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Abstract. There have been a number of recent efforts (e.g. BioCatalogue, 
BioMOBY, etc.) to systematically catalogue bioinformatics tools, services and 
datasets. These efforts mostly rely on manual curation and are unable to cope 
with the huge influx of various electronic resources, which consequently result 
in their unavailability to the community. We present a text mining approach 
that utilizes the literature to extract and semantically profile bioinformatics 
resources. Our method identifies the mentions of resources in the literature and 
assigns a set of co-occurring terminological and ontological entities 
(descriptors) to represent them. Since such representations can be extremely 
sparse, we use kernel metrics based on lexical term/descriptor similarities to 
identify semantically related resources. Resources are then either clustered or 
linked into a network, providing the users (bioinformaticians and service/tool 
crawlers) with a possibility to explore tools, services and datasets based on their 
relatedness, thus potentially improving the resource discovery process. 

Keywords: bioinformatics services, service description, text mining, networks, 
kernel similarity. 

1   Introduction 

The rapid increase in the amount of bioinformatics data produced in recent years has 
resulted in the huge influx of bioinformatics electronic resources (e-resources), such 
as online-databases [1], data-analysis tools, Web services [2] etc. Discovering such 
resources became a major bottleneck in bioinformatics: in order to effectively utilize 
them, e-resources need to be organised and their functionalities semantically 
described. A number of community wide efforts such as BioCatalogue [3] and 
BioMoby [4] have been initiated to systematically catalogue the “resourceome”. By 
annotating services using keywords and ontological concepts, such catalogues 
facilitate access to both bioinformaticians and Semantic Web crawlers and agents that 
can orchestrate the use of such resources. However, the annotation process depends 
on a typically slow manual curation process that hinders the growth of such curated 



resources to keep pace with the very field they attempt to catalogue. For instance, the 
number of registered services in BioCatalogue (there are 1,084 of them1) is still small 
compared with the total number of Web services available online: it is estimated that 
there are ~3500 life science Web services in Taverna alone [3, 5]. This fact calls for 
the development of semi-automatic methods for resource annotation and their 
cataloguing in order to maximise the utility of e-resources by making them widely 
available to the community.  

One of the key aims of providing bioinformatics resources with semantic 
descriptions is to improve resource discovery. Semantically-described resources can 
not only be searched, browsed and discovered by using keyword-based queries (for 
instance, via their names or task descriptions), but also on the basis of the semantic 
relatedness of their functionalities. For example, BioCatalogue descriptions refer to 
similar services (see Fig. 1) so that the users can identify related tools.  

 

 

Fig. 1. A snapshot of a Web service description taken from BioCatalogue2 

 
When manually assigned annotation tags and/or related services are not available, 

we hypothesise that automated approaches could be used to improve the discovery 
process. These include building networks and clusters of similar resources. For 
example, a user can search for a Web service that corresponds to a particular input, 
output or operation performed. If, however, the retrieved services do not fulfil the 
exact requirement, the user may be interested in exploring similar services (for 
example, with more generic/specific input/output, but still with a related 
functionality), which can be identified by browsing a Web service network or by 
exploring clusters of related services. Traditionally, similar or related services have 
been identified by using lexical comparisons of their names and names of their 
parameters (input/output) and operations. This process has been further improved by 
concept-based comparisons using domain ontologies that have been used to annotate 
the resources (as in myGrid [6] and BioCatalogue). 

                                                           
1 Statistics collected on 10th Oct, 2009. 
2 http://www.biocatalogue.org/services/2048-wsblastpgpservice_414364 



In our previous work, we have shown that the vast amounts of scientific literature 
related to bioinformatics resources can be tapped in order to automatically extract 
their key semantic functional features [7, 8]. In this paper we propose a methodology 
to build and explore clusters and semantic networks of bioinformatics resources, 
which can help to identify related resources on the basis of their similarity as well as 
by their semantic relatedness. In order to measure the semantic relatedness between 
the resources, we have designed a kernel-based similarity approach that uses lexical 
and semantic properties of resource mentions as extracted from the literature.  

2   Methodology 

The overall methodology adopted in the work presented here is based on the concepts 
of bioinformatics resources, semantic resource descriptors, and kernel/similarity 
functions, which are explained below. 
 

