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Cloud computing is a promising concept in the IT evolution that has increasingly attracted attention 
from both industry and academic sectors. However, it has introduced new security problems and 
obstacles. Since formal methods provide a reliable mathematical basis giving rise to safely 
analysable and easily verifiable models, we aim in this paper to propose a formal framework to 
specify cloud system architectures and verify their inherent proprieties. Bigraphical Reactive 
Systems are adopted as a semantic framework for their graphical aspect and rigorous basis. We 
argue that the proposed models are useful for simulation and analysis of cloud systems proprieties 
as elasticity and plasticity, while using a given model checker tool dedicated to BRS. 
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1. INTRODUCTION 

In recent years, cloud computing (Mell et al., 2011) 
has emerged as a new and promising concept in the 
IT evolution; it has increasingly attracted attention 
from both industry and academic sectors. The basic 
idea beyond cloud computing is to provide a poll of 
computing resources as on demand services (e.g. 
servers, storage, applications, and services). These 
resources are consumed by users according to their 
needs and by paying only their real consumption. 
Such flexibility and cost effectiveness is what makes 
cloud computing models very attractive. Albeit cloud 
computing offers numerous benefits, it has raised 
new obstacles (Michael et al., 2009) and security 
concerns (Vic (J.R.), 2011).The fact that the cloud is 
accessible from everywhere makes it vulnerable to 
various types of attacks, like distributed denial of 
service attacks (DDoS). Such attacks could heavily 
affect the cloud quality of service (QoS) properties 
as high service availability. 

Cloud service availability introduces a very 
important concept that distinguishes cloud 
computing paradigm from the other ones, which is 
rapid elasticity (Guilherme et al., 2012) (Dustdar et 
al., 2011). Elasticity goes beyond a simple flexible 
and dynamic allocation and deallocation of 
resources on the fly. It implies a permanent 
reconfiguration of the underlying network and its 
associated controls. Elasticity has many forms of 
violation such as plasticity (Gambi et al., 2013) (i.e. 
the inability to spontaneously return back to the 
original configuration after an adaptation process).  

To ensure cloud systems reliability and consistency, 
these concepts need to maintain a formal model that 
supports specification and analysis of such 
properties. Until now, there are only few formal 
models for cloud systems. 

Bigraphs (Milner, 2008) enriched with a set of meta- 
reaction rules, giving rise to Bigraphical Reactive 
Systems, are a good candidate to formalise cloud 
computing fundamental architectural aspects and 
their reconfiguration.  Indeed, bigraphs differ from 
traditional formalisms in their expressive power 
getting designers a great flexibility to specify their 
own reaction rules. In overall terms, our contribution 
is two-fold: 

 We argue that Milner’s BRS, through their 
graphical aspect, are capable of 
representing both locality and connectivity 
that constitute main concepts of cloud 
computing architecture. 

 We propose a bigraph-based model for 
cloud system composed of two independent 
regions (physical or logical). For instance, 
the client and service provider may 
represent these regions. Then, interactions 
between these two regions are defined via 
reaction rules. Since BRS have an 
executable algebraic language, the 
obtained formal model serves to model-
check some proprieties that are inherent to 
cloud systems as the elasticity and some 
forms of its violation (plasticity). 
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The rest of the paper is organised as follows. In 
section 2, we present related work. In section 3, we 
give a brief overview on Bigraphical Reactive 
Systems (BRS) and their dedicated model checker. 
Section 4 presents our bigraphical specification of 
cloud systems. In, section 5 we formally verify the 
elasticity and plasticity proprieties. Finally, some 
concluding remarks and ongoing work rounds up the 
paper. 

2. RELEATED WORK 

There is a significant body of work on defining and   
analysing cloud systems, but we are unaware of 
approaches involving formal and rigorous 
mathematical models. For instance, authors in 
(Grandison et al., 2010) and (Dong et al., 2010) try 
to tackle the lack of consensus or base 
comprehension on technical constituents of a cloud 
by presenting an initial definition of cloud computing. 
They particularly provide some discussion on the 
relationship between cloud computing and 
virtualization. 

Formal models for managing the complexity of 
evolving cloud system behaviour while it is executing 
is a recent area of interest. Existing approaches in 
this context are based on various formalisms.  

