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Abstract 

We present matrix proof systems for both constant- and 
varying-domain versions of the first-order modal logics K, K4, 
D, D4, T, 84 and 86 based on modal versions of Herbrand's 
Theorem specifically formulated to support efficient automated 
proof search. The systems treat the mil modal language (no 
normal-forming) and admit straightforward structure sharing 
implementations. A key fsature of our approach is the use of a 
specialised unification algorithm to reflect the conditions on the 
accessibility relation for a given logic. The matrix system for 
one logic differs from the matrix eystem for another only in the 
nature of this unification algorithm. In addition, proof search 
may be interpreted as constructing generalised proof trees in 
an appropriate tableau- or sequent-based proof system. This 
facilitates the use of the matrix systems within interactive en­
vironments. 

1 In t roduc t ion . 

Modal logics are widely used in various branches of artificial intel­
ligence and computer science as logics of knowledge and belief (eg., 
[Moo80,HM85,Kon84]), logics of programs (eg., [Pne77]), and for spec­
ifying distributed and concurrent systems (eg., (HM84,Sti85b). As a 
consequence, the need arises for proof systems for these logics which 
facilitate efficient automated proof search. 

Traditional proof systems for modal logics, such as tableau- or 
sequent-based systems are readily available (eg., [Kan57,Nis83,Fit83]). 
While these systems are to some extent human-oriented, the proof 
rules form an inadequate basis for automated proof search since they 
generate search spaces that contain considerable redundancies. The 
redundancies arise mainly from the characteristic emphasis on connec­
tives and the proof rules for modal operators and quantifiers. 

The matrix methods for first-order classical logic, pioneered by 
Prawits [Pra60], and further developed by Andrews [And81j and Bibel 
[Bib8l], have been demonstrated to be less redundant than the most 
efficient of the resolution based methods for that logic [Bib82b|. The 
methods combine an emphasis on connections (drawn from the reso­
lution methods) with an intensions! notion of a path. 

In this paper we present matrix proof systems for the modal log­
ics K, K4, D, D4, T, 84 and 85, based on modal versions of Bibel's 
"computationally improved* Herbrand Theorem for first-order classi-
cal logic [Bib82cj. We consider both constant- and varying-domain 
versions of the first-order modal logics. 

The major features of our approach may be summarised as follows. 
Validity within a logic is characterised by the existence of a set of 
connections (pairs of atomic formula occurrences: one positive, one 
negative) within the formula, with the property that every so-called 
atomic path through the formula contains (as a subpath) a connec­
tion from the set (§ 2.4). Such a set of connections is said to span 
the formula. For classical propositions! logic this condition suffices 
[And81,Bib8l|. For first-order logic a substitution (of parameters or 
terms for variables) must be found under which the (then proposi-
tional) connections in the spanning set are simultaneously complemen­
tary. Conditions are placed on the substitution that ensure amongst 
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other things that a proof within a particular tableau- or sequent-based 
proof system is constructable from the connections and the substi-
tution [Bib82c, Wal86). This basically amounts to ensuring that the 
restrictions found on the traditional quantifier rules can be met. 

For the propositions! modal logics we keep the basic matrix frame-
work but define a notion of complementarity for atomic formulae that 
ensures the existence of a proof in one of Fitting's prefixed tableau 
systems [Fit72,Fit83|. This amounts to ensuring that, semantically: 
the two atomic formulae of a connection can be interpreted as inhabit­
ing the same "possible world," and proof-theoretically: that they can 
be given the same prefix (| 2.5.1). The key observation is that this 
can be established by noting the position of the atoms relative to the 
modal operators in the original formula and utilising a specialised uni­
fication algorithm operating over representations of these positions. 
Clearly, this notion of complementarity is logic-dependent, a depen­
dence which is reflected in the choice of unification algorithm. Lifting 
these results to first-order constant-domain modal logics is simply a 
matter of combining this modal notion of complementarity with the 
first-order notion (§ 2.5.2). 

For the varying-domain versions we index individual variables with 
the prefix of their quantifier. The substitution of one variable for 
another is permitted provided their prefixes can be unified ($ 2.5.2). 

