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Abstract. There have been a number of recent efforts (eigC&alogue,
BioMOBY, etc.) to systematically catalogue bioinfatics tools, services and
datasets. These efforts mostly rely on manual imrand are unable to cope
with the huge influx of various electronic resowcerhich consequently result
in their unavailability to the community. We presentext mining approach
that utilizes the literature to extract and seneatiiy profile bioinformatics
resources. Our method identifies the mentions sdueces in the literature and
assigns a set of co-occurring terminological andtological entities
(descriptors) to represent them. Since such reprasens can be extremely
sparse, we use kernel metrics based on lexical/desuriptor similarities to
identify semantically related resources. Resourresthen either clustered or
linked into a network, providing the users (bioimf@ticians and service/tool
crawlers) with a possibility to explore tools, Sees and datasets based on their
relatedness, thus potentially improving the reseuliscovery process.

Keywords: bioinformatics services, service description, t@kting, networks,
kernel similarity.

1 Introduction

The rapid increase in the amount of bioinformatiaga produced in recent years has
resulted in the huge influx of bioinformatics electic resources (e-resources), such
as online-databases [1], data-analysis tools, Véelices [2] etc. Discovering such
resources became a major bottleneck in bioinfomsatn order to effectively utilize
them, e-resources need to be organised and theictidnalities semantically
described. A number of community wide efforts suah BioCatalogue [3] and
BioMoby [4] have been initiated to systematicalptalogue the “resourceome”. By
annotating services using keywords and ontologioahcepts, such catalogues
facilitate access to both bioinformaticians and &etic Web crawlers and agents that
can orchestrate the use of such resources. Howdnegnnotation process depends
on a typically slow manual curation process thadhis the growth of such curated



resources to keep pace with the very field thesnattt to catalogue. For instance, the
number of registered services in BioCatalogue élaee 1,084 of thethis still small
compared with the total number of Web serviceslalibd online: it is estimated that
there are ~3500 life science Web services in Tavatane [3, 5]. This fact calls for
the development of semi-automatic methods for nesouwannotation and their
cataloguing in order to maximise the utility of esources by making them widely
available to the community.

One of the key aims of providing bioinformatics oesces with semantic
descriptions is to improve resource discovery. Seitally-described resources can
not only be searched, browsed and discovered mgusyword-based queries (for
instance, via their names or task descriptions),ago on the basis of the semantic
relatedness of their functionalities. For exam@@Catalogue descriptions refer to
similar servicegsee Fig. 1) so that the users can identify rdltdels.
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Fig. 1. A snapshot of a Web service description taken fBdoCatalogué

When manually assigned annotation tags and/orectksgrvices are not available,
we hypothesise that automated approaches couldsdat to improve the discovery
process. These include building networks and dlsisté similar resources. For
example, a user can search for a Web service the¢sponds to a particular input,
output or operation performed. If, however, thaiesed services do not fulfil the
exact requirement, the user may be interested ploawrg similar services (for
example, with more generic/specific input/outputut bstill with a related
functionality), which can be identified by browsiregWeb service network or by
exploring clusters of related services. Traditibnadimilar or related services have
been identified by usindexical comparisonsof their names and names of their
parameters (input/output) and operations. This ggedias been further improved by
concept-based comparisonsing domain ontologies that have been used totaten
the resources (as in myGrid [6] and BioCatalogue).

1 Statistics collected on $@ct, 20009.
2 http://www.biocatalogue.org/services/2048-wsblgptervice_414364



In our previous work, we have shown that the vasbants of scientific literature
related to bioinformatics resources can be tappedrder to automatically extract
their key semantic functional features [7, 8]. histpaper we propose a methodology
to build and explore clusters and semantic netwarkbioinformatics resources,
which can help to identify related resources onlthsis of their similarity as well as
by their semantic relatedness. In order to meath@esemantic relatedness between
the resources, we have designed a kernel-basetarsiynapproach that uses lexical
and semantic properties of resource mentions aaatet from the literature.

2 Methodology

The overall methodology adopted in the work preseéiere is based on the concepts
of bioinformatics resources, semantic resource rgeecs, and kernel/similarity
functions, which are explained below.

