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Abstract—The application of multi-level modelling inevitably
leads to the necessity to constantly evolve a model from one
iteration to the next. During each of the iterations, potentially all
levels are subject to change and even more levels are affected by
those changes. A set of well-defined change operations is required
to develop a modelling tool that supports the modeller at refining
his models. In this paper we will derive all possible change
operations for a reduced multi-level metamodel and provide a
possible definition for their behaviour.

Index Terms—Co-Evolution, Maintenance, Multi-Level Mod-
elling, FMMLX

I. INTRODUCTION

Multi-level modelling is an emerging field and provides
advanced modelling capabilities over traditional approaches of
conceptual modelling [1]. Hence, there are several publications
which investigate multi-level modelling, e.g., [1]-[4], however,
to the best of our knowledge, no guidelines exist that support
the creation of multi-level models.

Due to this lack of guidelines, it is not straightforward to
create a convincing multi-level model. Thus, a multi-level
model is presumably not created by monotonically adding
elements, but it usually requires several iterations with reoccur-
ring tasks of adding, modifying and deleting model elements.
Due to this omnipresence of change, it is mandatory to choose
an appropriate means for creating such a model.

The use of pencil, paper and eraser probably provides the
most freedom in terms of creating a multi-level model. As this
means does not include mechanisms for checking the validity,
multi-level models can be changed freely. However, this lack
of validation also implies that it is not possible to ensure the
model’s consistency automatically. Furthermore, the developed
models are created as a physical sketch on paper, thus, these
models cannot be interpreted or executed by a computer.

In contrast, modelling tools do allow an automatic con-
sistency check as well as an interpretation and execution
by a computer. However, prevalent modelling tools do not
allow conducting non-monotonic changes as freely as by using
pencil, paper and eraser. Thus, modelling tools lack freedom
because they restrict the model creation and modification
either explicitly or implicitly. Tools like MetaEdit+ [5] or
EMF/GMF [6] limit the model creation explicitly by enforcing
a user to follow a clearly defined order of tasks. Other
Tools like the XModeler [7], [8] restrict the model creation
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implicitly, as they allow to perform the model creation in any
order, but some orders will lead to an inconsistent state, i.e.,
the model has to be recreated from scratch.

An adequate modelling tool for multi-level modelling
should restrict the modeller as little as possible while ensuring
the model’s consistency. In order to develop such a modelling
tool, it is necessary to identify all possible operations of
change which can be performed on a multi-level model.

Due to the complexity of multi-level modelling, identifying
all possible changes is a challenging endeavour by itself.
Therefore, this work presents a starting point by identifying
all possible changes in a reduced metamodel for multi-level
modelling, denoted as minimal model. Thus, the outcome of
this research does not represent a full-fledged approach for
handling change in multi-level models.

The remaining parts of the paper are structured as follows:
Section II discusses multi-level modelling and the relevance
of change therein. Afterwards, the handling of change in
traditional conceptual modelling is explored in Section III,
followed by the presentation of the developed approach in
Section IV. Following, the results are discussed in Section V.
Eventually, the paper closes with a conclusion and an outlook
for future work in Section VL.

II. MULTI-LEVEL MODELLING AND CHANGE
A. Multi-level Modelling

Frank characterizes multi-level modelling by pointing out
three major differences to traditional conceptual modelling:
1) Flexible Number of Classification Levels, 2) Relaxing
the Rigid Instantiation/Specialization Dichotomy, 3) No Strict
Separation of Language Levels [1].

As multi-level modelling allows for a Flexible Number
of Classification Levels, those models are not limited to a
fixed language architecture, but allow for facilitating as many
classification levels as required.

Furthermore, the Rigid Instantiation/Specialization Di-
chotomy is relaxed. In traditional conceptual modelling, there
is a strict distinction between Instantiation and Specialization,
i. e., those are mutually exclusive: Two elements might be con-
nected either by an instance-of-relation or by a specialization-
relation, but never by both at the same time. In contrast, this
dichotomy is relaxed in multi-level modelling, as it accounts



for elements, which are both instance and specialization of
another element at the same time.

Moreover, in multi-level modelling there is no Strict Separa-
tion of Language Levels. Therefore, in multi-level modelling it
is possible to create associations that cross classification levels.
Thus, multi-level modelling corresponds to natural technical
languages, which potentially requires to connect concepts on
different levels of abstraction. Hence, multi-level modelling
allows for overcoming the artificial borders of classifications
levels created by traditional conceptual modelling.