Checking a formula for validity within a modal logic is therefore 
reduced to a process of path checking and complementarity tests per-
formed by a specialised unification algorithm (5 3). During this process 
extra copies may need to be considered of universally quantified for­
mulae and/or formulae dominated by a modal operator of "necessary'' 
(Q) force. The duplication in both cases is managed by an extension 
of Bibel's indexing technique or multiplicity [Bib82a] which supports 
the implementation of the matrix systems using structure-sharing tech­
niques [BM72]. The notions of multiplicity, substitution and spanning 
sets of connections form the basis of the relationship with Herbrand's 
Theorem. 

A number of authors have attempted to adapt computationally 
oriented proof systems for first-order logic to the modal logics con­
sidered here (eg., [Far83,AM66a,Kon86]). We compare our approach 
favourably to theirs in Section 4. 

2 The moda l m a t r i x system*. 

2.1 Prel iminar ies. 
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as an additional axiom. Our purpose here is not to choose between 
these possibilities but to develop matrix proof systems for each of the 
variants. 

If we restrict R to satisfy the conditions outlined in Table 1, we say 
that (G, R, P) is an £-frame over D, where L is the logic associated 
with the conditions. The "idealisation" condition is that for every 
element 1 ' there is some element 
again our purpose is not to choose between these logics but to develop 
matrix proof systems for each. 

An L-model over D is a pair 
an L -frame over D and |f- is a relation between elements of G and 
sentences such that: for all 

Satisfaction in a model and validity are defined as usual. 
A stgned formula is a pair (At n) where A is a formula and 

{ 0,1} . We let AT, Y range over signed formulae. Informally, the signs 
" 1 " and "0" should be interpreted as the qualifiers "is true" and "is 
false" respectively. For ease of exposition we use a uniform notation 
due to Smullyan and Fitting that classifies signed formulae according 
to their sign and major connective/operator as shown in Table 2. 

2.2 Formula occurrences. 

A formula tree for a signed formula is a variant of its formation tree 
containing additional information as to the polarity of its subformula 
occurrences (i.e., whether an occurrence of a subformula is negative 
or positive within the formula). It is best explained by example. A 
formula tree for the signed formula 
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Suitable mappings can be computed using variants on a string-
unification algorithm. In all cases the set of most general unifiers is 
finite but not necessarily a singleton [Sie84j. For S5 the standard 
unification algorithm suffices. The admissibility check is an check for 
acyclicity if <q is interpreted as a directed graph. 

The extra condition for the K-logics is a translation into the current 
setting of Fitting's notion of a used prefix. Basically, since these logics 
are not id e aliz able we must ensure that each prefix (under crM) of a 
vo-type position (formula) has been introduced by the reduction of a 
7r-type position (formula) beforehand, pj 

We have proved the following theorem: 

Theorem 2.5.8 A propositional modal formula A is C-valid iff there 
is a modal multiplicity pM, an L-admissible modal substitution om and 
a set of a M -complementary connections that spans the indexed formula 

The proof involves showing that starting from a tableau with {A} 0) 
at its root we can construct an atomic ally closed prefixed tableau by 
following the reduction ordering induced by the substitution, and pre­
fixing each subformula with the image under the substitution of the 
prefix of its root position. The multiplicity indicates the number of 
times a given z/-type formula is reduced to form the tableau. Complete­
ness involves showing that a suitable modal multiplicity pu can be 
constructed to form a modal Hintikka set from the set associated with 
any non-complementary atomic path (i.e., unclosed branch) through 

Although we have used tableau systems to motivate the definition 
of the matrix systems, no tableau construction is actually performed 
in the use of such methods. The theorem above is utilised directly. 
(See Section 3.) 

2.5.2 F i r i t - o rde r moda l systems. 

Extending the propositional matrix systems presented above to first-
order modal logics is straightforward. We consider both constant- and 
varying-domain versions. 

For constant-domains, a pair of atomic formulae labelling the po­
sitions of a connection can be interpreted as complementary if we can 
find a first-order substitution OQ of parameters for individual variables 
that render the two atoms identical. 