Bioinformatics resources represent the list of e-resources which are used by
bioinformaticians while performing in-silico experents [9, 10]. We have focused on
the four major classeglgorithms, Applications Data and Data ResourcesThese
have been engineered from the myGrid ontology. 8 dbkhows example resource
instances belonging to these classes. In our pusviwrk, we have described a set of
text mining tools that can be used to efficientlgntify, classify and extract mentions
of these resources in the literature [7]. The metlsobased on key terminological
heads assigned to each of the semantic classesafggment and method are
“linked” to Algorithms while sequencandrecord point to aData entity) and specific
lexico-syntactic patterns (enumerations, coordamtetc.).

Table 1. Examples of semantic classes and their instances

Semantic class Example instances

SigCalc algorithm CHAOS local alignment SNP analysis
Algorithm KEGG Genome-baseagpproach GeneMarkmethod K-fold cross
validationprocedure

PreBIND Searcherprogram Apollo2Go Web Service FLIP
Application application Apollo Genome Annotation curaticol, GenePix
software Pegasysystem

GeneBankrecord Genome Microbial CoDingequencesDrug

Data Datareport
PIR Protein InformatiofResourceBIND database
Data resource TIGR dataset BioMOBY Public Codeaepository

Semantic resource descriptors are the key terminological phrases used in the
existing textual descriptions of bioinformatics aasces, as given by various
providers such as BioCatalogue, BioMoby, EBtc. These descriptors refer to

3 Note that, to aid simplicity and uniformity, wermiderAlgorithmsas e-resources.
4 http://www.ebi.ac.uk/Tools/webservices/



concepts and specific roles (e.g. input/output ipatars, etc) and have been
frequently used in the existing descriptions. Frareple, frequent descriptors are
gene expressigrphylogenetic treemicroarray experimenthierarchical clustering
amino acid sequengenotif, etc. We use such descriptors to profile a givesource
and/or to link it to a domain ontology.

We have used two sources to build a dictionary ifinfbormatics resource
descriptors. The first source is the list of teromdlected from the bioinformatics
ontology used in the myGrid project [11]. This l=bntains 443 terms describing
concepts ininformatics (the key concepts of data, data structures, databasd
metadata); bioinformatics (domain-specific data sources e.g. model organism
sequencing databases, and domain-specific algaittem searching and analysing
data e.g. ®equence alignment algorithpmolecular biology(higher level concepts
used to describe bioinformatics data types, usedpgs and outputs in services e.g.
protein sequencgaucleic acid sequengeandtasks(generic tasks a service operation
can perform e.gretrieving displaying aligning). The second source includes
automatically extracted terms (recognised by théVire® service) and frequent noun
phrases obtained from existing descriptions ofrffaimatics Web resources available
from BioCatalogue.

For each bioinformatics resource that can be ifledtin the literature, we build
its semantic profileby harvesting all descriptors that co-occur wité tesource in the
same sentence in a given coprus (see Fig. 2 fexample). These profiles are then
used to establish semantic similarities betweeroureges by comparing the
descriptors (used as features) that have beemasisig them.

Kyoto Encyclopaedia of Genes and Genomes

(_ (KEGG) _\

Semantic Descriptors
data | database | DDBJ | EBI | enzyme | GenBank |
Gene Ontology | gene | genome | Kyoto Encyclopedia
microarray data | pathway | protein | transcripfamtor |
protein-protein interaction | UniProt

- J

Fig. 2. Semantic Resource Descriptors for the Kyoto Engaalia of Genes and Genomes

Since service representations using descriptorsbeaaxtremely sparse, we use
kernel metrics based on term/descriptor similarities to idensgmantically related
resources. The main aim is to enhance the compagsocess by incorporating
lexical and contextual properties descriptorsretrieved from the literature. This
approach is inherent to our method, as descriffteesd as features for the resources)
have been retrieved from sentences that are retatedsources. Various similarity
kernels can be used for comparisons (e.g. bag-odavéernels [12, 13], string

5 http://www.nactem.ac.uk/software/termine/



kernels [14], etc.). Here we have considered tlageroaches which are described
below.

e Method 1: lexical comparison of resource names. This is a simple similarity
function that relies on lexical profiles of resoeimcames. Théexical profile of a
term comprises all possible linear combinationsvofd-level substrings present
in that term [15]. For example, the lexical profidé term protein sequence
alignment’ comprises the following ternsrotein, sequencgealignment protein
sequencesequence alignmenprotein sequence alignmerih this method, the
similarity between two resources is then calculagad similarity between lexical
profiles of their names. Formally, let g and LP§,) be lexical profiles
(represented as vectors) of names of resouscemd s,. Then the similarity
function is defined as:

