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ABSTRACT

Audio chord detection is the combination of two separate
tasks: recognizing what chords are played and determining
when chords are played. Most current audio chord detec-
tion algorithms use hidden Markov model (HMM) classi-
fiers because of the task similarity with automatic speech
recognition. For most speech recognition algorithms, the
performance is measured by word error rate; i.e., only the
identity of recognized segments is considered because word
boundaries in continuous speech are often ambiguous. In
contrast, audio chord detection performance is typically
measured in terms of frame error rate, which considers
both timing and classification. This paper treats these two
tasks separately and focuses on the first problem; i.e., clas-
sifying the correct chords given boundary information. The
best performing chroma/HMM chord detection algorithm,
as measured in the 2008 MIREX Audio Chord Detection
Contest, is used as the baseline in this paper. Further im-
provements are made to reduce feature correlation, account
for differences in tuning, and incorporate minimum classi-
fication error (MCE) training in obtaining chord HMMs.
Experiments demonstrate that classification rates can be
improved with tuning compensation and MCE discrimina-
tive training.

1. INTRODUCTION

As online music databases continue to grow in size, more
effective retrieval mechanisms are needed. In particular,
recognizing certain musicological, acoustical, and cultural
factors in a musical piece impact notions of similarity. One
such musicological factor which has seen an increased re-
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search focus is automatic chord detection, which is a mid-
level representation and a first-step in identifying the har-
mony of a given musical work.

Most recent approaches to identifying chords from the
acoustic signal are based on using chroma features as in-
puts into a hidden Markov model (HMM) based system.
An early approach in literature using an HMM-based sys-
tem was [1], where an ergodic HMM provides the ini-
tial chord progression modeling and updated using N-best
rescoring techniques. Sheh and Ellis [2] deal with an inad-
equate amount of training data by assuming that chroma
vectors from the same mode (e.g., Major) and different
pitch classes can be considered as rotated versions of one
another. Bello er al. [3] incorporate musical knowledge
into the transition probabilities and HMM parameters to
improve the results. Lee and Slaney [4] increase the amount
of training data available by synthesizing audio to provide
accurate chord and boundary information. Improvement is
made in [5] by using key-dependent ergodic HMMs and
warping the chroma features into tonal centroid features
[6], which gives the relation of the chroma features on the
circles of fifths, minor thirds, and major thirds.

The HMM framework is inspired by automatic speech
recognition (ASR), where HMMs represent words or sub-
word units. However, the ASR community only considers
the recognition rate (i.e., what was said) as important and
ignores timing information (i.e., recognizing when each
spoken unit begins and ends). In contrast, audio chord
detection is measured in terms of frame error rate (FER),
which incorporates both tasks. This paper proposes opti-
mizing these two task separately and focuses on the prob-
lem of classification rate (i.e., recognizing what was said).
To the authors’ knowledge, only [2] evaluates these tasks
separately. Specifically, Sheh and Ellis consider forced
alignment, where the correct chord sequence is known and
the timing information is extracted.

This paper implements several improvements to evalu-
ate the limits of the chroma/HMM system for classifica-
tion rates. In particular, the goal of this paper is to improve
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the classification rate between highly confused chords in
the feature space. For instance, one of the most common
chord detection errors is between parallel modes, which
share the same root, but differ in their key signature; e.g, C
Major versus C minor. The cause for confusion is because
the difference between a Major and minor chord is a flat-
tening of the major third to a minor third, which may only
be a few hertz.

The baseline system adopted in this study is the current
state-of-the-art and placed first in the 2008 MIREX Audio
Chord Detection task (Task 2: no pre-training) [7]. To at-
tenuate percussive sounds, the harmonic-percussive source
separation (HPSS) algorithm [8] is used in the baseline
system to isolate the harmonic part of the spectrum prior
to chroma extraction and maximum likelihood (ML) esti-
mation. This paper incorporates the improvements of au-
tomatic tuning compensation and minimum classification
error (MCE) training [9].

The automatic tuning algorithm is a simplification of
the one proposed in [3]. Small, uniform databases, such
as the Beatles Chord Database [10], experience improved
performance with tuning normalization because slight dif-
ferences in tuning cause confusion between highly com-
peting chords. This can lead to confusion among parallel
modes since they differ by a single note, for example. Due
to the trade-off between spectral and time-based resolution
in frame-based music processing, a slight difference in tun-
ing could allow for energy to bleed into neighboring energy
bands, leading to confusion.

