PBML

The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 9-18

Makefiles for Moses

Ulrich Germann

University of Edinburgh

Abstract

Building MT systems with the Moses toolkit is a task so complex that it is rarely done man-
ually. Over the years, several frameworks for building, running, and evaluating Moses systems
have been developed, most notably the Experiment Management System (EMS). While EMS works
well for standard experimental set-ups and offers good web integration, designing new exper-
imental set-ups within EMS is not trivial, especially when the new processing pipeline differs
considerably from the kind EMS is intended for. In this paper, I present M4M (Makefiles for
Moses), a framework for building and evaluating Moses MT systems with the GNU Make utility.
Iillustrate the capabilities by a simple set-up that builds and compares two different systems
with common resources. This set-up requires little more than putting training, tuning and eval-
uation data into the right directories and running Make.* The purpose of this paper is twofold:
to guide first-time users of Moses through the process of building baseline MT systems, and to
discuss some lesser-known features of the Make utility that enable the MT practitioner to set up
complex experimental scenarios efficiently. M4M is part of the Moses distribution.

1. Introduction

The past fifteen years have seen the publication of numerous open source toolkits
for statistical machine translation (SMT), from word alignment of parallel text to de-
coding, parameter tuning and evaluation (Och and Ney, 2003; Koehn et al., 2007; Li
et al., 2009; Gao and Vogel, 2008; Dyer et al., 2010, and others). While all these tools
greatly facilitate SMT research, building actual systems remains a tedious and com-
plex task. Training, development and testing data have to be preprocessed, cleaned

1For the sake of convenience, I use Make to refer to GNU Make in this paper. GNU Make provides a number
of extensions not available in the original Make utility.

© 2013 PBML. All rights reserved. Corresponding author: ugermann@inf.ed.ac.uk
Cite as: Ulrich Germann. Makefiles for Moses. The Prague Bulletin of Mathematical Linguistics No. 100, 2013,
pp. 9-18. doi: 10.2478/pralin-2013-0007.

PBML 100 OCTOBER 2013

up and word-aligned. Language and translation models have to be built, and system
parameters have to be tuned for optimal performance. Some of these tasks can be
performed in parallel. Some can be parallelized internally by a split-and-merge ap-
proach. Others need to be executed in sequence, as some build steps depend on the
output of others.

There are generally three approaches to automating the build process. The first ap-
proach is to use shell scripts that produce a standard system setup. This is the ap-
proach taken in Moses for Mere Mortals.2 This approach works well in a production
scenario where there is little variation in the setup, and where systems are usually
built only once. In a research scenario, where it is typical to pit numerous systems
variations against one another, this approach suffers from the following drawbacks.
e Many of the steps in building SMT systems are computationally very expen-
sive. Word alignment, phrase table construction and parameter tuning can each
easily take hours, if not days, especially when run without parallelization. It is
therefore highly desirable not to recreate resources unnecessarily. Building such
checks into regular shell scripts is possible but tedious and error-prone.
e When the build process fails, it can be hard to determine the exact point of fail-
ure.
¢ Parallelization, if desired, has to be hand-coded.

The second approach is to write a dedicated build system, such as the Experiment
Management System (EMS) for Moses (Koehn, 2010), or Experiment Manager (Eman), a
more general framework for designing, running, and documenting scientific experi-
ments (Bojar and Tamchyna, 2013).

EMS was designed specifically for Moses. It is capable of automatically scheduling
independent tasks in parallel and includes checks to ensure that resources are only
(re)created when necessary. EMS works particularly well for setting up a standard
baseline system and then tweaking its configuration manually, while EMS keeps track
of the changes and records the effect that each tweak has on overall system perfor-
mance. In its job scheduling capabilities, EMS is reminiscent of generic build systems
such as Make. In fact, the development of EMS is partly due to perceived shortcomings
of Make (P. Koehn, personal communication), some of which we will address later on.

As a specialized tool that implements a specific way of running Moses experiments,
EMS has a few drawbacks, too. Experimental setups that stray from the beaten path
can be difficult to specify in EMS. In addition, the point of failure is not always easy to
find when the system build process crashes, especially when the build failure is due
to errors in the EMS configuration file.

