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Abstract. We present a machine learning system for the differential
diagnosis of benign adrenocortical adenoma (ACA) vs. malignant adreno-
cortical carcinoma (ACC). The data employed for the classification are
urinary excretion values of 32 steroid metabolites. We apply prototype-
based classification techniques to discriminate the classes, in particular, we
use modifications of Generalized Learning Vector Quantization including
matrix relevance learning. The obtained system achieves high sensitivity
and specificity and outperforms previously used approaches for the de-
tection of adrenal malignancy. Moreover, the method identifies a subset
of most discriminative markers which facilitates its future use as a non-
invasive high-throughput diagnostic tool.

1 Introduction

The adrenal glands are major components of the human endocrine system. They
are located on top of the kidneys and produce and secrete steroid hormones. The
latter regulate a wide variety of body functions such as metabolism, the immune
system, and sexual development. Tumors of the adrenal cortex are common, but
the classification of an adrenal mass as benign adrenocortical adenoma (ACA)
or malignant carcinoma (ACC) is a major diagnostic challenge. Currently, di-
agnosis is based on criteria like tumor size and density as assessed by imaging
techniques, which however lack satisfactory specificity. Hence, the identification
of reliable diagnostic markers for ACC is of considerable interest [1, 2].

In this contribution, we present urinary steroid metabolomics and its anal-
ysis by means of machine learning techniques as a novel approach to this clin-
ical problem. In particular, we apply recent modifications of Learning Vector
Quantization (LVQ) [3] to provide a diagnostic test for the detection of adrenal
malignancy. LVQ is a family of distance-based classification algorithms which
are particularly attractive for complex real life applications. Since the model
parameters are interpretable, LVQ systems facilitate new insight into the data
and the underlying classification task. In addition, extensions of LVQ termed
relevance learning provide a weighting of features with respect to their signif-
icance. This is a particularly advantageous aspect in the problem at hand, as
the restriction to a reduced panel of markers would be highly desirable for the
design of a high-throughput practical diagnosis tool [2].

We employ the framework of Generalized LVQ (GLVQ) [4, 5] in combination
with relevance matrices, introduced as Generalized Matrix LVQ (GMLVQ) in
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[6]. For comparison we also apply a scheme restricted to diagonal matrices,
equivalent to Generalized Relevance LVQ (GRLVQ) [5] as well as plain GLVQ
[4]. We also compare with Fisher Linear Discriminant Analysis (LDA) [7].

We demonstrate that GMLVQ provides a highly sensitive and specific clas-
sifier and allows to identify a subset of most discriminative steroids. We obtain
a promising biomarker tool for the diagnostic work-up of patients with adrenal
tumors. The medical aspects and implications of this study have been discussed
in greater detail in a recent publication [2]. Here, the focus is on the machine
learning analysis which is outlined only briefly in [2].

2 The Data

Urine samples of 147 adrenal tumor patients were acquired within the European
Network for the Study of Adrenal Tumours [1]. The study population consists of
102 ACA and 45 ACC samples. In addition, 88 samples from a healthy control
cohort were included. The excretion values of 32 preselected steroid metabolites
were quantified using gas chromatography/mass spectrometry (GC/MS). For a
more detailed description of the medical and biochemical background, technical
aspects, the study design, and the patient cohort we refer to [2].

All numerical steroid excretion values were log-transformed and subsequently
rescaled by subtracting the corresponding mean values obtained in healthy con-
trols and dividing by the respective standard deviations. A very small number
of measurements were found to be zero within the sensitivity of the GC/MS
analysis, these values were set to 10−10 before log-transformation. We have con-
firmed that the results presented in the following are not affected by the precise
choice of this correction parameter within a range of sufficiently small values.
Steroid excretion data contained a total of 56 missing values (out of 4704).

We obtain a total of 147 labeled feature vectors ξ ∈ R
32 representing the

log-transformed and rescaled steroid excretion profiles of 102 patients with ACA
and 45 patients with ACC. Each dimension of feature space corresponds to one of
the 32 considered steroid markers, which can be grouped into Androgen metabo-
lites and Androgen precursors (features 1-6), Mineralocorticoids and precursors
thereof (7-13), Glucocorticoid precursors (14-19), and Glucocorticoid metabo-
lites (20-32). For a detailed list of metabolites we point the interested reader to
[2]. In the following we refer to markers by number 1-32 only.

3 Machine Learning Analysis

LVQ systems implement a classification of N -dim. feature vectors ξ ∈ R
N in

terms of prototypes
{
wj ∈ R

N
}K

j=1
, i.e. typical representatives of the classes

c(wj) ∈ {1, 2 . . . C} in feature space. Together with a suitable distance measure
dΛ(w, ξ) they parameterize, e.g., a Nearest Prototype Classifier (NPC) which
assigns any input ξ to the class represented by the closest prototype.