(Freitas et al., 2012) present an abstract 
formalisation of federated cloud workflows using the 
Z notation. In addition, a process algebra framework 
for the specification of virtual machines migration 
and the associated security policies in the cloud is 
given in (Jarraya et al., 2012). On the other hand, 
author in (Rady, 2013) proposes a formal definition 
of service availability in cloud computing using the 
web ontology language OWL. Authors in (Klai et al., 
2013) propose a formal model adopting Petri nets 
for describing service-based business processes in 
cloud environments.  

While our adopted formalism (BRS) is different and 
more appropriate, our work has a similar goal in that 
it is reasoning about cloud systems. We note a 
related bigraphical modelling approach taken on by 
(Benzadri et al., 2014) to model-check 
configurations of a cloud system. In this work, only 
some functional properties are verified using LTL 
Maude tool. Besides, all these research studies do 
not explicitly tackle the formal analysis of elasticity 
property which is inherent to cloud systems, expect 
those defining a systematic model-based test 
generation framework for testing the elastic 
properties of cloud systems (Gambi et al., 2013) and 
(Amziani et al., 2013). 

3. OVERVIEW OF BRS 

Bigraphical reactive systems (BRS) were initially 
introduced by (Milner, 2008) to provide a graphical 
intuitive formal model capable of representing at the 
same time connectivity and locality of distributed 

entities. Thus, it coincides strongly with cloud 
computing concepts. A bigraph is composed of two 
graphs: a place graph for entities locality and 
hierarchy representation and a link graph for 
interconnectivity representation. Bigraphs structural 
dynamics is formalised by reaction rules that 
express their eventual reconfigurations. Hence, 
bigraphs can be used for representing system 
possible configurations, and reaction rules for 
specifying how these configurations may evolve (i.e. 
relations between bigraphs). 

3.1 Structural Aspects 

A bigraph is the combination of two independent 
structures: the place and link graphs. The place 
graph represents system entities geographical 
distribution. The Link graph is a hypergraph 
representing interconnections between these 
entities. Within a BRS, system entities are 
represented by nodes and interactions between 
them are represented by edges (see Figure 1). 

A node can be dotted with ports representing 
connection points to edges or inner/outer names. A 
control is also associated to each node; consisting 
of node type identifier that belongs to a set called 
signature. Each control indicates the number of 
ports of each node (i.e. arity), which controls are 
atomic for empty nodes and which of the non-atomic 
controls are active (i.e. subject to reactions) or 
passive. The inner/outer names of a bigraph indicate 
connectors to other elements. Such interconnection 
is only possible if the outer name of a bigraph or root 
corresponds to the inner name of another bigraph. 
Sites represent holes into which a root or node can 
be nested, they are considered as an abstraction 
indicating the presence of other elements. 

Definition (Milner, 2009): a bigraph is formally 
defined by 

𝐺 = (𝑉, 𝐸, 𝑐𝑡𝑟𝑙, 𝐺𝑃 , 𝐺𝐿): 𝐼 → 𝐽, 𝐼 = < 𝑚, 𝑥 >, 𝐽 =<

𝑛, 𝑦 >,where: 

 V and E represent finite sets of nodes and 
edges respectively. 

 𝑐𝑡𝑟𝑙 ∶  𝑉 →  𝐾 is a control map that assigns a 
control to each node. The signature K is a 
set of controls. 

 𝐺𝑃𝑎𝑛𝑑 𝐺𝐿 are Place and Link graphs 
respectively. 

 I and J represent inner and outer names 
(interfaces) respectively, of the bigraph G. m 
and n are the number of sites and roots 
respectively. 
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Figure 1: The anatomy of bigraphs. 

In addition to the graphical representation, a term 
algebraic language is defined to specify bigraphs, 
language primary operations and elements are 
summarized in Table 1. 

Table 1: Terms language for bigraphs 

Term Signification 

U || V Juxtaposition of roots. 

U | V Juxtaposition of nodes. 

U ο V Composition. 

U . V Nesting ( U contains V  ). 

/x . U U with outer name x replaced by an 
edge. 

x/y Connection inner names y to outer 
name x. 

3.2 Dynamical aspects 

Bigraphs structural dynamics is expressed via 
reaction rules; each one defines a redex bigraph to 
be transformed to a reactum one.  

As an example, Figure 2 represents a reaction rule 
that allows a person P in the same root, as a room 
R, to leave the room. This rule is purely a placing 
reconfiguration. A linking reconfiguration represents 
any possible connectivity; reaction rule of Figure 3 
represents a person P connecting to a pc in the 
same root through the edge e0. 