Bioinformatics resources represent the list of e-resources which are used by 
bioinformaticians while performing in-silico experiments [9, 10]. We have focused on 
the four major classes: Algorithms3, Applications, Data and Data Resources. These 
have been engineered from the myGrid ontology. Table 1 shows example resource 
instances belonging to these classes. In our previous work, we have described a set of 
text mining tools that can be used to efficiently identify, classify and extract mentions 
of these resources in the literature [7]. The method is based on key terminological 
heads assigned to each of the semantic classes (e.g. alignment and method are 
“linked” to Algorithms, while sequence and record point to a Data entity) and specific 
lexico-syntactic patterns (enumerations, coordination, etc.). 

Table 1. Examples of semantic classes and their instances 

Semantic class Example instances 

Algorithm 
SigCalc algorithm, CHAOS local alignment, SNP analysis, 
KEGG Genome-based approach, GeneMark method, K-fold cross 
validation procedure 

Application 
PreBIND Searcher program, Apollo2Go Web Service, FLIP 
application, Apollo Genome Annotation curation tool, GenePix 
software, Pegasys system 

Data 
GeneBank record, Genome Microbial CoDing sequences, Drug 
Data report 

   Data resource 
PIR Protein Information Resource, BIND database,  
TIGR dataset, BioMOBY Public Code repository 

 
Semantic resource descriptors are the key terminological phrases used in the 

existing textual descriptions of bioinformatics resources, as given by various 
providers such as BioCatalogue, BioMoby, EBI4, etc. These descriptors refer to 

                                                           
3 Note that, to aid simplicity and uniformity, we consider Algorithms as e-resources. 
4 http://www.ebi.ac.uk/Tools/webservices/ 



concepts and specific roles (e.g. input/output parameters, etc) and have been 
frequently used in the existing descriptions. For example, frequent descriptors are 
gene expression, phylogenetic tree, microarray experiment, hierarchical clustering, 
amino acid sequence, motif, etc. We use such descriptors to profile a given resource 
and/or to link it to a domain ontology.  

We have used two sources to build a dictionary of bioinformatics resource 
descriptors. The first source is the list of terms collected from the bioinformatics 
ontology used in the myGrid project [11]. This list contains 443 terms describing 
concepts in informatics (the key concepts of data, data structures, databases and 
metadata); bioinformatics (domain-specific data sources e.g. model organism 
sequencing databases, and domain-specific algorithms for searching and analysing 
data e.g. a sequence alignment algorithm); molecular biology (higher level concepts 
used to describe bioinformatics data types, used as inputs and outputs in services e.g. 
protein sequence, nucleic acid sequence); and tasks (generic tasks a service operation 
can perform e.g. retrieving, displaying, aligning). The second source includes 
automatically extracted terms (recognised by the TerMine5 service) and frequent noun 
phrases obtained from existing descriptions of bioinformatics Web resources available 
from BioCatalogue.  

For each bioinformatics resource that can be identified in the literature, we build 
its semantic profile by harvesting all descriptors that co-occur with the resource in the 
same sentence in a given coprus (see Fig. 2 for an example). These profiles are then 
used to establish semantic similarities between resources by comparing the 
descriptors (used as features) that have been assigned to them. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Semantic Resource Descriptors for the Kyoto Encyclopaedia of Genes and Genomes  

 
Since service representations using descriptors can be extremely sparse, we use 

kernel metrics based on term/descriptor similarities to identify semantically related 
resources. The main aim is to enhance the comparison process by incorporating 
lexical and contextual properties of descriptors retrieved from the literature. This 
approach is inherent to our method, as descriptors (used as features for the resources) 
have been retrieved from sentences that are related to resources. Various similarity 
kernels can be used for comparisons (e.g. bag-of-words kernels [12, 13], string 

                                                           
5 http://www.nactem.ac.uk/software/termine/ 

Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) 

Semantic Descriptors 
data | database | DDBJ | EBI | enzyme | GenBank |  

Gene Ontology | gene | genome | Kyoto Encyclopedia | 
microarray data | pathway | protein | transcription factor | 

protein-protein interaction | UniProt 



kernels [14], etc.). Here we have considered three approaches which are described 
below. 

