12 | 0.00 | 0.00 | 0.01 | 0.14 | 0.17 | |
p-value d | 0.14 | 0.91 | 0.83 | 0.53 | 0.02 | 0.01 | |
SE e | 0.60 | 0.55 | 0.59 | 0.54 | 0.50 | 0.48 | |
maxNDVI | r b | 0.00 | −0.08 | −0.12 | −0.33 | 0.24 | 0.30 |
r-sq c | 0.00 | 0.01 | 0.01 | 0.11 | 0.06 | 0.09 | |
p-value d | 1.00 | 0.70 | 0.56 | 0.67 | 0.15 | 0.08 | |
SE e | 0.60 | 0.52 | 0.59 | 0.55 | 0.53 | 0.48 | |
minNDVI | r b | 0.65 | 0.68 | 0.46 | 0.27 | 0.63 | 0.48 |
r-sq c | 0.43 | 0.46 | 0.21 | 0.07 | 0.39 | 0.23 | |
p-value d | <0.01 | <0.01 | 0.02 | 0.14 | <0.01 | <0.01 | |
SE e | 0.61 | 0.46 | 0.56 | 0.55 | 0.45 | 0.48 | |
avgNDVI | r b | 0.34 | 0.03 | −0.04 | −0.12 | 0.38 | 0.42 |
r-sq c | 0.12 | 0.00 | 0.00 | 0.01 | 0.14 | 0.17 | |
p-value d | 0.14 | 0.91 | 0.83 | 0.53 | 0.02 | 0.01 | |
SE e | 0.60 | 0.55 | 0.59 | 0.54 | 0.50 | 0.48 |
Share and Cite
Bernardes, T.; Moreira, M.A.; Adami, M.; Giarolla, A.; Rudorff, B.F.T. Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery. Remote Sens. 2012, 4, 2492-2509. https://doi.org/10.3390/rs4092492
Bernardes T, Moreira MA, Adami M, Giarolla A, Rudorff BFT. Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery. Remote Sensing. 2012; 4(9):2492-2509. https://doi.org/10.3390/rs4092492
Chicago/Turabian StyleBernardes, Tiago, Maurício Alves Moreira, Marcos Adami, Angélica Giarolla, and Bernardo Friedrich Theodor Rudorff. 2012. "Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery" Remote Sensing 4, no. 9: 2492-2509. https://doi.org/10.3390/rs4092492
APA StyleBernardes, T., Moreira, M. A., Adami, M., Giarolla, A., & Rudorff, B. F. T. (2012). Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery. Remote Sensing, 4(9), 2492-2509. https://doi.org/10.3390/rs4092492