LP(s,) [LP(s,)
[LP(s,) [OILP(s,)| @)

Sim, (s,. s,) =

e Method 2: shared descriptors. Another option is to use the standard bag-of-
descriptors kernel, where each resource is repiesers a bag of its descriptors
and the similarity is based on exact matches betveksscriptors. This kernel
compares the resources using the inner product nietsures the degree of
descriptor sharing:

Sim,(s,,s,) =S, [s, (2)

wheres; ands, are vectors that represent the semantic descsipgsigned to the
resources being compared. Alternatively, cosindlaiity can be used if we use
the frequency of the occurrence of the semanticrg®srs (not presented here).

e Method 3: lexical similarity of shared descriptors. A further option for a
kernel function is to use the relatedness betwesstriptors to measure the
similarity between the resources. The main motivatbehind this approach is
that resources can share related but not exacHystime descriptors. We
therefore suggest using a kernel that takes intowad descriptor smoothindpy
incorporating a similarity measure between desoripthemselves in the kernel
function that calculates similarity between resesrd-ormally, le6={s,, ..., &}
be the set of e-resources whose descriptions haea lgollected from the
literature. LetD = {d,, .., dy} be the set of all descriptors, whareis the total
number of descriptors. In order to measure sintyldretween two resources, we
first build a similarity matrixA (m x m), where each elemenj eorresponds to
the similarity between descriptods and d;. Then, the similarity between two
resources; ands; is calculated as:

Simy(s;,s,) =5 [Als, 3

In the experiments reported below, the smoothirdpige by calculating the cosine
similarity between the lexical profiles of thesdeptors (analogously to (1)).



3 Experimentsand Discussion

Here we demonstrate the development of networkslafed resources by using each
of the three methods stated above. The networks vemgalised as weighted,
undirected graphs where nodes are resources aeg egjgyesent relatedness between
them. Thisrelatednesss estimated using the similarity functions, whtre weight of

an edge represents the strength of the relatiorsdtipeen the two connected nodes
(see Section 3.2). We also investigate differeathmds of exploring and visualising
our similarity matrices; specifically we use hietaical clustering dendrograms and
heatmap visualisations.

3.1 Data

Table 2 gives the number of bioinformatics resositteat were identified in a corpus
of 2,691 full-text articles published by the jourMC Bioinformatics. The details
of the extraction process are presented in [7].

Table 2. The statistics of Bioinformatics e-resources foumthe BMC Bioinformatics corpus

Semantic Class Total # of instances Average# of descriptors
Algorithm 5,722 9
Application 2,076 8
Data 2,662 15
Data Resource 1,992 10

Each of the e-resources has been assigned a setsotiated descriptors (11
descriptors on average; see Table 2 for detailgHerspecific classes). As can be
expected, single word descriptors appeared moguémly in the corpus. Table 3
lists the most frequent single word, two- and threed descriptors.

Table 3. The most frequent single-word, two-word and threeenrdescriptors

Singleword Two-word descriptors Three-word descriptors
descriptors
gene 13,585 gene expressiod, 147 protein-protein interaction308
method 8,203 secondary structure387 multiple sequence alignmer295
proteint 6,417 protein sequencé& 80 gene expression data62
sequence5,991 | protein structure574 amino acid sequenc@57
analysis 4,287 microarray experiment88 Smith-Waterman algorithn48




3.2 Exploration of Semantic Networks

Here we assess the utility of resource descriptiors semantic profiling of
bioinformatics resources. We do this by exploring bypothesis that bioinformatics
resources can be semantically linked via resoueseriptions. For this, we have
manually identified a sample of 18 resources the® aommonly used in
bioinformatics (see Table 4). Each of these hasiroed in more than 120 sentences
in our corpus. The sample contains resources frinfoar semantic classes of
resource. The results have been generated usinghtee methods for deriving
semantic relatedness between resources as desalibee.