 
• Method 1: lexical comparison of resource names. This is a simple similarity 

function that relies on lexical profiles of resource names. The lexical profile of a 
term comprises all possible linear combinations of word-level substrings present 
in that term [15]. For example, the lexical profile of term ‘protein sequence 
alignment’ comprises the following terms protein, sequence, alignment, protein 
sequence, sequence alignment, protein sequence alignment. In this method, the 
similarity between two resources is then calculated as a similarity between lexical 
profiles of their names. Formally, let LP(s1) and LP(s2) be lexical profiles 
(represented as vectors) of names of resources s1 and s2. Then the similarity 
function is defined as:  

 

 
(1) 

 

 
• Method 2: shared descriptors. Another option is to use the standard bag-of-

descriptors kernel, where each resource is represented as a bag of its descriptors 
and the similarity is based on exact matches between descriptors. This kernel 
compares the resources using the inner product that measures the degree of 
descriptor sharing: 

 

21212 ),(Sim ssss ⋅=         (2) 

 
where s1 and s2 are vectors that represent the semantic descriptors assigned to the 
resources being compared. Alternatively, cosine similarity can be used if we use 
the frequency of the occurrence of the semantic descriptors (not presented here). 
 

• Method 3: lexical similarity of shared descriptors. A further option for a 
kernel function is to use the relatedness between descriptors to measure the 
similarity between the resources. The main motivation behind this approach is 
that resources can share related but not exactly the same descriptors. We 
therefore suggest using a kernel that takes into account descriptor smoothing by 
incorporating a similarity measure between descriptors themselves in the kernel 
function that calculates similarity between resources. Formally, let S = {s1, ..., sk} 
be the set of e-resources whose descriptions have been collected from the 
literature. Let D = {d1, ..., dm} be the set of all descriptors, where m is the total 
number of descriptors. In order to measure similarity between two resources, we 
first build a similarity matrix A (m x m), where each element aij corresponds to 
the similarity between descriptors di and dj. Then, the similarity between two 
resources s1 and s2 is calculated as: 

 

21213 ),(Sim sAsss ⋅⋅=          (3) 
 

In the experiments reported below, the smoothing is done by calculating the cosine 
  similarity between the lexical profiles of the descriptors (analogously to (1)). 
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3   Experiments and Discussion 

Here we demonstrate the development of networks of related resources by using each 
of the three methods stated above. The networks are visualised as weighted, 
undirected graphs where nodes are resources and edges represent relatedness between 
them. This relatedness is estimated using the similarity functions, where the weight of 
an edge represents the strength of the relationship between the two connected nodes 
(see Section 3.2).  We also investigate different methods of exploring and visualising 
our similarity matrices; specifically we use hierarchical clustering dendrograms and 
heatmap visualisations. 

3.1 Data 

Table 2 gives the number of bioinformatics resources that were identified in a corpus 
of 2,691 full-text articles published by the journal BMC Bioinformatics. The details 
of the extraction process are presented in [7]. 

Table 2. The statistics of Bioinformatics e-resources found in the BMC Bioinformatics corpus 

Semantic Class Total # of instances Average # of descriptors 
Algorithm 5,722 9 
Application 2,076 8 
Data 2,662 15 
Data Resource 1,992 10 

 
Each of the e-resources has been assigned a set of associated descriptors (11 

descriptors on average; see Table 2 for details for the specific classes). As can be 
expected, single word descriptors appeared more frequently in the corpus. Table 3 
lists the most frequent single word, two- and three-word descriptors. 

Table 3. The most frequent single-word, two-word and three-word descriptors 

Single word 
descriptors 

Two-word descriptors Three-word descriptors 

gene: 13,585 
method: 8,203 
protein: 6,417 
sequence: 5,991 
analysis: 4,287 

gene expression: 1,147 
secondary structure: 887 
protein sequence: 780 
protein structure: 574 
microarray experiment: 488 

protein-protein interaction: 308 
multiple sequence alignment: 295 
gene expression data: 262 
amino acid sequence: 257 
Smith-Waterman algorithm: 48 



3.2 Exploration of Semantic Networks 

Here we assess the utility of resource descriptors for semantic profiling of 
bioinformatics resources. We do this by exploring our hypothesis that bioinformatics 
resources can be semantically linked via resource descriptions. For this, we have 
manually identified a sample of 18 resources that are commonly used in 
bioinformatics (see Table 4). Each of these has occurred in more than 120 sentences 
in our corpus. The sample contains resources from all four semantic classes of 
resource. The results have been generated using the three methods for deriving 
semantic relatedness between resources as described above. 