MCE, a highly successful discriminative training ap-
proach, enhances ASR performance by overcoming two
assumptions made by parametric approaches. Like speech,
the assumption that the true distribution of chroma vec-
tors is an HMM is an approximation to yield a parametric
fit. ML techniques estimate parameters corresponding to
the mode of the likelihood function. However, if the true
distribution differs from the assumed model, the ML tech-
nique is not guaranteed to yield an optimal performance. In
addition, the strength of the parametric fit relies on accu-
rate parameter estimates. However, current acoustic chord
databases are quite small in size and contain around 100
songs from one to five artists. With such small artist di-
versity, it is unlikely that current databases are a good rep-
resentation of the entire acoustic space. MCE integrates
a discriminative training approach into the parameter es-
timation problem by directly optimizing the performance
classification; i.e., classification error. Specifically, a logis-
tic transform incorporates the classification error rate into
the objective function so that gradient probabilistic descent
will yield an improved set of parameters.

The baseline algorithm, is described in Section 2 and
improvements are detailed in Section 3. Experimental re-
sults in Section 4 compare modifications to the ML base-
line. Finally, Section 5 gives concluding remarks.
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2. BASELINE ALGORITHM: MIREX 2008
SUBMISSION

2.1 Harmonic/Percussion Source Separation

As noted in [11], transients and noise decrease the chord
recognition accuracy in chroma-based approaches. This
is largely due to percussive sources, which spread energy
across the entire frequency spectrum. While the authors
in [11] use a median filter to smooth percussive effects,
this paper uses the HPSS algorithm [8], which integrates
the harmonic and percussive separation into the objective
function

1
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where H}, ,, and P, ,, are the values of the power spectrum
at frequency index k and time index n for the harmonic
spectrum, H, and the percussive spectrum, P, respectively.
The parameters 0% and 0% need to be set experimentally.
To ensure that each time-frequency component of the har-
monic and percussive spectrum components sum to a value
equal to the original spectrum, W}, ,,, and to ensure that
power spectrums remain positive, the following constraints
are added to the minimization of (1)

Hk,n + Pk,n = Wk,n (2)
Hypn >0 (3)
Pyn >0 4)

Note that minimizing (1) is equivalent to maximum like-
lihood estimation under the assumption that (Hy ,—1 —
Hy,) and (Py—1,n — Py ) are independent Gaussian dis-
tributed variables. This simplification leads to a set of it-
erative update equations for the harmonic and percussive
spectrums. At the output of HPSS are two waveforms; one
of these contains a percussive-dominated spectrum and the
other a harmonic-dominated spectrum. Further details can
be found in [8].

2.2 Chromagram

Chroma vectors are the most common features in audio
chord detection algorithms and describe the energy distri-
bution among the 12 chromas; i.e., pitch classes. To derive
chroma vectors, the harmonic-emphasized music signal is
first downsampled to 11025 Hz. Next, the signal is broken
into frames of 2048 samples with a 50% overlap. The con-
stant Q transform [12] provides spectral analysis using a
logarithmic spacing of the frequency domain, whereas the
traditional discrete Fourier transform (DFT) uses a linear
spacing of the frequency domain. The resulting spectrum,
S, of the audio signal s(t) is given by
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where the analysis window, w(t, k), and the window size,
T(k), are functions of the frequency bin index, k. The
center frequency of the k-th bin is designed to match the
equal-temperament scale [13]. For example, if it is desired
to have one bin per note on an 88-piano keyboard, then the
bin center frequencies are

fr =210 fof (6)
with the number of bins per octave, (3, set to 12, the min-
imum reference frequency, fref, set to the frequency of A0
(i.e.,27.5Hz),and ! = {1, 2, ..., 88}. The resulting chroma
vector for frame n is

R
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where b = {1, 2, ..., 8} is the chroma bin number and R is
the number of octaves considered.