In general, the superscript Λ refers to a set of – possibly adaptive – pa-
rameters in the definition of the distance. The recently introduced GMLVQ [6]
employs a full N × N -dim. matrix Λ of adaptive parameters to define a general
quadratic distance measure of the form

dΛ(w, ξ) = (w − ξ)� Λ (w − ξ) with Λ = Ω�Ω and
∑

i Λii = 1. (1)
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The parameterization of Λ in terms of Ω ∈ R
N×N ensures positive semi-definite-

ness and the normalization of the trace prevents numerical degeneration. The
matrix Ω can be interpreted as parameterizing an arbitrary linear transformation
of the original feature space, including rescaling of features and rotations.

Here we consider only the simplest setting with a single matrix Λ defining a
global distance measure. For modifications using local distances or, e.g., rectan-
gular matrices Ω we refer to [6, 8]. Note that missing values can be ignored when
comparing distances of a given ξ from different prototypes. Hence, we refrain
from imputing missing values in LVQ training and classification.

For a given set of example data, the training process is guided by a cost
function introduced in the framework of GLVQ [4]:

E(
{
wj

}
, Ω) =

∑

i

Φ(μi) where μi =
dΛ(wJ , ξi) − dΛ(wK , ξi)
dΛ(wJ , ξi) + dΛ(wK , ξi)

. (2)

Here, the sum is over all training examples. In general, Φ denotes a monotonic
function, e.g. a sigmoidal or the identity Φ(x) = x which we employ throughout
the following. For a given ξi, the index J (K) corresponds to the closest pro-
totype which represents the correct class ci (a class different from ci). Hence,
μi < 0 indicates a correct classification and |μi| can be interpreted as its margin.

In GLVQ based training, all adaptive parameters are updated by stochastic
gradient descent [4, 5, 6]. Upon presentation of a randomly selected example
{ξi, ci}, the form of the updates at learning step t is

wJ,K(t+1) = wJ,K(t)−ηw∂Φ(μi)/∂wJ,K and Ω(t+1) = Ω(t)−ηΩ∂Φ/∂Ω (3)

with wJ,K defined as above and the learning rates ηw and ηΩ. For a detailed
derivation of the updates see [6]. The normalization of Λ or potential additional
constraints are enforced explicitly after each update step.

Obviously, we recover Euclidean metrics from Eq. (1) by fixing Λ proportional
to the N -dim. identity matrix: Λ = IN/N . In this case, which is equivalent to
plain GLVQ [4], the training prescription (3) applies only to the prototypes. The
restriction to a diagonal matrix Λ represents a weighted Euclidean distance of
the form dΛ(w, ξ) =

∑
j Λjj (wj − ξj)2 and corresponds to the GRLVQ scheme

introduced in [5].
We have analysed the available data in terms of the simplest system with

only two prototypes, w1,2, representing classes 1 (ACA) and 2 (ACC), respec-
tively. In order to evaluate the quality of the obtained classifier we select 93
ACA and 40 ACC examples randomly for training and retain the remaining
samples for testing. All results reported here correspond to mean values over
1000 randomized splits of the data set, referred to as runs in the following.

For better interpretability of the emerging relevance matrix, a z-score trans-
formation was performed with respect to the mean and standard deviation of
features in the actual training set. Initially, prototypes wj were set to the
mean of a random selection of 50% of the training samples representing class
c(wj). The matrix Ω was initialized corresponding to Λ = IN/N . For all re-
sults reported here, 100 epochs of stochastic gradient descent were performed at
constant learning rates ηw = ηΩ = 10−3. Different settings were investigated,
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Fig. 1: Left panel: threshold-averaged ROC as obtained by GLVQ (chain line),
GRLVQ (dashed), and GMRLVQ (solid). Right panel: ROC of GMRLVQ em-
ploying all 32 steroids (solid line, same as in the left panel) and restricted to the
9 (dashed) and 3 (chain) most discriminative markers in each run, respectively.

including schedules for decreasing ηw,Ω during training. Results were robust in
terms of the considered performance measures.

When applying the classifier to the test set after training, we modify the NPC
scheme by introducing a threshold θ. The modified system assigns ξ to class 1
(ACA) if dΛ(w1, ξ) ≤ dΛ(w2, ξ)−θ and to class 2 (ACC), else. Hence, θ controls
a bias towards one of the classes and by considering a sufficiently large range of
θ we obtain the full Receiver Operator Characteristics (ROC) of a given LVQ
classifier [9]. In the ROC curve, the true positive rate for detecting ACC (sen-
sitivity, SENS) is plotted vs. the false positive rate (1-specificity, 1 − SPEC).
A particular working point can be selected by the domain expert according to
problem specific requirements. ROC curves displayed here were obtained as
threshold averages [9] over 1000 randomized training runs. We consider the area
under the ROC curve (AUC) as a quality measure when comparing different
classifiers [9]. In addition we provide results for the example working point with
SENS = SPEC.