 
Table 4. A sample of resources used for exploration 

Resource Name Number of 
sentences 

Resource 
Class 

Gene ontology (GO) 6757 Data resource 

Support vector machine (SVM)  2456 Algorithm 

Protein data bank (PDB) 904 Data resource 

Hidden Markov model (HMM) 602 Algorithm 

Principal components analysis (PCA) 599 Algorithm 

Position-specific scoring matrix (PSSM) 457 Algorithm 

Self organising map (SOM) 305 Algorithm 

Medical subject headings (MeSH) 261 Data resource 

Neural network 256 Algorithm 

Markov chain Monte Carlo (MCMC) 252 Algorithm 

Expression profile 252 Data 

Basic local alignment search tool (BLAST) 238 Application 

Phylogenetic tree 233 Data 

Structural classification of proteins (SCOP) 216 Data resource 

Kyoto encyclopaedia of genes and genomes (KEGG) 187 Data resource 

Clusters of orthologous groups (COG) 163 Data resource 

ChIp-chip data 126 Data 

Pairwise alignment 123 Data 

Method 1: lexical comparison of resource names. As expected, this method did not 
yield useful results as very little similarity was found between resource names. This 
suggests that surface-level lexical information originating from resource names is not 
sufficient to develop semantic networks of resources.  

Method 2: shared descriptors. We derived mutual similarity scores for the 18 
resources, with a mean of 0.34 and a standard deviation of 0.09. This method 
identified significant relatedness between many resources (see Fig. 3 for a heat-map). 
Clearly, the addition of descriptors improved our ability to derive a measure of 
semantic similarity between resources whose names are lexically disparate. Although 
it is difficult to define any clear semantic relationships from these data, it is noticeable 



that ChIp-chip data has specific properties that are not commonly matched by others 
in the sample, (manifested as a line of light yellow on the heat-map, see Fig. 3). 
 

 
Fig. 3. Heatmap representation of the matrix of shared descriptor similarity scores between 

resources (method 2). Values vary from 1.0 (red) to 0.00 (white), see legend.  
Heatmap generated by R function, ‘heatmap’ [16]. 

To further highlight the subtle differences and similarities between the resources in 
the sample, we applied a hierarchical clustering algorithm [17] to the matrix of scores 
(see the resulting tree in Fig. 4).  

 

Fig. 4. Hierarchical clustering of e-resources using the shared descriptors similarity matrix 
(method 2).  Distances were calculated as (1 – Sim2). Ward’s minimum variance clustering 
method [17] was used to cluster the data.  The tree was generated using R function ‘hclust’. 



The tree in Fig. 4 highlights some interesting clusters of the examined resources. 
Rather than being clustered by resource class, there are semantically important links 
being identified. For example, PCA and SOM are important and widely used methods 
for exploring expression data [18], and these resources form their own cluster. 
Additionally, there is a link established between phylogenetic tree and MCMC; 
MCMC, in combination with a Bayesian approach, is a popular method in 
phylogenetic analysis for the derivation of trees of relationships between sequences 
[19]. The cluster of pairwise alignment, HMM, PSSM and neural network highlights 
the semantic theme of sequence analysis (HMM, PSSM and neural networks have all 
been used successfully to analyse pairwise and multiple sequence alignments). 
KEGG, BLAST, COG, SCOP and MeSH form their own group, which do not highlight 
any obvious semantic relationships; a likely reason is that these resources have such 
broad utility that the specifics of the relationships between them are lost.  It is 
surprising, however, that GO and PDB did not follow a similar pattern.  

 

Fig. 5. Semantic network of bioinformatics resources (using method 2 and values shown in Fig. 
3). Node size represents frequency in the corpus, edge thickness represents how similar the two 
connected nodes are.  Node colour is determined by the semantic class of the node (red for 
Data, green for Data resource, blue for Algorithm and yellow for Application. The image was 
generated using Cytoscape6, the network was laid out using the Cytoscape layout algorithm 
‘Edge-Weighted Spring Embedded’, using the edge weight data in the network. 