Formally, a reaction rule takes the form (R,R
'
,η) 

where R:m⟶J is a redex, R':m'⟶J is a reactum and  
η:m⟶m′ is a map of ordinals (Milner, 2008). The 
category of all bigraphs and their reaction rules 
constitute a BRS. 

 

Figure 2: Placing reaction rule. 

 

Figure 3: Linking reaction rule. 

3.3 A Model Checker for BRS  

Few tools for verifying BRS-based distributed 
systems inherent properties exist as BigMC 
(Perrone et al., 2012) model checker. 

BigMC (Bigraphical Model Checker) is a model-
checker designed to operate on Bigraphical 
Reactive Systems, where model checking is 
accomplished through an exhaustive search of all 
possible states of the bigraphical model that satisfy 
the property to be verified. 

One of the main benefits of a model checking 
approach is the ability to provide a counter-example 
whenever the desired property does not hold in the 
actual system model. In our case, this means 
showing system configuration that violates the 
specified property, and the transition system path by 
which this configuration was reached. The full 
grammar of BigMC bigraph terms is summarized in 
Table 2 (Perrone et al., 2012). 

Table 2: BigMC terms language 

𝑀 ∶: =  𝐸; 𝑀 | 𝐸; 

𝐸 ∶: =  %𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝑘 ∶  𝑎𝑟𝑖𝑡𝑦 

𝐸 ∶: =  %𝑎𝑐𝑡𝑖𝑣𝑒 𝑘 ∶  𝑎𝑟𝑖𝑡𝑦 

𝐸 ∶: =  %𝑟𝑢𝑙𝑒 𝑛 𝑇 →  𝑇 

𝐸 ∶: =  %𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑛 𝑃 

𝐸 ∶: =  𝑇 →  𝑇 | 𝑇 

𝑇 ∶: =  𝐾: 𝑇 | 𝑇 | 𝑇 | 𝑇 || 𝑇 | $𝑛 | 𝐾 | 𝑛𝑖𝑙 

𝐾 ∶: =  𝑘[𝑛𝑎𝑚𝑒𝑠] | 𝑘 

𝑛𝑎𝑚𝑒𝑠 ∶: =  𝑛, 𝑛𝑎𝑚𝑒𝑠 | 𝑛 

𝑛 ∶: =  [𝑎 −  𝑧𝐴 −  𝑍][𝑎 −  𝑧𝐴 −  𝑍0 −  9] ∗ | − 

𝑃 ∶: =  𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑇) | 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙()| ! 𝑃 

Using this grammar, we can specify all bigraphical 
elements. A BigMC model (designated by M) can be 

27



Model-Checking Cloud Systems Using BigMC 
Hamza Sahli ● Faiza Belala ● Chafia Bouanaka 

 

 

composed using other models and/or expressions 
(designated by E). An expression E can be a node 
declaration, a reaction rule, a term (T), or a property 
(P). A term T can represent a single node, site, 
region or a combination of all these elements. Terms 
of the form T -> T are considered reaction rules. A 
property P represents a state definition to be 
checked with BigMC tool.  

We will use this grammar to specify our cloud model. 
Then, we will use the BigMC tool to verify some of 
the cloud system proprieties. 

4. CLOUD SYSTEMS BIGRAPH-BASED 
SPECIFICATION 

At a high level of abstraction, a cloud computing 
system is considered as a set of computing 
resources (e.g. data centers, servers, services) that 
are distributed across multiple computing sites, and 
are often referred to as nodes. These resources are 
provided as on demand services that users (clients) 
can consume. Thus, two types of entities are 
identified in cloud computing: the front-end entity 
and the back-end entity that are interacting via the 
Internet. 

The front-end represents the client interface, used to 
access the cloud. Clients are classified into two 
kinds: end users (i.e. simple cloud service 
consumers) and developers (i.e., costumers 
exploiting cloud as for Google Apps, Codeita to host 
their applications). 

The back-end is the cloud service provider. It offers 
a complete system for allocating the required 
resources to execute user applications and 
managing the entire system flow.  

Many types of resources can exist in a cloud as: 

 Data centers: physical facilities used to 
gather cloud computing resources and 
components. 

 Load balancers: devices responsible of 
service requests rooting and resources 
provision. 

 Servers: infrastructures for calculation 
and execution. 

 Virtual machines (VMs): abstractions of 
the underlying infrastructure. 

Example 1: In order to ease the understanding of 
our proposed cloud system formalisation, we will first 
introduce the following generic example illustrating 
important features that will be considered.  