B. FMMLX and XModeler

There are different multi-level modelling languages (e.g.,
[9], [10]) and meta-modelling tools (e.g. [11], [12]). However,
to the best of our knowledge, the combination of FMMLX [1]
and XModeler [7], [8] is the only configuration which supports
executable multi-level modelling.

The acronym FMMLX stands for Flexible Meta-Modeling
and Execution Language; “the ‘x’ is intended both to express
the flexible classification level of the metamodel and to in-
dicate that the metamodel, as well as all models instantiated
from it, are executable” [1].

The FMMLX allows an arbitrary number of classification
levels, whereby each level is denoted by an unique identifier
[1]. Objects are on the level My; Classes are on M; and are
illustrated with a white background color. For each further
level, the index is increased by 1. Metaclasses are on M,
and have a black background. Additionally, the background
of elements on M3 is blue, on My red and on M5 green.

Furthermore, FMMLX provides deferred instantiation by
intrinsicness which is visualized by a white number on a black
background in front of an attribute [1]. The number implies
the instantiation level of the attribute, e.g., “1” means that an
attribute is instantiated on M. Intrinsicness can also be applied
on associations and attributes. A similar concept is potency of
Deep Instantiation [3].

XModeler uses a specifically designed language called
XOCL (eXecutable OCL) and is based on a kernel model
called XCore, on which all other features of XModeler are
built on. Furthermore, XCore has been enhanced in order to
support multi-level modelling with FMMLX .

The architecture of XModeler has a shared conceptualiza-
tion and representation of model and source code, so that
any changes in the model go into effect immediately without
generating a new version of code. That means for example,
that the constructor of a newly created class is immediately
available and can be invoked to create instances. These in-
stances themselves can then be referenced, for instance in the
body of operations. Operations in turn can be compiled and
invoked at runtime.

While the tool basically allows multi-level modelling, only a
specific order of modelling is currently supported. The results
from this and subsequent papers are intended to be used as
specifications for implementing a multi-level modelling editor
which is not limited to top-down-modelling

C. Application for Change in Multi-level Modelling

Following, challenges and potential solutions are illustrated,
which have to be faced by a modelling tool as XModeler.
Fig. 1 shows an example in which the concept of Device is
refined over the concept of Printer down to the specification
of specific printer types and instances of those types (cf. [1]).

FllistPrice:Float
[)salesPrice:Float

/\ N

Printer:Device Scanner:Device

Flduplex:Boolean
[ pagesScanned:Integer

[ color:Boolean
[ pagesPrinted:Float

N\

-

Model500B:Printer 1
listPrice = 199.90

Model300C:Printer 1
listPrice = 299.90

N

N\

printerinRoom0815 0
:Model300C

printerinRoom0915 0
:Model500B

salesPrice = 249.90
pagesPrinted = 3456.0
color = true

salesPrice = 189.90
pagesPrinted = 5678.0
color = false

Figure 1: Example, before change

If we review this model, we discover that some mistakes
were made by the designer. A minor mistake is, that page-
sPrinted is of type Float, although Integer is more appropriate.
If the type is changed the value does not fit anymore. This
situation is not much different to a two-level system, but
the change must be adapted to a multi-level environment,
as the slot is two classification levels away here. To avoid
inconsistencies the values have been replaced by the null value.
Ideally a conversion function could be supplied here to convert
from Float to Integer, so that the values would not get lost.

Furthermore, the attribute color in Printer could be regarded
as wrong. This attribute indicates whether this printer is a
color-printer or not and is wrongly stated as to be instantiated
on level 0. Therefore, the actual printers on level 0 were all
created with this slot. The attribute should better be a property
applying to level 1. When the instantiation level of the attribute
is changed, the slots on level 0 must be removed, and new ones
have to be created on level 1. In this case, as all instances (for
each class respectively) had the same slot value, that value
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Figure 2: Example, after change

can be reused for their classes. The final state after all these
changes is shown in Fig. 2

Considering the discussed example, changes in a multi-
level model might be more complex than in traditional con-
ceptual modelling: In traditional modelling, it is possible to
perform several changes on a metamodel in the first step and
adapting the instantiated models afterwards. However, multi-
level modelling requires to adapt both aspects at the same
time. If only the metamodel is adapted, the overall multi-level
model becomes inconsistent, because some instances do not
correspond to their classes anymore. Thus, adaption constitute
one inseparable unit in the realm of multi-level modelling.