Table4. A sample of resources used for exploration

Number of Resource
Resource Name

sentences Class
Gene ontology (GO) 6757 Data resource
Support vector machine (SVM) 2456 Algorithm
Protein data bank (PDB) 904 Data resource
Hidden Markov model (HMM) 602 Algorithm
Principal components analysis (PCA) 599 Algorithm
Position-specific scoring matrix (PSSM) 457 Algorithm
Self organising map (SOM) 305 Algorithm
Medical subject headings (MeSH) 261 Data resource
Neural network 256 Algorithm
Markov chain Monte Carlo (MCMC) 252 Algorithm
Expression profile 252 Data
Basic local alignment search tool (BLAST) 238 Application
Phylogenetic tree 233 Data
Structural classification of proteins (SCOP) 216 Data resource
Kyoto encyclopaedia of genes and genomes (KEGG) 187 Data resource
Clusters of orthologous groups (COG) 163 Data resource
Chlp-chip data 126 Data
Pairwise alignment 123 Data

Method 1: lexical comparison of resour ce names. As expected, this method did not

yield useful results as very little similarity wésund between resource names. This
suggests that surface-level lexical informatioryimiting from resource names is not
sufficient to develop semantic networks of resosirce

Method 2: shared descriptors. We derived mutual similarity scores for the 18
resources, with a mean of 0.34 and a standard ti@viaf 0.09. This method
identified significant relatedness between mangueses (see Fig. 3 for a heat-map).
Clearly, the addition of descriptors improved otnility to derive a measure of
semantic similarity between resources whose namgekexrically disparate. Although
it is difficult to define any clear semantic retatships from these data, it is noticeable



that Chlp-chipdata has specific properties that are not commonly hetdy others
in the sample, (manifested as a line of light yelln the heat-map, see Fig. 3).
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Fig. 3. Heatmap representation of the matrix of sharedri#ec similarity scores between
resources (method 2). Values vary from 1.0 (red).@® (white), see legend.
Heatmap generated by R function, ‘heatmap’ [16].

To further highlight the subtle differences andikinities between the resources in
the sample, we applied a hierarchical clusteriggrthm [17] to the matrix of scores
(see the resulting tree in Fig. 4).
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Fig. 4. Hierarchical clustering of e-resources using thered descriptors similarity matrix
(method 2). Distances were calculated as (1 »)SiMard’s minimum variance clustering
method [17] was used to cluster the data. Thewssegenerated using R function ‘hclust’.



The tree in Fig. 4 highlights some interesting ®us of the examined resources.
Rather than being clustered by resource classe ter semantically important links
being identified. For exampl®CAandSOMare important and widely used methods
for exploring expression data [18], and these re=ssu form their own cluster.
Additionally, there is a link established betwephylogenetic treeand MCMC;
MCMC, in combination with a Bayesian approach, is a utp method in
phylogenetic analysis for the derivation of treégedationships between sequences
[19]. The cluster opairwise alignmentHMM, PSSMandneural networkhighlights
the semantic theme of sequence analydiNl, PSSMandneural networkshave all
been used successfully to analyse pairwise andipteulsequence alignments).
KEGG, BLAST COG, SCOPandMeSHform their own group, which do not highlight
any obvious semantic relationships; a likely reaisotihat these resources have such
broad utility that the specifics of the relationshibetween them are lost. It is
surprising, however, th&0 andPDB did not follow a similar pattern.

9,
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PDB HMM\ Rhylogenetic tree
FosM MCMC
Neural network S
BLAST
SOM

@

Pairwise alignment

Fig. 5. Semantic network of bioinformatics resources (usireghod 2 and values shown in Fig.
3). Node size represents frequency in the corpige thickness represents how similar the two
connected nodes are. Node colour is determinethdysemantic class of the node (red for
Data, green forData resourceblue forAlgorithm and yellow forApplication The image was
generated using Cytosc&péhe network was laid out using the Cytoscape uaydgorithm
‘Edge-Weighted Spring Embedded’, using the edg@mieaiata in the network.

Even though similarity data alone can identify intpat semantic links, we further
explored the importance of the number and strenftlinks between resources. In
Fig. 5 we present our similarity data as edges metavork connecting each node
(representing individual resources) with those thete some similarity to it. Each

6 Cytoscape, http://www.cytoscape.org/



edge is weighted by the similarity between the ueses it connects, so that edges that
appear thick represent strong relationships andkweationships are represented by
thin edges. We have removed all edges that haveightvbelow the median edge
weight for the network. Our intention with this wimsremove edges that exist due to
chance alone and to better highlight the strongsationships in the networkThe
strongest links occur between the resources thpgaapmost frequently in the corpus.
The strongest link is betwe&bene Ontologyand SVM most probably becau§yVM
methods have been widely used for protein annatstising GO (see, for example,
[26]). Strong links also occur betwe@CA and expression profileand expression
profile andSVM indicating types of algorithms used with speaifata types.