Even though similarity data alone can identify important semantic links, we further 
explored the importance of the number and strength of links between resources. In 
Fig. 5 we present our similarity data as edges in a network connecting each node 
(representing individual resources) with those that have some similarity to it. Each 

                                                           
6 Cytoscape, http://www.cytoscape.org/ 



edge is weighted by the similarity between the resources it connects, so that edges that 
appear thick represent strong relationships and weak relationships are represented by 
thin edges. We have removed all edges that have a weight below the median edge 
weight for the network. Our intention with this was to remove edges that exist due to 
chance alone and to better highlight the strongest relationships in the network.7 The 
strongest links occur between the resources that appear most frequently in the corpus. 
The strongest link is between Gene Ontology and SVM, most probably because SVM 
methods have been widely used for protein annotations using GO (see, for example, 
[26]). Strong links also occur between PCA and expression profile and expression 
profile and SVM, indicating types of algorithms used with specific data types. 

Method 3: lexical similarity of shared descriptors. The results of calculations for 
linking the resources considering the lexical similarities between their descriptors are 
summarised in figures 6, 7 and 8.  

 

 

Fig. 6. Heatmap representation of the matrix of lexically smoothed descriptor similarity scores 
between resources (method 3). Values vary from 1.0 (red) to 0.0 (white), see legend.  Heatmap 

generated by R function, ‘heatmap’ [16]. 

Fig. 6 has some similarity with Fig. 3. However, there are clusters of more closely 
related resources (for example expression profile, SVM and Gene Ontology). All 
resources again have some similarity to all others, making it more difficult to identify 
the most important relationships. This indicates that sensible thresholds need to be 
identified to remove uninteresting links. The similarity scores have a mean of 0.47 
and a standard deviation of 0.14, which suggests that the scores from method 3 vary 
more widely than those from method 2 and thus potentially provide better 
discrimination. 

                                                           
7 ChIp-chip data is missing from Fig. 5 because all its edges have weights below the median. 



Fig. 7 (the hierarchical tree) is similar to Fig. 4 in the sense that some of the 
clusters are shared between the trees. The cluster of resources with broad implications 
and uses (MeSH, BLAST, SCOP, KEGG and COG) in particular is still present.  
However, some new interesting clusters have emerged: for example, the data 
resources phylogenetic tree and pairwise alignment have been clustered together, both 
of which are common data forms in sequence analysis. 

 
 

 

Fig. 7. Hierarchical clustering of e-resources using the lexically smoothed similarity matrix 
(method 3).  Distances were calculated as (1 – Sim3). Ward’s minimum variance clustering 

method [17] was used to cluster the data.  Tree generated using R function ‘hclust’ [16]. 
 
The network8 given in Fig. 8 presents the strongest clustering of resources based on 

their class. Although the Data nodes (represented as red) are not strongly linked to 
each other, the Data Resource nodes (green) are all clustered together. There is also a 
similar pattern with the Algorithm nodes (blue). The strongest edge weights again 
occur between resources that appear most frequently in the corpus, suggesting that 
frequency normalisation may be needed to reduce this impact. Gene Ontology, in 
particular, is linked to all other resources, and that is primarily a product of its 
ubiquity in the literature and therefore the tendency for many descriptors and 
resources to be linked to it. 

 

                                                           
8  We have again removed the edges with a weight below the median edge weight. This has 

caused the removal of the MeSH node from the network.  This could be due to MeSH being 
the only resource strongly related to literature resources. 



 

Fig. 8. Semantic network of bioinformatics resources (using method 3 and values shown in Fig. 
6). Node size represents frequency in the corpus, edge thickness / weight represents how 
similar the 2 connected nodes are.  Node colour is determined by the semantic class of the 
node, red for Data, green for Data resource, blue for Algorithm and yellow for Application. 
The image was generated using Cytoscape (see Fig. 6 for details). 

By further analysing the associated semantic profiles, we can see that significant 
relatedness between resources typically originates from sharing a number of very 
generic descriptors, in particular single-word ones (see Table 3).  Many of these have 
a generic nature (e.g. method, analysis, gene, etc.). This problem, however, can be 
resolved by either filtering generic concepts from the descriptors using stop-words or 
by using a tf*idf -like weights [20] assigned to descriptors (considering the frequency 
of descriptors appearing in profiles of different resources). Selecting and varying the 
threshold for the edge weight in our network representations can also discard 
unwanted weak links.  