III. TRADITIONAL CONCEPTUAL MODELLING AND
CHANGE

A. Model Evolution and Co-Evolution

The role of changes in traditional conceptual modelling
has been discussed widely (e.g., [13]-[20]). In that context,
the process of adapting a model has been coined as “Model
Evolution” or “Model Adaption” [13]. Exemplary areas of
application for model evolution are database management
systems [21] or Model-driven Engineering [20], [22], [23].

Model evolution is also relevant for metamodelling. For
example, if there are changes in a specific domain of discourse,
it might imply changes in a corresponding domain specific

modelling language (DSML). Thus, it is necessary to change
the corresponding metamodel [16]. The process of adapting a
metamodel is called metamodel evolution.

Metamodel evolution is a special case of model evolution,
because it implies a model co-evolution of the instantiated
models. Model co-evolution describes the evolution of models
with the intention to comply to its evolved metamodel. It is
mandatory to conduct a model co-evolution after a metamodel
evolution in order to maintain a consistent language architec-
ture [19]. Or to put it differently: If only the metamodel is
changed without adapting the instantiated models, the models
do not comply to the metamodel anymore. Thus, the language
architecture would get inconsistent.

B. Existing approaches

In the context of object oriented modelling, there are several
approaches which aim at dealing with model evolution and/or
model co-evolution.

Gruschko etal. classify possible changes of a metamodel
evolution into Not Breaking Changes, Breaking and Resolv-
able Changes and Breaking and Unresolvable Changes [24].
Not Breaking Changes occur in the metamodel, but do not
make the instantiated models inconsistent. Breaking and Re-
solvable Changes do make instantiated models inconsistent,
however, the consistency can be regained automatically. Lastly,
Breaking and Unresolvable Changes do also break the consis-
tency, but the consistency cannot be regained automatically.

Wachsmuth develops change operations for models which
allow a stepwise meta-model evolution [16]. Thereby,
Wachsmuth distinguishes between three adaptation groups:
refactoring, construction and destruction. Furthermore, the
model co-evolution is also considered in this approach by
corresponding adaption mechanisms.

Vermolen etal. investigate the model evolution from an ex-
post perspective, i.e., they compare two versions of one meta-
model in order to identify the differences [17]. Based on these
differences, the required change operations are derived. The
required change operations are a composition of previously
identified basics change operations, which are derived from
model refactoring mechanisms.

Herrmannsdoerfer etal. develop an approach which aims at
the coupled conduction of metamodel evolution and model co-
evolution [15]. Therefore, they developed a library of coupled
operations, which describes a set of operations for metamodel
evolution and their implied operations for model co-evolution
[14].

Narayanan etal. developed a language for dealing with
metamodel evolution and model co-evolution [25]. With this
language, the conducted metamodel evolution is explicated
by defining mapping-relation between elements in the pre-
evolutionary metamodel and the post-evolutionary metamodel.
Based on this, an automated model co-evolution can be
performed.

Similarly, Cicchetti etal. present an approach, in which the
differences due to evolution are explicated with a difference
model [22], [23]. A difference model contains all differences



between two stages of a metamodel evolution. Similar to the
approach of Narayanan etal., a difference model allows for an
automatic model co-evolution.

An approach for dealing with change in multi-level model-
ing is presented by Atkinson et al. [26]. In their publication, an
“Emendation Service Architecture” [26, p. 202] is suggested
that is responsible for handling occurring changes. In an
subsequent example, this architecture is discussed in terms
of four change operations: add, remove, change and move
an attribute. Although some operations are missing (e.g.,
changing a parent), the publication presents a first approach
for dealing with change in multi-level modelling.

Jahn presents a further approach, where he derives a set of
change operations for a multi-level system [27]. He claims to
have a complete set of change operations, induced by having
a change operation for each property of each element of his
meta-model and a deleting operation for each element of his
meta-model. Operations, which are adding elements, are inten-
tionally omitted as not causing inconsistencies. Additionally
there are some moving operations which are necessary for
completeness, but not covered by the argument above. Also,
we think the adding operations should not be treated as trivial,
as for instance the operation adding an attribute would leave
some existing instances in an inconsistent state.