2http://en.wikipedia.org/wiki/Moses for Mere Mortals,
https://code.qgoogle.com/p/moses- for-mere-mortals

10

http://en.wikipedia.org/wiki/Moses_for_Mere_Mortals
https://code.google.com/p/moses-for-mere-mortals

Ulrich Germann Makefiles for Moses (9-18)

Eman (Bojar and Tamchyna, 2013) also has its roots in SMT research but is designed
as a general framework for running scientific experiments. Its primary objectives are
to avoid unnecessary recreation of intermediate results, and to ensure that all exper-
iments are replicable by preserving and thoroughly documenting all experimental
parameters and intermediate results. To achieve this, Eman has a policy of never over-
writing or re-creating existing files. Instead, Eman clones and branches whenever an
experiment is re-run. Due to its roots, Eman comes with a framework for running
standard SMT experiments.

The third approach is to rely on established generic build systems, such as the
Make utility. Make has the reputation of being arcane and lacking basic features such
as easy iteration over a range of integers, and much of this criticism language is indeed
justified — Make is not for the faint-of-heart. On the other hand, it is a tried-and-tested
power tool for complex build processes, and with the help of some of the lesser-known
language features, it can be extremely useful also in the hands of the MT practitioner.

This article is foremost and above all a tutorial on how to use Make for building and
experimenting with Moses MT systems. It comes with a library of Makefile snippets
that have been included in the standard Moses distribution.?

2. Makefile Basics

While inconveniently constrained in some respects, the Make system is very versa-
tile and powerful in others. In this section I present the features of Make that are the
most relevant for using Make for building Moses systems.

2.1. Targets, Prerequisites, Rules, and Recipes

Makefile rules consist of a target, usually a file that we want to create, prerequisites
(other files necessary to create the target), and a recipe: the sequence of shell com-
mands that need to be run to create the target. The target is (re-)created when a file
of that name does not exist, or if any of the prerequisites is missing or younger than
the target itself. Prior to checking the target, Make recursively checks all prerequisites.
The relation between target and prerequisite is called a dependency.

Makefile rules are written as follows.

target: prerequisite(s)
commands to produce target from prerequisite(s)

Note that each line of the recipe must be indented by a single tab. Within the
recipe, the special variables $@, $<, $", and $| can be used to refer to the target, the
first normal prerequisite, the entire list of normal prerequisites, and the entire list of
order-only prerequisites, respectively.

3https://qithub.com/moses- smt/mosesdecoder; Makefiles for Moses is located under contrib/mdm

11

https://github.com/moses-smt/mosesdecoder

PBML 100 OCTOBER 2013

In addition to regular prerequisites, prerequisites can also be specified as order-
only prerequisites. Order-only prerequisites only determine the order in which rules
are applied, but the respective target is not updated when the prerequisite is younger
than the target. Order-only dependencies are specified as follows (notice the bar after
the colon).

target: | prerequisite(s)
commands to produce target from prerequisite(s)

Makefiles for Moses uses order-only dependencies extensively; it is a safe-guard
against expensive resource recreation should a file time stamp be changed acciden-
tally, e.g. by transferring files to a different location without preservation of the re-
spective time stamps.

A number of special built-in targets, all starting with a period, carry special mean-
ings. Files listed as prerequisites of these targets are treated differently from normal
files. In the context of this work, the following are important.

INTERMEDIATE: Intermediate files are files necessary only to create other targets
but not important for the final system. If an intermediate file listed as the pre-
requisite of other targets does not exist, it is created only if the target needs to
be (re)created. Declaring files as intermediate allows us to remove files that are
no longer needed without triggering the recreation of dependent targets when
Make is run again.

.SECONDARY: Make usually deletes intermediate files when they are no longer re-
quired. Files declared as secondary, on the other hand, are never deleted auto-
matically by Make. Especially in a research setting we may want to keep certain
intermediate files for future use, without having to recreate them when they are
needed again. The combination of INTERMEDIATE and .SECONDARY give us
control over (albeit also the burden of management of) if and when intermediate
files are deleted.