4 Related Work 

Most of the efforts in the domain of Semantic Web for the Life Sciences have been 
focused on data annotation (e.g. a number of protein function databases), using both 
manual and automated approaches. Recently, these efforts have been extended to 
semantic description of services and tools that are used to analyse, visualise and 
explore such data.  



In addition to manual annotation, Semantic Web technologies have been applied 
for the description of Web services. These approaches include descriptions of Web 
service functionalities as well as the meta-data information about their inputs and 
outputs. Most of the suggested approaches rely on the data available in WSDL files. 
For example, Lerman and colleagues [21] presented work on automatic labelling of 
inputs and outputs of Web services using meta-data based classification relying on 
terms extracted from the associated WSDL files. The underlying heuristic behind the 
meta-data based classification is that similar data types tend to be named by similar 
names and/or belong to operations or messages that are similarly named. Similarly, 
Hess and Kushmerick [22] used machine learning to classify Web services using 
information given in WSDL files of the services which include port types, operations 
and parameters along with any documentation available about the Web service. 
Information in a WSDL file is treated as “normal” text, and the problem of Web 
service and its metadata classification is addressed as a text classification problem.  

Carman and Knoblock, on the other hand, reported on invoking new/unknown 
services and comparing the data they produce with that of known services, and then 
use the meta-data associated with the known services to add annotations to the 
unknown resources [23]. Belhajjame and colleagues [24] used known annotations of 
parameters belonging to components in a workflow to infer the unknown annotations 
of other parameters (in other components). Here, semantic information of operation 
parameters is inferred based on their connections to other (annotated) components 
within existing tried-and-tested workflows. Apart from deriving new annotations, this 
method can inspect the parameter compatibility in workflows and can also highlight 
conflicting parameter annotations. 

There have been some efforts to improve the service discovery process. Dong et 
al. [25], for example, used clustering-based approach in which parameters of service 
operations are grouped into meaningful concepts, which are then used to find similar 
service operations based on similar parameters. However, this method provides only a 
limited solution and is unable to provide comprehensive service discovery based on 
the underlying semantics provided by services. Employing Semantic Web approaches 
such as ontological annotations could improve this approach [11].  

5 Conclusions 

In this paper we proposed and explored a literature-based methodology for building 
clusters and semantic networks of functionally related e-resources in bioinformatics. 
The main motivation is to facilitate the resource discovery approaches, which would 
improve the availability and utility of these resources to the community. The 
methodology revolves around terminological units (semantic descriptors) that are 
frequently used by bioinformatics resource providers to semantically describe the 
resources. The semantic descriptors have been automatically compiled and each e-
resource has been assigned a set of descriptors co-occurring with the given e-resource 
in a full-text article corpus.  

In order to establish similarity between resources, their profiles are compared using 
three levels of service representations: the lexical similarity between the resource 
names (method 1); the similarity calculated on the basis of shared semantic 



descriptors (method 2), and the same similarity smoothed by considering lexically 
similar descriptors. As expected, the first method failed to capture any significant 
links between resources as it relied solely on the surface level clues originating from 
the names of resources. The second approach performed significantly better and was 
able to identify interesting clustering patterns between the resources which did not 
have any lexical resemblance. At the third level, in contrast to considering the exact 
match between resource descriptors, we devised a descriptor-based kernel matrix, 
which incorporated the approximate lexical similarities between the descriptors (using 
their lexical profiles). The approximate similarities helped in linking the resources 
that shared the descriptors which were not exactly the same, but were related. An 
interesting pattern emerged whilst experimenting with this metric, whereby resources 
would cluster together based on their class (i.e. the resources which belonged to the 
same class (such as Algorithm, Data Resource, etc.) tended to appear closer in the 
network).  Method 2 revealed some interesting functional links (linking data types and 
algorithms). It remains an open question as to which of these clustering patterns is 
most useful for semantic resource discovery. 

The work presented here demonstrates the potential of simple kernel methods 
(using lexical profiles) built to model relatedness between resource descriptors. We 
anticipate that further work will be required to identify the most relevant weights for 
semantic descriptors to counter-balance the impact of frequent (and less informative) 
features. Other kernels (such as contextual and distributional similarities, WordNet-
based similarities, string kernels etc) need to be explored and could provide better 
resolution of the complex interrelationships between resources.  
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