Jahn’s approach uses class migration as a default method to
resolve some of the inconsistencies arising. The delete Concept
operation for example would leave the instances of the deleted
concept orphaned. To resolve that issue, these instances now
become top-level concepts where the instanceOf link is not set.
Instead, we would like to avoid class migration as a default
method. We might add alternative change operations in the
future, which offer an advantage by using class migration, but
for this paper we will focus on change operations free of class
migration to avoid side effects.

Those existing approaches are used as inspiration for
analysing the potential change operations in a multi-level
modelling.

IV. EVOLUTION IN MULTI-LEVEL MODELS
A. Minimal Model

Following, a minimal metamodel of multi-level modelling
is described step-by-step. The complete model is shown in
Figure 3.

To begin with, the meta model includes Entities. These
entities can serve as classes and instances at the same time
as explained in section II-A. These entities have a name, a
classification level and a class they were instantiated from.
An entity can be instantiated from the meta-model, which
requires a name and a classification level to be chosen. When
instantiated, the instance requires a name as well, but the
classification level will be in any case one less than its class’s
classification level. If an instance has classification level zero,
it cannot be instantiated further.

The metamodel also includes attributes. An instantiable
entity may have a named attribute, which causes its instance
to have a slot which can have a value.

In a two-level system there is no choice when to create
the slot for an object from an attribute of a class. In multi-
level models, there is the option to add the attribute not only
in the entity directly above the level where the slot is to be
created, but also in any level above. An attribute which cause
slot creation only after more than one instantiation is called
an intrinsic attribute. In addition to the name, an attribute now
needs one more parameter, which describes when the slot will
be available.

The attribute also has a type, which can be any instantiable
entity. In a two-level architecture the slot must contain a direct
instance of the type, as we can instantiate it only once. In
a multi-level architecture we can instantiate multiple times.
The exact classification level of the slot value has not been
specified yet. The corresponding slot must hold a value which
is an instance of the given type (or recursively an instance
thereof). The null-value satisfies all types.

The meta model also allows inheritance. In this context
inheritance means, that an instantiable entity has a link to one
or more parents. The entity and its parents must have the
same level. Attribute names must be unique within a class
and all its parents recursively. Also, inheritance cycles are not
allowed.

Multiple inheritance is allowed, as it does not cause ad-
ditional issues here. As long as the concept of overriding —
either attributes or operations — is not introduced, duplicate
attributes are not an issue, as those duplicate attributes are
in fact identical attributes received through different means,
which materialise in only one slot for each attribute added to
an entity.

The meta model also allows for a representation of primitive
data types. An Entity with name Integer on level 1 without
attributes can be added. Then any required integer number
can be added as an Entity on level O where the of-link points
to Integer and the value is stored in the name-property.

The following terms will be used to refer from one entity’s
perspective to another entity. An entity may have a Class
which it was instantiated of. The class of its class is called a
Meta-Class. We expand this concept by adding an exponent to
"Meta", where the exponent indicates the number of instantia-
tion steps from the referred entity to the referring entity, which
have been made beyond the classical single instantiation. That
means: When a class has been instantiated once, there have
been no additional instantiation steps made, the full term
would be Meta®-Class, which is equivalent to Class. Also, a
Meta-Class would be Meta!-Class in the full notation. Finally
we add a + to the exponent when referring to all entities where
are at least that number of additional instantiation steps were
made. The same type of notation is used for the instances
of an entity, where the term Intrinsic”-Instance indicates
the number of instantiation steps done beyond the classical
one. The terms Instance and Intrinsic-Instance are used to
indicate zero or one step respectively. The modifier + can
also be used here. These terms also include instances from
subclasses unless stated otherwise.
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Figure 3: Minimal Metamodel for Multi-level Modelling

B. Finding the Evolutionary Steps

To make sure we get a complete list of change operations,
we derive them from the properties and links in the diagram in
Figure 3. When describing the state of a model, we describe
the state of an instance of the class Package. When we start
modelling we have such an object which represents the empty
model. This is the root element, of which exactly one exists.