2.2. Pattern Rules

Pattern rules are well-known to anyone who uses Make for compiling code. The
percent symbol serves as a place holder that matches any string in the target and at
least one prerequisite. For example, the pattern rule

crp/trn/pll/tok/%.de.gz: | crp/trn/pll/raw/%.de.gz
zcat $< | tokenize.perl -1 de | gzip > $@

will match any target that matches the pattern crp/trn/pll/tok/*.de.gz, check for
the existence of a file of the same name in the directory crp/trn/pll/raw and execute
the shell command

zcat $< | tokenize.perl -1 de | gzip > $@

12

Ulrich Germann Makefiles for Moses (9-18)

2.3. Variables

Make knows two ‘flavors” of variables. By default, variables are expanded recur-
sively. Consider the following example. Unlike variables in standard Unix shells,
parentheses or braces around the variable name are mandatory in Make when ref-
erencing a variable.*

1
$(a)
2

a

all:
echo $(b)

In most conventional programming languages, the result of the expansion of $(b)
in the recipe would be 1. Not so in Make: what is stored in the variable is actually a
reference to a, not the value of $(a) at the time of assignment. It is only when the
value is needed in the recipe that each variable reference is recursively replaced by its
value at that (later) time.

On the other hand, simply expanded variables expand their value at the time of as-
signment. The flavor of variable is determined at the point of assighment. The opera-
tor =" (as well as the concatenation operator '+=" when used to create a new variable)
creates a recursively expanded variable; simply expanded variables are created with
the assignment operator “:=".

Multi-line variables can be defined by sandwiching them between the define and
endef keywords, e.g.

define tokenize

$(1)/tok/%.$(2).9z: | $(1)/raw/%.$(2).9z
zcat $$< | tokenize.perl -1 $(2) | gzip > $%@

endef

Notice the variables $(1) and $(2) as well as the escaping of the variables $< and
$@ by double $$. The use of the special variables $(1), ... $(9) turns this variable into
a user-defined function. The blank lines around the variable content are intentional to
ensure that the target starts at the beginning of a new line and the recipe is terminated
by a new line during the expansion by $(eval $(call ...)) below.

The call syntax for built-in Make functions is as follows.

$(function-name argl,arg2,...)

4Except variables with a single-character name.

13

PBML 100 OCTOBER 2013

User-defined functions are called via the built-in Make function call. The value of

$(call tokenize,crp/trn/pll,de)

is thus

crp/trn/pll/tok/%.de.gz: | crp/trn/pll/raw/%.de.gz
zcat $< | tokenize.perl -1 de | gzip > $@

Together with the built-in Make functions foreach (iteration over a list of space-
separated tokens) and eval (which inserts its argument at the location where it is
called in the Makefile), we can use this mechanism to programmatically generate Make
rules on the fly and in response to the current environment. For example,

directories := $(shell find -L crp -type d -name raw)
$(foreach d,$(directories:%/raw=%),\

$(foreach 1,de en,\
$(eval $(call tokenize,$(d),$(1)))))

creates tokenization rules for the languages de and en for all subdirectories in the di-
rectory crp that are named raw. The substitution reference $ (directories:%/raw=>%)
removes the trailing /raw on each directory found by the shell call to find.

3. Building Systems and Running Experiments
3.1. A Simple Comparison of Two Systems

With these preliminary remarks, we are ready to show in Fig. 1 how to run a simple
comparison of two phrase-based Moses systems, using mostly tools included in the
Moses distribution. For details on the M4M modules used, the reader is referred to
the actual code and documentation in the M4M distribution. The first system in our
example relies on word alignments obtained with fast_align? (Dyer et al., 2013); the
second uses mgiza++ (Gao and Vogel, 2008). Most of the functionality is hidden in the
M4M files included by the line

include ${MOSES ROOT}/contrib/m4m/modules/m4m.m4m

The experiment specified in this Makefile builds the two systems, tunes each five
times on each tuning set (with random initialization), and computes the BLEU score
for each tuning run on each of the data sets in the evaluation set.