For varying-domains, the modalities and quantifiers interact. Uni­
versally quantified variables only range over those individuals that 'ex­
ist" in the world denoted by the prefix of their quantifiers. Existential 
quantifiers express the existence of individuals only in the world de­
noted by their prefixes. Consequently, our first-order substitution OQ 
must respect the modal substitution oM. 

A combined substitution is a pair consisting of a modal substitution 
and a first-order substitution. A combined substitution 
admissible provided 

1. 

2. 

3. 

For constant-domains the appropriate notion of complementarity is 
as follows (for an indexed formula be an I!-admissible com­
bined substitution for X". A connection -complementary 
iff 

For varying domains complementarity is defined in the following 

Note the addition of the third clause by which the modal and first-
order substitution interact. 

Remark. We have blurred the distinction between an individual 
variable and the position that represents it in order to state the second 
condition, 

Consequently we have: 

Theorem 2.5.4 A (first-order) modal formula valid iff there is 
a multiplicity u, an L-admissible combined substitution a and a set of 
a-complementary connections that spans the indexed formula ( 

Once again we utilise tableau techniques to prove this theorem. 

3 P roo f search in the m a t r i x systems. 

The matrix systems presented above reduce the task of checking a 
modal formula for validity to one of path checking and complemen­
tarity tests. The path checking is performed by adding connections 
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The path checking process may be interpreted as constructing proof 
trees in a prefixed tableau/sequent based proof system where the pre-
fixes contain "Skolem" variables and are interpreted as "Skolem* func­
tions. The appropriate systems are similar in spirit to those of Jackson 
and Reichgelt [JR87]. This has been utilised in implementations to 
provide a human oriented interface to the search [WW87]. Note that 
we are concerned with an interface to the search itself rather than the 
presentation of an already constructed proof for which the techniques 
of [And80,Mil84] are applicable. 

4 Related wo rk 

There are two main approaches for extending resolution techniques to 
modal logics. The first is to restrict the syntactic form of formulae, 
so that an appropriate modal clausal-form may be defined, and ap­
ply clausal resolution techniques (eg., [Far83]). Bibel's comprehensive 
comparison of clausal resolution-based methods and his matrix method 
for first-order logic [Bib82b] suffices to demonstrate the advantages of 
proof search based on the matrix approach for modal logics presented 
above. 

The second approach is to restrict the application of the resolu­
tion rule to modal contexts in which it is sound. In semantic terms 
this means utilising resolution within each possible world. Inference 
across possible worlds is performed by another mechanism. Abadi 
and Manna's systems [AM86a,AM66,bj, based on non-clausal resolu­
tion [MW80,Mur82|, form perhaps the most comprehensive extension 
of resolution techniques to modal logics along these lines. The mech­
anism they employ to manage modalities are Hilbert-style deduction 
rules which are used to conjoin new formulae. For example, the modal 
deduction rules for 85 are: 

While hand proofs using these systems can be short, the search 
spaces they generate are quite redundant due to the connective-based 
rules for manipulating modalities. Combinations of MS and M4 must 
be aplied to facilitate the application of Ml and M2. Only when com­
plementary subformulae are moved into the same modal context in this 
manner can the resolution rule be applied. Moreover, since the systems 
are generative, rules remain applicable to old formulae throughout the 
proof. This should be compared with our connection based approach 
and the calculations used to establish validity illustrated in the previ­
ous section. In the example there, the propositional structure of the 
formula defined the space to be searched (four possible connections). 
The modal operators were dealt with using a unification algorithm. 

Konolige's systems |Kon86j are based on tableau systems (one 
tableau for each possible world). Ordinary resolution is utilised within 
each tableau and a version of Stickel's Theory-resolution [Sti85a] used 

'to manipulate modalities by creating new tableaux. Search is compli­
cated by the need to choose suitable sets of formulae to form these new 
tableaux. The use of theory resolution is not effective, in the sense that 
an arbitrary amount of search must be performed to determine that 
the generation of a given resolrent is indeed sound. Konolige proposes 
the use of multiple refutation procedures to overcome these problems. 
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