Method 3: lexical similarity of shared descriptors. The results of calculations for
linking the resources considering the lexical samiles between their descriptors are
summarised in figures 6, 7 and 8.

[ | MeSH
1.0 | | | | SCOP

|| BLAST
KEGG
coG
0.8 .. MCMC
Chlp-chip data
| | SOM

. r Expression profile
PCA
0 . 6 . Phylogenetic tree
Pairwise alignment
| || I PoB
M
Gene Ontology
0 4 Neural network
L] HMM
| ] PSSM
o @ Q = >
AT EE R Y
0.2 20gx®2e®8 g¢ gs5Te
' $ & £s Qs
2 4 g8 §3
c g z2 Gz
w as
0—

Fig. 6. Heatmap representation of the matrix of lexicatiyoothed descriptor similarity scores
between resources (method 3). Values vary fronfréd) to 0.0 (white), see legend. Heatmap
generated by R function, ‘heatmap’ [16].

Fig. 6 has some similarity with Fig. 3. Howeverrth are clusters of more closely
related resources (for exampéxpression profile SVM and Gene Ontology All
resources again have some similarity to all othmesking it more difficult to identify
the most important relationships. This indicatest tbensible thresholds need to be
identified to remove uninteresting links. The samily scores have a mean of 0.47
and a standard deviation of 0.14, which suggestisttie scores from method 3 vary
more widely than those from method 2 and thus piatgn provide better
discrimination.

7 Chlp-chip datais missing from Fig. 5 because all its edges hesights below the median.



Fig. 7 (the hierarchical tree) is similar to Fig.irlthe sense that some of the
clusters are shared between the trees. The chfstesources with broad implications
and uses NleSH BLAST, SCOP, KEG@nd COG) in particular is still present.
However, some new interesting clusters have emerfmd example, the data
resourcephylogenetic treandpairwise alignmenhave been clustered together, both
of which are common data forms in sequence analysis
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Fig. 7. Hierarchical clustering of e-resources using théchlly smoothed similarity matrix
(method 3). Distances were calculated as (1 )SiMard’s minimum variance clustering
method [17] was used to cluster the data. Treergéed using R function ‘hclust’ [16].

The networR given in Fig. 8 presents the strongest clustesingsources based on
their class. Although th®ata nodes (represented as red) are not strongly lim&ed
each other, thBata Resourceodes (green) are all clustered together. Theatssa
similar pattern with theAlgorithm nodes (blue). The strongest edge weights again
occur between resources that appear most frequentlye corpus, suggesting that
frequency normalisation may be needed to reduce ithpact. Gene Ontologyin
particular, is linked to all other resources, ahdttis primarily a product of its
ubiquity in the literature and therefore the termjeror many descriptors and
resources to be linked to it.

8 We have again removed the edges with a weigluiwbéie median edge weight. This has
caused the removal of tideSHnode from the network. This could be dueMeSHbeing
the only resource strongly related to literatusoreces.



MCMC

@

Q Phylogenetic-tree
Pairwise alignment (

HMM
O O Expregsion profile
BLAST Neura) network SUM O Chlp-chip data
@ ) poa
PSSM PDB O
O SOM
SCOP

Gene ontology O

KEGG
COoG
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similar the 2 connected nodes are. Node coloutetermined by the semantic class of the
node, red foiData, green forData resource blue for Algorithm and yellow forApplication
The image was generated usibigfoscapgsee Fig. 6 for details).

By further analysing the associated semantic @®filve can see that significant
relatedness between resources typically originta® sharing a number of very
generic descriptors, in particular single-word ofee Table 3). Many of these have
a generic nature (e.gnethod analysis gene etc.). This problem, however, can be
resolved by either filtering generic concepts frthra descriptors using stop-words or
by using atf*idf-like weights [20] assigned to descriptors (considethe frequency
of descriptors appearing in profiles of differeasources). Selecting and varying the
threshold for the edge weight in our network repnégtions can also discard
unwanted weak links.