We can now add and remove the other objects i. e., Entity,
Attribute or Slot. These objects cannot exist on their own as
they all are on one end of a link which requires them to be
linked to something else. E.g., an Attribute must be connected
to exactly one Entity. These links give us the first group of
change operations. An object of the zero-to-many end of the
link can be created and added to one object of the one-to-
one side of the link. It can also be removed and discarded.
And there is a third change operation which for a given object
from the zero-to-many end replaces the object on the one-to-
one end.

Four of these possible change operations are not used.
There are no operations concerning Slot, as constraints prohibit
independent changes on slots. As we only have one root
element, an Entity cannot be transferred to a different root.
Additionally, because the instanceOf and the level of Entity are
immutable, two different operations are necessary for creating
entities: One for creating a top-level-class from the meta-
model and a second one for creating an instance from an
existing entity.

There are two links which are many-to-one. These are
Attribute to Entity, named type and Slot to Entity, named Value.
That means that every attribute refers to exactly one entity,
which in turn may be referred to by any number of attributes.
Therefore we only need a replace-operation which replaces
the type entity in the attribute. The same holds true for the
value entity in slot.

The link Entity to Entity, named instanceOf will not be
considered. These links are only added or removed when an
entity is added or removed.

There is one more link: Entity to Entity, named parent.

This is a many-to-many link, so we only need an add- and
a remove-operation. An operation for moving a parent link
to another target may appear necessary at a first glance.
Nevertheless the many-to-many link does not demand such
an operation, as adding the new link first and removing the
old one does the required tasks without data loss. Fortunately
the constraints do not prevent us from having the old and new
link simultaneously.

There are five properties, all with a multiplicity of one. That
means, they only need a change-operation. The property level
in Entity is immutable and the property name in slot may not
be altered on its own. For the other three, an operation is
available.

C. Change Operations

addEntity(level, name): This operation adds a new top-
level-entity to the model. This new entity does not have a
class it is instantiated from. It requires a name and a level.
Implicitly, the instanceOf-link is set to the null-reference. The
class name is required to be unique within the model. Also it
must follow a given rule set, which is not yet specified, e. g.,
it must not contain white spaces. The level cannot be negative,
as negative levels are not defined. While a level of zero might
be thinkable, it is rather useless, as such an object does neither
have slots or any other features. While a level of one does not
make use of any multi-level features, it still serves at least one
interesting purpose: This allows any two level-architecture to
be a special case of a multi-level architecture. Therefore it is
decided, that the level must be at least one. No slots will be
created as this entity is not instantiated from anything which
could have applicable attributes.

addEntity(of, name): This operation adds a new entity to
the model. This new entity is instantiated from another entity,
known as its class. The name property and the instanceOf-
link is set from the argument given. The level property is
implicitly set one less than the level of the class. As the new
level cannot be less than zero, the level of the class must not
be less than one. The name property follows the same rules
as above. Where the meta® -classes have attributes with an



instantiation level equal to this entity’s level, the entity has to
have slots to be in a consistent state.

removeEntity(name): This operation removes an entity
from the model if possible. It checks if the entity is not
referenced anywhere but in the model’s list of entities and if it
refers to nothing but its of-Entity. If that is the case, the entity
is removed. If it is not possible, the entity is not removed.
This operation will not attempt to remove usage of this entity
on its own. It will nevertheless be useful and possible to have
an aggregated operation doing so in the future.

changeEntityName(oldName, newName): This operation
changes the name property. As for addEntity, the new name
must follow certain rules. The entity is referred to only by
links and not its name, so no other data needs to be adjusted.

addAttribute(entityName, attName, type, level): This
operation creates an Attribute and links it to an Entity. As
arguments the entity, a name, a type and an instantiation
level are required. The instantiation level is a number which
indicates the level where a corresponding slot is created and
is non-negative but less than the level of the entity. The type
can be any entity which can be instantiated, i. e., has a level
of one or higher.

The name used here will be used for the slots as well. As
no two slots in one entity may have the same name, this has
implications on the attributes as well. An entity gets a slot from
every attribute it finds in an entity which it is linked to through
instanceOf and parent links, going only in the direction from
source to target, and where the attribute’s instantiation level
equals its own level. This hypothetical instance where a name
clash could occur does not necessarily exist yet. We need to
check for this issue here, otherwise we will have an entity
which should be instantiable by merit of their level, but cannot
be instantiated without violating consistency. We will use the
phrase related entity to refer to two entities which have the
potential to cause a name clash in entities later on, without
exactly specifying their relationship here.