The design goal behind the setup shown is to achieve what I call the washing ma-
chine model: put everything in the right compartment, and the machine will auto-
matically process everything in the right order. There is a standard directory struc-
ture that determines the role of the respective data in the training process, shown in
Table 1.

Shttps://github.com/clab/fast align

14

https://github.com/clab/fast_align

Ulrich Germann Makefiles for Moses (9-18)

MOSES_ROOT ${HOME}/code/moses/master/mosesdecoder
MGIZA ROOT = ${HOME}/tools/mgiza

fast_align = ${HOME}/bin/fast_align

L1: source language; L2: target language

L1 = de
L2 = en
WDIR = $(CURDIR)

include ${MOSES R0OOT}/contrib/m4m/modules/m4m.m4m

both systems use the same language model

L2raw := $(wildcard ${WDIR}/crp/trn/*/raw/*.${L2}.9z)
L2data := $(subst /raw/,/cased/,${L2trn})

lm.order =5

im.factor = 0
lm.lazy =1
im.file = ${WDIR}/lm/${L2}.5-grams.kenlm

${lm.file}: | $(L2data)
$(eval $(call add kenlm,${lm.file},${Im.order},${lm.factor},${lm.lazy}))
.INTERMEDIATE: ${L2data}

for the first system, we use fast _align

word-alignment = fast

system = ${word-alignment}-aligned

ptable model/tm/$(system).${L1}-${L2}

dtable = model/tm/$(system).${L1}-${L2}

$(eval $(call add binary phrase table,0,0,5,${ptable}))

$(eval $(call add binary reordering table,0,0,8,\
wbe-mslr-bidirectional-fe-allff,${dtable}, ${ptable}))

$(eval $(call create moses ini,${system}))

SYSTEMS := $(system)

for the second system, we use mgiza
word-alignment = giza
$(eval $(clear-ptables))
$(eval $(clear-dtables))
$(eval $(call add binary phrase table,0,0,5,${ptable}))
$(eval $(call add_binary reordering table,0,0,8,\
wbe-mslr-bidirectional-fe-allff,${dtable}, ${ptable}))
$(eval $(call create moses_ini,${system}))
SYSTEMS += $(system)
ifdef tune.runs
EVALUATIONS :=
$(eval $(tune all systems))
$(eval $(bleu_score all systems))
all: ${EVALUATIONS}
echo EVALS ${EVALUATIONS}
else
all:
$(foreach n,$(shell seq 1 5),${MAKE} tune.runs="$n_ $n";)
endif

Figure 1. Makefile for a simple baseline system. All the details for building the system
are handled by M4M.

15

PBML 100 OCTOBER 2013

crp/trn/pll/ parallel training data

crp/trn/mno/ monolingual training data

crp/dev/ development data for parameter tuning
crp/tst/ test sets for evaluation

model/tm phrase tables

model/dm distortion models

model/lm language models

system/tuned/tset/n/moses.ini result of tuning system system on
tuning set tset (n-th tuning run)
system/eval/tset/n/eset.* evaluation results for test set eset, translated
by system systern/tuned/tset/n/moses.ini

Table 1. Directory structure for standard M4M setups

3.2. Writing Modules

The bulk of the system building and evaluation work is done by the various M4M
modules. While an in-depth discussion of all modules is impossible within the space
limitations of this paper, a few points are worth mentioning here.

One of the inherent risks in using build systems is that two independent concur-
rent build runs with overlapping targets may interfere with one another, overwriting
each other’s files. In deviation from the usual philosophy of build systems — recreate
files when their prerequisites change — M4M adopts a general policy of only creating
files when they do not exist, never recreating them. It is up to the user to first delete
the files that they do want to recreate. To prevent concurrent creation of the same
target, we adopt the following lock/unlock mechanism.

define lock
mkdir -p ${@D}

test ! -e $@

mkdir $@.lock

echo -n "Started,_at_ $(shell_date), " > $@.lock/owner
echo -n "by,_process $(shell_echo_ $$PPID)_ " >> $@.Llock/owner
echo "on_ host_ $(shell hostname)" >> $@.lock/owner
endef

define unlock

rm $@.Llock/owner
rmdir $@.lock
endef

The first line of the lock mechanism ensures that the target’s directory exists. The
second line triggers an error when the target already exists. Recall that our policy is
to never re-create existing files. The third line creates a semaphore (directory creation
is an atomic file system operation). When invoked without the -p parameter, mkdir

16

Ulrich Germann Makefiles for Moses (9-18)

will refuse to create a directory that already exists. The logging information added
in the fourth and subsequent lines is helpful in error tracking. It allows us to deter-
mine easily which process created the respective lock and check if the process is still
running.