Figure 4 depicts the architecture of a simplified cloud 
system (back-end) interacting with a set of end users 
(front-end) via the internet. 

The cloud system is composed of a unique instance 
of the following cloud components (data center, load 
balancer, server and virtual machine) and offers two 

different services for the end users (end user 1, end 
user 2, end user 3). 

 

Figure 4: Architectural elements of a cloud system. 

4.1 Modelling Cloud System Architecture 

In a previous work (Sahli et al., 2014) we have 
shown that bigraphs constitute a suitable 
mathematical model allowing the formalisation of the 
two parts (back-end and front-end) of cloud 
architecture using two distinct regions of bigraph. 

This is achieved thanks to a formal mapping based 
on correspondence rules between the cloud system 
elements and bigraph concepts (see Table 3). 

Table 3: Correspondence table Cloud / Bigraph 
Concepts 

Cloud architecture element Bigraph element 

Client, Data center, Load 
balancer, Server, Service, Virtual 
machine. 

Node 

Physical or logical Location of the 
Client and the Cloud. 

Root 

Various types of Links between 
the different elements. 

Edge/Hyper Edge 

Abstract elements. Site 

Let us return to our running example and apply the 
bigraph based formalisation approach (Sahli et al., 
2014) to give a well-defined semantics of its 
architectural aspect.  

Assuming that the two services are deployed in the 
same virtual machine and an end user is connected 
to the first service while the others are connected to 
the second service. The corresponding bigraphical 
model is shown in Figure 5. 
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Figure 5: The example’s Bigraphical model. 

As we can notice in Figure 5, there are two services 
actually deployed in the virtual machine VM1 and 
two end users connected to S2 service through the 
edge e3. Thus, the S2 service cannot be allocated 
to another end user and the virtual machine VM1 
cannot deploy any other service instance. This is 
expressed in our model by the absence of a site in 
that virtual machine. 

The signature associated to a cloud bigraph is as 
follows: K = {L: (0, active), N :( 2, atomic)}, L and N 
represent controls associated to different nodes. 
The different nodes types used in the model and 
their associated controls are summarized in Table 4. 

Table 4: Nodes types of cloud architecture 

Node Control Attribute Arity Meaning 

EU N Atomic 2 End User 

DC L Active 0 Data center 

LB N Atomic 2 Load balancer 

SE L Active 0 Server 

VM L Active 0 Virtual 
machine 

S N Atomic 2 Service 

The cloud system initial configuration expression in 
BigMC tool appropriate grammar is shown in Figure 
6. 

 

Figure 6: Implementing Bigraphical model in BigMC. 

We notice that each concept involved in the cloud 
system has a precise semantics. The conceived 
bigraphs do not specify just the graphical 
representation, but also the intended mathematical 

models. Furthermore, the proposed formalisation 
approach is general enough; it remains valid for any 
cloud architecture examples. 

To deal with the dynamic behaviour of cloud system 
at runtime, we enrich the proposed bigraph-based 
model with reaction rules. Hence, a set of reaction 
rules defining system configurations and their 
evolution at runtime is specified. 

4.2 Modelling Cloud System Reconfiguration 

Albeit, bigraphs are sufficient to formally specify 
cloud systems static structure, they do not represent 
their dynamic behaviour. Our main contribution is to 
extend the proposed bigraph-based model for cloud 
system by a set of reaction rules expressing its 
possible reconfiguration.  

Table 5 illustrates how we graft behavioural models, 
based on reaction rules, to graph transformation 
ones, to deal in this case with Bigraphical Reactive 
Systems (BRS). 

Table 5: Modelling cloud system dynamics 

Cloud system BRS 

Configuration CS. Bigraph : 
𝐺𝑐𝑠 = (𝑉𝑐𝑠, 𝐸𝑐𝑠, 𝑐𝑟𝑡𝑙𝑐𝑠, 𝐺𝑐𝑠

𝑝
,𝐺𝑐𝑠

𝐿 ) 

Reconfiguration from CS 
to CS’. 