If those instances are already existent, then a slot has to
be created for each of them. Slot creation is explained in
IV-C: addEntity(of, name).

removeAttribute(entityName, attName): This operation
removes an attribute from an entity. As a consequence, in
all intrinsic®*-instances of the entity which are on the level
specified by the attribute, the slot with the same name as the
attribute is removed.

changeAttributeName(entityName, oldAttName, newAt-

tName):
This operation changes the name property of an Aftribute. The
new name must follow the same rules as in IV-C: addAttribute.
All slots derived from this attribute must have their name-
property adapted.

changeAttributeLevel(entityName, attName, newLevel):
This operation changes the level property of an Attribute. This
actually means that existing slots have to be removed in some
entities, whereas in other entities slots have to be created. If we
used removeAttribute and addAttribute instead, the slot values
are lost. When the level is decreased, the entity where the

new slot is created has its slot linked with the value of its
direct meta"-class’s slot. This only works on a decrease, as an
entity has only one direct meta"-class’s on a given level but
has possibly any number of intrinsic"-instances on any given
level. While not doing it here, we still have the option to add
some rules on how to determine a new slot value from a set
of former slot values. For the moment the new slot value for
an increasing level will be the null-value.

changeAttributeType(entityName, attName, newType):
This operation changes the fype link of an Aftribute. This is
likely to violate the constraint, that a slot’s value must be an
intrinsic™*-instance of the type of the attribute it was created
from. Some slots may still have a conforming value, so they
can remain. Other slots may have a non-conforming value,
which have to be dealt with. The easiest solution is to replace
them with a null-value. A future option would be an instruction
how to initialize the slot values, i. e., a conversion function.

moveAttribute(oldEntityName, newEntityName,
attName): This operation is aimed at moving attributes
between related entities. A classic example would be moving
an attribute from a class to its superclass. If we move the
attribute up along inheritance or classification, we will have
objects which gain a slot, if we move down, some objects
will lose a slot. It is not necessary to move attributes up and
down in one step, as there is no loss doing this in separate
steps. For simplification it is sensible to limit this change
to directly related classes, and use it repeatedly for longer
distances.

changeSlotValue(entityName, value): This operation
changes the target of the value-link of Slot. There is no danger
of inconsistencies as long as the new value is an intrinsic’*-
instance the type of the attribute the slot was created from.
Additionally a null-value is always considered a legal value.

addParent(childEntityName, parentEntityName): This
operation adds a new parent-link between two Entities. Incon-
sistencies may arise from the fact, that the scope of attributes is
changed. This is not limited to the attributes of the two entities
involved. With a possibly larger scope, some attributes may no
longer have a unique name therein. Also, this new link must
not result in any loops. That means, there must be no closed
loop paths through any number of parent or instanceOf links
following their direction specified. The entity on the source
end is referred to as subclass, the entity on the target will be
to as superclass. As inheritance affects the slot creation from
the attributes, both entities must be able to have attributes,
i. e., they have a level of at least one. If the link can be added
legally, the subclass’s intrinsic™*-instances may gain a slot.

removeParent(childEntityName,  parentEntityName):
This operation removes an existing parent-link between two
Entities. This may affect slots in existing intrinsic’*-instances
of the class at the source end. Also, those very instances may
now be illegal values in other slots, as they not necessarily
intrinsic®*-instances of the required type any more.



V. DISCUSSION

In the following, the contribution of this paper in terms of
an approach for multi-level model evolution is discussed in
detail.

To our best knowledge, only one approach [27] for multi-
level model evolution has been conducted so far. That ap-
proach is a good inspiration, but not sufficient for our demand.
Therefore, a corresponding approach is proposed in this paper.
For supporting the development of a well-founded approach,
the work from adjacent fields — namely object oriented mod-
elling and metamodelling — has been utilized. Due to the wider
subject of multi-level modelling, the approaches for evolution
in object oriented modelling and metamodelling are not suit-
able for being used in multi-level modelling. However, due to
similarities (e.g., instantiation relations between entities, the
characterization of entities with attributes, etc.), the approaches
can be used as a starting point respectively an inspiration for
developing a suitable approach.