4 Reated Work

Most of the efforts in the domain of Semantic Web the Life Sciences have been
focused on data annotation (e.g. a number of prdteiction databases), using both
manual and automated approaches. Recently, théseselfiave been extended to
semantic description of services and tools thatus®d to analyse, visualise and
explore such data.



In addition to manual annotation, Semantic Web rietdgies have been applied
for the description of Web services. These appresdhclude descriptions of Web
service functionalities as well as the meta-dafarination about their inputs and
outputs. Most of the suggested approaches relhemata available in WSDL files.
For example, Lerman and colleagues [21] presentadt wn automatic labelling of
inputs and outputs of Web services using meta-dated classification relying on
terms extracted from the associated WSDL files. Gihéerlying heuristic behind the
meta-data based classification is that similar dgtes tend to be named by similar
names and/or belong to operations or messageatheatimilarly named. Similarly,
Hess and Kushmerick [22] used machine learninglassdy Web services using
information given in WSDL files of the services whiinclude port types, operations
and parameters along with any documentation aveilalbout the Web service.
Information in a WSDL file is treated as “normaBxt, and the problem of Web
service and its metadata classification is adddease text classification problem.

Carman and Knoblock, on the other hand, reportedneoking new/unknown
services and comparing the data they produce Wwihdf known services, and then
use the meta-data associated with the known senticeadd annotations to the
unknown resources [23]. Belhajjame and colleag@é$ jised known annotations of
parameters belonging to components in a workflownter the unknown annotations
of other parameters (in other components). Hemmaséic information of operation
parameters is inferred based on their connectionsthier (annotated) components
within existing tried-and-tested workflows. Apardin deriving new annotations, this
method can inspect the parameter compatibility arkflows and can also highlight
conflicting parameter annotations.

There have been some efforts to improve the sendismovery process. Dong et
al. [25], for example, used clustering-based apgraa which parameters of service
operations are grouped into meaningful concepté;tware then used to find similar
service operations based on similar parameters eMerythis method provides only a
limited solution and is unable to provide compredies service discovery based on
the underlying semantics provided by services. Byip Semantic Web approaches
such as ontological annotations could improve dpigroach [11].

5 Conclusions

In this paper we proposed and explored a literdbaseed methodology for building
clusters and semantic networks of functionally texlae-resources in bioinformatics.
The main motivation is to facilitate the resouréscdvery approaches, which would
improve the availability and utility of these resoes to the community. The
methodology revolves around terminological unitenfantic descriptors) that are
frequently used by bioinformatics resource prowéday semantically describe the
resources. The semantic descriptors have been atitafty compiled and each e-
resource has been assigned a set of descriptascorring with the given e-resource
in a full-text article corpus.

In order to establish similarity between resourtesir profiles are compared using
three levels of service representations: the Iéxsmilarity between the resource
names (method 1); the similarity calculated on thasis of shared semantic



descriptors (method 2), and the same similarity athrexd by considering lexically
similar descriptors. As expected, the first metliaited to capture any significant
links between resources as it relied solely onstiéace level clues originating from
the names of resources. The second approach pedasignificantly better and was
able to identify interesting clustering patterndween the resources which did not
have any lexical resemblance. At the third levelcontrast to considering the exact
match between resource descriptors, we devisedserig®r-based kernel matrix,
which incorporated the approximate lexical simtles between the descriptors (using
their lexical profiles). The approximate similagti helped in linking the resources
that shared the descriptors which were not exabiysame, but were related. An
interesting pattern emerged whilst experimentinthhis metric, whereby resources
would cluster together based on their class (he.resources which belonged to the
same class (such @dgorithm Data Resourceetc.) tended to appear closer in the
network). Method 2 revealed some interesting fionetl links (linking data types and
algorithms). It remains an open question as to wlitthese clustering patterns is
most useful for semantic resource discovery.

The work presented here demonstrates the potesttisimple kernel methods
(using lexical profiles) built to model relatedndsstween resource descriptors. We
anticipate that further work will be required teerdify the most relevant weights for
semantic descriptors to counter-balance the impafrequent (and less informative)
features. Other kernels (such as contextual antddisonal similarities, WordNet-
based similarities, string kernels etc) need toekglored and could provide better
resolution of the complex interrelationships betwessources.
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