Meta reaction rule: 
𝑅𝐿 = (𝐶𝑆, 𝐶𝑆’, 𝑚′ → 𝑚)   

Example RL1 : Service deployment 

𝑥/𝐸𝑈𝑥𝑒0𝑒1|𝐷𝑥𝑒0||𝐷𝐶. (𝐿𝐵𝑥𝑒0𝑒2|𝑆𝐸. (𝑉𝑀. (𝑆𝑒1𝑒2|𝑑1)|𝑑2)|𝑑3)|𝑑4 → 

𝑥/𝐸𝑈𝑥𝑒0𝑒1|𝐷𝑥𝑒0||𝐷𝐶. (𝐿𝐵𝑥𝑒0𝑒2|𝑆𝐸. (𝑉𝑀. (𝑆𝑒1𝑒2|𝑆1𝑒2𝑒3)|𝑑2)|𝑑3)|𝑑4 

Example RL2 : Service migration 

𝑥/𝐷𝑥𝑒0𝑒1||𝐷𝐶. (𝐿𝐵𝑥𝑒0𝑒2|𝑆𝐸. (𝑉𝑀. (𝑆𝑒1𝑒2)|𝑑2)|𝑑3)|𝑑4 → 

𝑥/𝐷𝑥𝑒0𝑒1||𝐷𝐶. (𝐿𝐵𝑥𝑒0𝑒2|𝑆𝐸. (𝑉𝑀|𝑉𝑀1. (𝑆𝑒1𝑒2|𝑑1)|𝑑2)|𝑑3)|𝑑4  

Example RL3 : Virtual machine migration 

𝑥/𝐷𝑥𝑒0𝑒1||𝐷𝐶. (𝐿𝐵𝑥𝑒0𝑒2|𝑆𝐸. (𝑉𝑀. (𝑆𝑒1𝑒2))|𝑑3)|𝑑4 → 

𝑥/𝐷𝑥𝑒0𝑒1||𝐷𝐶. (𝐿𝐵𝑥𝑒0𝑒2|𝑆𝐸|𝑆𝐸1. (𝑉𝑀. (𝑆𝑒1𝑒2|𝑑1)|𝑑2)|𝑑3)|𝑑4  

Therefore, Cloud system dynamics is formalised as 
bigraphical reactive system. Its configuration 
transition is performed through a series of meta-
reaction rules. 

Thus, the meta-reaction rule examples cited above 
can be instantiated to express cloud system 
changes in terms of shape shifting or elasticity, while 
preserving cloud architectural constraints. For a 
better comprehension of our model, we will illustrate 
more these reaction rules examples in what follows.  

4.2.1 Deploying a new service meta-reaction 
rule 

It specifies a developer client type (denoted by D) 
being connected to the cloud in order to deploy a 
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new service. As we can see in the reactum of the 
reaction rule in Figure 7, a new service S1 is created 
within the virtual machine (denoted VM) along with 
a communication link between the developer and 
the service he deployed. In the redex, presence of 
site 1 means that VM virtual machine is able to 
deploy other services while its disappearance in the 
reactum means that the virtual machine has reached 
its limits (saturation), we suppose here that virtual 
machine capacity is of two services. We can also 
note the existence of another service that is already 
loaded in virtual machine VM and is actually 
exploited by a client of type end user (denoted by 
EU). 

 

Figure 7 : Service deployment meta-reaction rule. 

4.2.2 Service migration meta-reaction rule 

This rule expresses the fact that a service may 
migrate from one virtual machine to another for 
many reasons, as degraded virtual machine 
performance or overloaded virtual machine, 
expressed in our model by the absence of a site in 
the virtual machine. As shown in Service migration 
reaction rule of Figure 8, service S changes its 
placing from virtual machine VM to a virtual machine 
VM1. 

 

Figure 8: Service migration meta-reaction rule. 

4.2.3 Virtual machine migration meta-reaction 
rule 

The virtual machine migration reaction rule (see 
Figure 9) expresses the fact that a virtual machine 
may migrate from an excessively loaded host server 
to a less loaded server. A loaded server is 
expressed in our model by the absence of a site in 
this server. In the redex below, we can see an 
excessively loaded server (denoted SE). 

 

Figure 9 : Virtual machine meta-reaction rule.  

The presented rules are just few examples of many 
other reaction rules that can be expressed through 
our model (e.g. new client, service allocation, virtual 
machine replication, service instance replication, 
new service instance). 
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Example 2: Let us head back again to our previous 
example, a new end user wishes to connect to the 
second service. Assuming that a service instance 
can handle at most two end users simultaneously, a 
new instance of the service has to be created within 
the virtual machine to treat the new request. We also 
assume that a virtual machine can handle at most 
two service instances at the same time. Hence, the 
virtual machine might be replicated in order to 
deploy the new service instance.  