In the fields of object oriented modelling and metamod-
elling, the terms model evolution and model co-evolution has
been coined. While model evolution concerns the adaption of
models respectively metamodels, model co-evolution describes
the corresponding adaption of the dependent model instances
respectively metamodel instances (i.e., models). This termi-
nology is only partly applicable for multi-level modelling,
because a multi-level model comprises several classification
levels, e.g., metamodel, model and model instance. There-
fore, the separation between model evolution and model co-
evolution is not reasonable for multi-level modelling. If a
classification layer is evolved, it is mandatory to adapt the
depending classification layers in order to maintain the multi-
level model’s consistency.

The development of a full-fledged conception for multi-level
model evolution is a challenging endeavour due to the number
of modelling constructs in multi-level modelling. In order
to reduce this number and therefore to reduce the possible
number of change operations, a minimal model for multi-level
modelling has been defined.

For identifying all possible change operations, the basic
change operations “add”, “modify” and “delete” have been
applied on the elements of this minimal model. As not all
possible change operations are meaningful in terms of the
multi-level modelling, the list is reduced by all pointless
change operations.

By removing the meaningless operations, all operations are
identified which are possible and meaningful in terms of the
minimal model. Thus, this set is a complete set of change
operations in terms of the minimal model.

Although the set of change operations is complete for the
minimal model, it is not a full-fledged approach for multi-
level model evolution. In order to develop a holistic multi-level
model evolution approach, it is necessary to enrich the minimal
model as well as the set of change operations step wise
by further modelling constructs respectively further change
operations.

Furthermore, the current conception of multi-level model
evolution is only on a theoretic level. It is further necessary
to provide a prove of concept by developing a multi-level
modelling tool which supports the multi-level model evolution.

Additionally, the presented approach comprises only atomic
change operations, i.e., those operations represent the minimal
possible changes to a multi-level model which maintain the
model’s consistency and do not lead to an information loss.
It would be desirable to incorporate mechanisms for bundling
atomic operations to more complex operation. For instance,
the presented changes include only an operation for removing
an entity; however, it might be desirable to delete an entire
entity hierarchy at once.

Furthermore, the transfer of model evolution and model co-
evolution to multi-level modelling is just one approach for
dealing with change in multi-level models. Another imaginable
approach would be to omit the co-evolution, but to consider
the evolved multi-level model as a new version of it. In this
new version, there are only those entities present which are
consistent with the new version. For example, if an entity is
enhanced by an attribute, its instances are not taken over to
the new version. In order to make those instances part of the
new version, each instance has to be migrated individually to
a consistent instance of the entity’s new version. However,
this approach would require to deal with class migration in
multi-level models.

VI. CONCLUSION / FUTURE WORK

In this paper, a conceptualization of change in multi-level
models is developed. Due to the complexity of multi-level
modelling, change has been investigated in terms of a minimal
metamodel of multi-level modelling (i.e., reduced metamodel).
By applying the operations “add”, “remove” and “modify”
on all elements of the minimal model, all possible change
operations have been identified. Due to the conceptualiza-
tion of multi-level modelling, not each of those operation is
meaningful. Thus, this set of operation has been reduced by
meaningless operations in order to derive a complete list of
all relevant change operations on multi-level models.

As those change operations are founded on a minimal
model, this set is complete in terms of this minimal model
but does not represent a full-fledged approach for multi-
level modelling. Therefore it is necessary to enhance both the
minimal model and the list of change operations stepwise by
further language constructs respectively by further operations.
Furthermore, this conceptualization has only been created on a
theoretical level, i.e., it is necessary to develop a correspond-
ing modelling tool, which supports the application of those
changes on a multi-level model.

Another issue arises when the meta model includes op-
erations that contain a body. These operation bodies will
refer to named properties like attributes or other operations.
These references must be kept consistent with the meta-model.
While refactoring operation bodies in a fully typed, classical
two-level environment has been widely addressed [28], it is
necessary to adapt those approaches to multi-level modelling.



Thus, future work aims at developing a full-fledged concep-
tualization of change in multi-level modelling. Furthermore,
this conceptualization should be underpinned by a proof of
concept. This should be a multi-level modelling tool which
supports the application of all relevant changes on models
without compromising the model’s integrity.
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