2.3 HMM classifier

The optimal chord sequence, W* is decoded such that [14]
W* = argmaxP(W|C)
w

_ are max DCIWIPOY)
It P(C)

o arg maxP(C|W)P(W) (8)
w

where C' = {c1,¢a,...,cn} is the sequence of chroma
vectors. The probabilities of the acoustic model and tonal-
ity model are P(C|W) and P(W), respectively. Note that
in speech, P(W) is the language model; i.e., the prior
probability for a sequence of words, W. For this paper, the
tonality model assumes that every chord is equally likely.
The reason for the proportionality in (8) is that P(C') is the
same for all chord sequences. The acoustic model is the
probability of producing the observed chroma vectors for
chord W and is modeled with a HMM; i.e.,

N
P(O‘W) = ﬂ-qo H a’qn71Qn b(IN (CTL)

n=1
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where 7, is the initial state probability, a,,, 4, is the tran-
sition probability from state g,—1 to gy, and by, (c,,) is the
output likelihood, which is modeled by a Gaussian mixture
model (GMM)

D
by, (cn) = deN(Md, Xa)

d=1

(10)

where D is the number of mixtures, wy is the mixture
weight for component, d, and N(p4, ¥.q) is a Gaussian den-
sity with mean p4 and covariance 4. If the features are
uncorrelated, then the covariance matrix is diagonal, ¥; =
diag(o1,02,...,012). Note that a single state HMM is
equivalent to a GMM.
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Figure 1. Cross correlations of chroma features. Right:
original chroma features. Left: DFT chroma features.
Dark shades (or red if in color) indicate higher correlation
(light shades (or blue in color) indicate low correlation.

3. IMPROVED ALGORITHM

Since the baseline algorithm is in a format compatible with
the automatic speech recognition paradigm, it provides a
good framework to test more advanced speech processing
techniques, such as MCE, as an alternative model estima-
tion step. In addition, parameter reduction and tuning com-
pensation are implemented and compared to the baseline.

3.1 Fourier Transform Chroma Features

As noted in [3], chroma features are highly correlated be-
cause harmonics of different pitch classes overlap and is
demonstrated in the left part of Figure 1. For instance, the
third harmonic of C4 (261.63 Hz fundamental, 784.89 Hz
third harmonic) is highly confusable with G5 (783.99 Hz
fundamental). However, as shown on the right of Figure 1,
the resulting feature dimensions have less cross-correlation
after applying a DFT on the chroma features.

3.2 Tuning Compensation

A second enhancement is tuning compensation. Standard
tuning is such that the A note above middle C on a piano
keyboard (i.e., A4) is approximately 440 Hz. However,
artists may intentionally or unintentionally have a refer-
ence tuning different from the standard. This can lead
to confusion in algorithms which assume that all music
is tuned to the standard reference, as shown in Figure 2.
In the upper part of Figure 2, a 12-dimensional chroma is
applied to a piece of music whose energy distribution is
higher in frequency than standard tuning (44 ~ 440H z).
Therefore, the signal energy is distributed between the in-
tended note (e.g., C3) and the neighboring note (e.g., C#3).
Considering that Major and minor chords differ by only
one semi-tone in a single note, this can lead to large confu-
sion between the Major and minor modes of a given chord.

To account for differences in tuning, a simplified ver-
sion of [3] is implemented. The original tuning compen-
sation algorithm uses 36 bins per octave (8 = 36 in (7))
in the calculation of chroma vectors. A peak picking algo-
rithm produces a histogram, which gives information about
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Figure 2. Upper: Hypothetical mistuned energy distribu-
tion. Bottom: Find tuning alignment giving maximum en-
ergy distribution at sampled points.

the tuning of the piece. A circular shift is then applied
to the chroma vector as a corrective factor. The reason
for peak picking is that noise sources (e.g., percussion and
transients) corrupt the chroma vectors with non-harmonic
sources.

However, because of HPSS, a simplified procedure fil-
ters percussive noise sources and leaves energy due to har-
monic sources. The new algorithm takes a 36-dimension
chroma vector for each frame in a song, so that each note
considered is divided into a three bins

R

> IS+ a+rp)

r=0

where @ = {1,2,3} and b = {1,2,...,12}. The algo-
rithm then retains the set the o which produces the chroma
vector with the greatest Euclidean length

(55101) . 55;!))