To express our model dynamics, we have defined 
two meta-reaction rules sequences written in BigMC 
appropriate grammar. The first reaction rules 
sequence expresses the scaling up of our running 
example cloud architecture when the workload rises 
(see Figure 10). 

 

Figure 10: Scaling up reaction rules sequence. 

By applying this first reaction rules sequence (new 
end user, virtual machine replication, new service 
instance, service allocation), we expect the cloud 
system configuration shown in Figure 11. We can 
notice the appearance of new service S2 instance 
denoted S2_1, deployed in a new virtual machine 
VM1_1 and connected to a new end user denoted 
EU4. 

 

Figure 11: The resulting Cloud system configuration. 

After the workload dropping (e.g. deallocation of 
service, disconnection of client), the cloud system 
has to go back to its original configuration shown in 
Figure 5 (scale down). Hence, the defined second 
reaction rules sequence provide to our model the 
ability to scale down (see Figure 12). 

 

Figure 12: Scaling down reaction rules sequence. 

5. FORMAL ANALYSIS OF PROPERTIES 

Model checking is a fully automatic and fast 
verification technique, which makes it very effective 
one. Thus, for its ability to express and check safety 
and liveness properties we use BigMC tool, a model 
checker designed to operate on Bigraphical 
Reactive Systems, in order to verify some cloud 
systems inherent properties. 

Through the following example, we identify some 
properties that we intend to verify using BigMC 
model checker as elasticity property and its dual 
one, i.e. a form of elasticity violation (the absence of 
plasticity).  

While the elasticity property consists of checking 
that the cloud system is scaling up, when the 
workload rises and scaling down when, it drops. 
Verifying the absence of plasticity is to ensure that a 
cloud configuration returns to its initial state after an 
adaptation process. 

Example 3: Cloud computing service availability is 
key quality that can be affected by many threats as 
distributed denial of service (DDoS) attacks 
conducting to ensure the elasticity property, which 
plays a significant role in keeping a high level of 
service availability. To illustrate elasticity and its 
verification technique, we return back to our running 
example of a cloud system and its possible 
reconfiguration. 
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Elasticity property: in (Herbst et al., 2013) elasticity 
is defined as ability degree of the cloud system to 
adapt to workload changes by 
provisioning/deprovisioning computing resources in 
an autonomic manner. 

Using BigMC tool grammar (see Figure 13), we 
express in our BRS-based analysis technique, this 
property by the following formula.  

 

Figure 13: Elasticity property. 

BigMC model checker tries to apply the two reaction 
rules sequences (see Figure 10 and Figure 12) to 
verify that the elasticity property holds. This means 
checking whether cloud configuration size is 
growing and shrinking. 

The result of the model checking is shown in Figure 
14; we can notice that BigMC model checker 
reaches the state 9 starting from initial state 1 
without reporting any property violation (existence of 
counter example).This means that the cloud system 
is scaling up/down.  

 

Figure 14: Elasticity checking result. 

Plasticity property: this property can be seen as a 
cloud system stuck in a giving configuration while 
being incapable to return to its initial one. This time, 
we have associated the clause of Figure 15, to 
express the plasticity property, and the BigMC tool 
checks its absence, which means reaching the state 
specified in the property clause.  

 

Figure 15: Plasticity property. 

We can notice that the final state 9 corresponds to 
the initial state (see Figure 16), meaning that the 
cloud system has returned to its original 
configuration at some point. 

 

Figure 16: Plasticity checking result. 

6. CONCLUSION 

Elasticity is a key aspect in cloud computing that 
plays a significant role in keeping a high level of 
service availability in cloud-based systems. In this 
paper, we have proposed a formal framework to 
specify cloud-based systems and verify their 
proprieties as the elasticity property and some forms 
of its violation (e.g. plasticity). First, Bigraphical 
Reactive Systems were adopted as a formal 
framework for designing and reconfiguring cloud 
architectures. Cloud Bigraphs graphical and formal 
basis simplify considerably cloud systems 
readability. Then, to formally analyse the elasticity 
and plasticity proprieties, we have extended our 
proposed cloud model by defining associated 
clauses that are integrated in the model checker 
BigMC, designed to operate on Bigraphical Reactive 
Systems.  

BigMC model checker is a very interesting tool that 
enables executing bigraphical models and checking 
some of their proprieties. As future work, we intend 
to evaluate our proposed bigraphical model with 
other complementing model-checkers. 
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