Along these lines we present our findings corresponding to GMLVQ, GRLVQ
and simple GLVQ in the next section. In addition we report results obtained
by LDA [7] in the implementation of van der Maaten’s toolbox for dimension-
ality reduction [10]. When applying LDA, missing values were replaced by the
class conditional means which should theoretically give a performance advantage
compared with the LVQ approaches.

We employ a heuristic scheme to identify most significant steroid markers
by means of the obtained relevance matrices. Their diagonal elements Λii can
be interpreted as to quantify the importance of features in the classification.
Note that applying this heuristics in GMLVQ goes beyond a simple univariate
approach since Λii accumulates the weights of pairs of original features in the
projections Ω ξ: Λii =

∑
j Ω�

ijΩji =
∑

j Ω2
ji.

The practical realization of steroid metabolomics as a diagnostic tool would
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Fig. 2: Diagonal relevances Λii. Left: Mean and standard deviation obtained
over 1000 runs of the training process. Right: Fraction of runs in which a
metabolite was among the nine most relevant markers.

greatly benefit from the consideration of a reduced panel of markers since rapid
profiling of up to 10 steroids is technically feasible. In order to identify such
a panel, we determined after each GMLVQ run the set of 9 or 3 markers with
the largest diagonal relevances Λii. We then repeated the GMLVQ training using
only the individually selected markers in the given training set. This way, we ob-
tained an estimate of the achievable performance when making use of restricted
sets of 9 or 3 features, only. For comparison we also applied the LDA analysis
to the same feature sets.

4 Results

The threshold-averaged ROC with respect to test set performance using all 32
steroid markers are displayed in Figure 1 (left panel). We observe that per-
formance increases significantly with the complexity of the adaptive distance
measure. Plain GLVQ yields an area under the ROC of AUC ≈ 0.873 and
SENS = SPEC at approximately 0.82. Introducing adaptive diagonal rele-
vances (GRLVQ) in the distance measure improves these results to AUC ≈ 0.928
and SENS = SPEC ≈ 0.86. The use of a full matrix of relevances fur-
ther enhances the performance: We obtained an ROC with AUC ≈ 0.965 and
SENS = SPEC ≈ 0.90. These findings demonstrate that matrix relevance
learning increases the flexibility and power of LVQ systems significantly. Apply-
ing LDA to the full panel of 32 steroid markers, we observed strong overfitting
effects. With respect to the test set performance, LDA achieved an ROC with
AUC ≈ 0.925 and SENS = SPEC ≈ 0.871, only.

We analysed in greater detail the relevance matrices obtained by GMLVQ.
Figure 2 (left panel) displays the diagonal elements as observed on average over
the 1000 randomized runs. Note that the Λii corresponding to markers 5,6, and
19 are particularly large. While this could be expected from medical insight and
experience [2], the significance of other markers was less obvious beforehand.
Note that, for instance, markers 8 and 12 display very low predictive power
according to a univariate analysis, see [2]. Accordingly, we found low relevances
in GRLVQ where Λ is restricted to diagonal form. However, matrix relevance
learning shows that the combination of markers 8 and 12 is indeed discriminative
and, consequently, plays an important role in the GMLVQ classifier.

In each run, we determined the subset of 9 most significant markers as indi-
cated by the largest Λii. Figure 2 (right panel) displays the percentage of runs
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in which a particular marker was included in this subset. An analogous analysis
with respect to the 3 leading markers shows that markers (5,6,19) were selected
in more than 95% of the runs.

We repeated the GMLVQ analysis for each training set, restricting the system
to the individually selected subset of features. Figure 1 (right panel) shows the
corresponding ROC curves. The performance of the resulting classifiers was only
slightly inferior compared to using the full panel: We obtained AUC ≈ 0.960,
SENS = SPEC ≈ 0.88 for 9 steroid markers and AUC ≈ 0.942, SENS =
SPEC ≈ 0.87 when using only the 3 leading figures. Reassuringly, LDA yielded
comparable results when using 9 features (AUC ≈ 0.957) or 3 features only
(AUC ≈ 0.93).

5 Conclusion

Our results show that urinary steroid profiling in combination with the ma-
chine learning analysis provides a promising diagnostic tool for the differen-
tiation of benign and malignant adrenocortical tumors. Our novel approach,
steroid metabolomics, provides a highly specific and sensitive classification and
relevance learning allows for a reduction of the panel of markers in view of a
practical high-throughput tool.

Our study has the limitation of being retrospective. Prospective validation
with respect to novel patient data will be essential for establishing the diagnostic
tool. Extensions of the approach will include the monitoring of patients after
surgery or under treatment. The potential identification of tumor subtypes by
more complex LVQ systems will also be addressed in a forthcoming project.
Acknowledgment: This work was supported by the Medical Research Council
UK (Strategic Biomarker Grant G0801473).
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