3.3 Minimum Classification Error Learning

& (b) = (1)

Cn, = arg max (12)

&

As mentioned in the Introduction, MCE is a highly suc-
cessful discriminative training approach to improving au-
tomatic speech recognizers over ML and MAP estimation.
The optimization criterion in MCE is to minimize the esti-
mated classification loss

ZZZ

]1m1

HX;€Qp)  (13)

where A are the model parameters, J is the number of
training examples, { X1, Xo,..., X}, M is the number
of categories (i.e., chords), I,,(-) is a loss function, and
1(X; € Q,,) is one if X is in category ©2,,, and zero oth-
erwise. Typically, a 0-1 loss is used for [, (+), which makes
the objective function discrete and difficult to optimize.
However, a common approximation for the loss function
is to replace the 0-1 loss with a logistic function [9],

1

(i) = (X))

1+ exp(— (14
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where v and 6 are experimental constants and d,, (X;; A)
is a misclassification measure, which is negative with a
correct classification and positive when a classification er-
ror is made.

A good indication of misclassification is the distance
between the correct class and competing classes; therefore,
the chosen misclassification measure is based on the gen-
eralized log-likelihood ratio [9]:

A (X; M) = —108 g (X; A) +1og [Gon(X; )]V (15)

where

H a‘]n 19n Qn Cn)

gm (X A) —maxw (16)
1

> explg, (XA A7)
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where 7 is an experimental positive constant and the su-
perscript (™) refers to the m-th HMM. Note the misclas-
sification measure in (15) compares the probability of the
target class against a geometric average of the competing
classes. The parameter 1 determines the importance of the
competing classes by the degree of competition with the
target class. In particular, as n—oo, (17) returns only the
most competitive class. A gradient probabilistic descent
procedure [9] produces a set of parameters that yields a
local optimum of (13) through the update equations

Ol (X3 )

= A e

AT+1 (18)

A=A,

In order to keep the necessary constraints for an HMM den-
sity, the following transformations are used [9]:

(m) b

~£im)(b) _ :u((jm)( ) (19)
og ()

5™ (b) = log o§™ (b) (20)
4. RESULTS

4.1 Experimental Setup

The evaluation database is the set of studio albums by The
Beatles, which were transcribed at the chord level by Chris
Harte et. al [10]. As in the 2008 MIREX contest, only the
Major and minor chords are used for the evaluation. All
extended chords, Augmented, and diminished chords are
mapped to the the base root, Major, and minor chords, re-
spectively. A two-fold evaluation is implemented, where
half the albums are used as a training set and the remain-
ing half are used as a test set in the first fold. In the second
fold, the roles of the training and test set are swapped. Note
all songs from a particular album occur in either the test or
training set for each individual fold. This is the same setup
as MIREX 2008, but the third fold in MIREX 2008 was
removed because it was observed that the test cases where
already covered in the first two folds. Prior to HPSS, audio
is downsampled to 11025 Hz. In addition, chord boundary
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Fold | BL FT FT+TC | FT+TC+MCE
1 57.84 | 57.84 | 61.91 73.59
2 61.74 | 61.74 | 64.97 71.35
Total | 59.95 | 59.95 | 63.57 72.37

Table 1. Classification accuracies for Fourier transform
features and tuning compensation (BL = baseline, FT =
Fourier Transform, TC = tuning compensation, MCE =
minimum classification error).
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Fold | BL FT FT+TC | FT+TC+MCE
1 74.96 | 74.96 | 77.04 77.90
2 72.95 | 72.95 | 73.54 74.51
Total | 73.46 | 73.46 | 75.20 76.10

Table 3. Frame accuracy for continuous chord recognition.

# Frames | BL FT+TC | FT+TC+MCE
0 73.91 | 75.20 76.12
1 76.59 | 77.92 78.93
2 78.61 | 79.94 80.99

Figure 3. Classification accuracy versus iteration number.

information is assumed to be known and results are given
in percentage of correctly recognized isolated chord seg-
ments, except in Section 4.3, where results are given in
frame accuracy.

4.2 Isolated Chord Recognition Results

Table 1 details the improvement over the ML approach,
where chords are modeled with a single Gaussian distribu-
tion with a full covariance matrix for the baseline, Fourier
transform, and Fourier transform with tuning compensa-
tion cases. The MCE results listed used 50 iterations of
the gradient probabilistic descent algorithm. The parame-
ters ~y, 6, and 1) were found experimentally by using a set
of five songs from the training set as a cross-validation set.
After cross-validation, the entire training set is used to re-
train the system.