Another risk is that partially created target files may falsely be interpreted as fully
finished targets, either due to concurrent Make runs with overlapping targets, or due
to a build failure in an earlier run. (Normally, Make deletes the affected target if the
underlying recipe fails. However, we disabled this behavior by declaring all files .SEC-
ONDARY.) We can address this issue by always creating a temporary target under a
different name and renaming that to the proper name upon successful creation. The
pattern for a module definition thus looks as follows.

target: prerequisite
$(lock)
create-target > $@_

mv $@_ $@
$(unlock)

4. Conclusion

I'have presented Makefiles for Moses, a framework for building and evaluating Moses
MT system within the GNU Make framework. The use of the eval function in combi-
nation with custom functions allows us to dynamically create Make rules for multiple
systems in the same Makefile, beyond the limitations of simple pattern rules.

A simple but effective semaphore mechanism protects us from the dangers of run-
ning multiple instances of Make over the same data. By using order-only dependen-
cies and .INTERMEDIATE statements, we can specify a build system that creates re-
sources only once, and allows for the removal of intermediate files that are no longer
needed, without Make recreating them when run again.

Make's tried-and-tested capabilities for parallelization in the build process are fully
available.

While Makefiles for Moses lacks the bells and whistles of EMS particularly with re-
spect to progress monitoring and web integration of the experimental results, it of-
fers greater flexibility in experimental design, especially with respect to scriptability
of system setup.

5. Acknowledgements
The work described in this paper was performed as part of the following projects
funded under the European Union’s Seventh Framework Programme for Research

(FP7): Accept (grant agreement 288769), Matecat (grant agreement 287688), and Cas-
macat (grant agreement 287576).

17

PBML 100 OCTOBER 2013

Bibliography

Bojar, Ondfej and Ale§ Tamchyna. The design of Eman, an experiment manager. Prague Bulletin
of Mathematical Linguistics, 99:39-58, April 2013.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Johnathan Weese, Ferhan Ture, Phil Blunsom,
Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, July 2010.

Dyer, Chris, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameter-
ization of IBM Model 2. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 644—648,
Atlanta, Georgia, June 2013. Association for Computational Linguistics.

Gao, Qin and Stephan Vogel. Parallel implementations of word alignment tool. In Workshop
on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages
49-57, Columbus, Ohio, June 2008. Association for Computational Linguistics.

Koehn, Philipp. An experimental management system. Prague Bulletin of Mathematical Linguis-
tics, 94:87-96, September 2010.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computa-
tional Linguistics: Demonstration Session, Prague, Czech Republic, June 2007.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Sanjeev Khudanpur, Lane Schwartz, Wren Thorn-
ton, Jonathan Weese, and Omar Zaidan. Joshua: An open source toolkit for parsing-based
machine translation. In Proceedings of the Fourth Workshop on Statistical Machine Translation,
pages 135-139, Athens, Greece, March 2009. Association for Computational Linguistics.

Och, Franz Josef and Hermann Ney. A systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19-51, March 2003.

Address for correspondence:

Ulrich Germann
ugermann@inf.ed.ac.uk

School of Informatics

University of Edinburgh

10 Crichton Street

Edinburgh, EH8 9AB, United Kingdom

18

	Introduction
	Makefile Basics
	Targets, Prerequisites, Rules, and Recipes
	Pattern Rules
	Variables

	Building Systems and Running Experiments
	A Simple Comparison of Two Systems
	Writing Modules

	Conclusion
	Acknowledgements