Tuning compensation provides a modest, but consistent
gain in performance. Applying a Fourier transform does
not change the performance from the baseline. However,
the main advantage of applying a discrete Fourier trans-
form is to attenuate the correlation in chroma features, and
is equivalent to a discrete cosine transform for real, sym-
metric data [14]. In addition speech processing algorithms,
such as MCE, assume diagonal covariance matrices in the
GMM observation probability. Therefore, applying MCE
is straightforward and results in a drastic increase in perfor-
mance over ML estimation. In particular Figure 3 demon-
strates, generally, each iteration of the gradient probabilis-
tic descent algorithm improves the classification rate.

To understand the types of errors that remain, the con-
fusion matrix is presented in Table 2. It is observed that
Major chords are classified more accurately than minor

Table 4. Frame accuracy versus number of frames re-
moved at chord boundary.

chords. Specifically, many errors are due to recognizing
minor chords with the correct root, but wrong mode; i.e.,
the parallel Major chord. For example, 82% of ¢ minor
chords are recognized as C Major. The second most com-
mon type of error is in mistaking a Major chord for its
minor, which are chords that share the same key signa-
ture, but differ in the root note. For example, e minor is
confused with G Major 12% of the time. Note, that no lan-
guage model is used in this current paper since the goal of
this paper is to study the confusions that arise due acoustic
confusability in the chroma/HMM framework.

4.3 Continuous Chord Recognition

While this paper is mainly concerned with isolated chord
classification, an additional experiment demonstrates the
performance of continuous chord recognition. In this case,
the frame accuracy is used as the performance metric. The
results are presented in Table 3. As expected, improvement
is less pronounced with adequate boundary information.
Further analysis shows that one reason for the performance
drop is due to identifying chord boundaries. As shown in
Table 4, allowing a tolerance region of two frames on ei-
ther side of a true chord transition point increases the frame
accuracy. Specifically, 20% of the error occurred within
two frames of a chord transition point when at least one
chord to either side of the transition point was detected
correctly. In [2], it was demonstrated that chroma/HMM
setup performed well during forced alignment (i.e., when
the chord sequence is given), but poorly when no informa-
tion on the chord sequence was given. These results indi-
cate that the chord detection problem might benefit from
treating the two tasks separately and optimizing each task
individually.

S. CONCLUSIONS

This paper considers audio chord detection as two sep-
arate tasks: (1) classifying what chords are played and
(2) determining when chords begin and end. Several ad-
vanced pre-processing techniques are implemented such as
HPSS, which attempts to separate transients and percussive
sources from the harmonic spectrum. Further, eliminating



Poster Session 4

C C# D D# E F F# G G# A A# B c# d d# e f f# g ot a a#f b
C 91 2 2 2 2
C# 71 2 2 12 5 7
D 1 89 1 2 2 1 3
D# 81 1 9 6 1
E 94 1 2 1
F 3 91 2 1 1 2
F# 1 1 91 1 1 3 2 1
G 1 1 94 1
G# 3 83 3 10
A 1 1 94 1 1
A# 1 1 1 91 1 1 3 1 1
B 1 1 1 1 3 1 85 1 2 3
c 82 9
c# 1 3 1 5 1 2 87
d 6 12 13 3 3 1 57 4 1
d# 33 67
e 5 1 19 12 5 50 8 1
f 1 1 1 11 16 6 63 1
# 2 1 2 7 11 76 1
¢ |3 14 9 1 1 71
ot 4 12 85
a 5 2 2 13 78
a# 2 2 40 56
b 6 1 20 71

Table 2. Chord confusion matrix (%). Rows are true chords, columns are hypothesized chords. Capital letters represent

Major chords and lowercase letters represent minor chords.

the correlation between chroma features allows for the use
of many speech processing tools because these tools are
built using the assumption of diagonal matrices in the ob-
servation probability densities.

In this paper, tuning compensation and MCE enhance
the chord recognition task over traditional maximum like-
lihood by reducing the confusion due to noise in the feature
extraction stage. In the future, the authors hope to incorpo-
rate other advanced speech processing techniques, such as
N-best re-scoring, to combat other areas of confusion such
as the confusion between minor chords and their relative
and parallel Major equivalents. Finally, it was observed
that even when chords are detected correctly, 20% of the
error occurred at chord transition points. Therefore, the
authors are investigating chord transition detection algo-
rithms to optimize the second task of chord detection.
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