Machine-Learning Based Determination of Gait Events from Foot-Mounted Inertial Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Participants
2.2. Experimental Setup
2.3. Procedures
2.4. Data Processing and Features Engineering
2.5. Gait Events and Phases Classification
- 1a: windows containing a heel strike vs. any other event.
- 1b: windows containing a toe off vs. any other event.
- 2: windows corresponding to stance vs. swing phases.
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. A Data-Driven Approach
4.2. Effect of Measurement Uncertainty in the Real Instrument Usage Context
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whittle, M.W. Clinical gait analysis: A review. Hum. Mov. Sci. 1996, 15, 369–387. [Google Scholar] [CrossRef]
- Ferber, R.; Osis, S.T.; Hicks, J.L.; Delp, S.L. Gait biomechanics in the era of data science. J. Biomech. 2016, 49, 3759–3761. [Google Scholar] [CrossRef] [Green Version]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Allseits, E.; Agrawal, V.; Lučarević, J.; Gailey, R.; Gaunaurd, I.; Bennett, C. A practical step length algorithm using lower limb angular velocities. J. Biomech. 2018, 66, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Hannink, J.; Kautz, T.; Pasluosta, C.F.; Barth, J.; Schulein, S.; Gabmann, K.G.; Klucken, J.; Eskofier, B.M. Mobile Stride Length Estimation with Deep Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2018, 22, 354–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkanova, V.; Ebmeier, K.P. What can gait tell us about dementia? Review of epidemiological and neuropsychological evidence. Gait Posture 2017, 53, 215–223. [Google Scholar] [CrossRef]
- Temporiti, F.; Zanotti, G.; Furone, R.; Molinari, S.; Zago, M.; Loppini, M.; Galli, M.; Grappiolo, G.; Gatti, R. Gait analysis in patients after bilateral versus unilateral total hip arthroplasty. Gait Posture 2019, 72, 46–50. [Google Scholar] [CrossRef]
- Lovecchio, N.; Sciumè, L.; Zago, M.; Panella, L.; Lopresti, M.; Sforza, C. Lower limbs kinematic assessment of the effect of a gym and hydrotherapy rehabilitation protocol after knee megaprosthesis: A case report. J. Phys. Ther. Sci. 2016, 28, 1064–1070. [Google Scholar] [CrossRef] [Green Version]
- Perry, J.; Burnfield, J.N. Gait Analysis: Normal and Pathological Function, 2nd ed.; SLACK Incorporated: Thorofare, NJ, USA, 2010; ISBN 1-55642-192-3. [Google Scholar]
- Salarian, A.; Russmann, H.; Vingerhoets, F.J.G.; Dehollain, C.; Blanc, Y.; Burkhard, P.R.; Aminian, K. Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 2004, 51, 1434–1443. [Google Scholar] [CrossRef]
- Zhou, L.; Fischer, E.; Tunca, C.; Brahms, C.M.; Ersoy, C.; Granacher, U.; Arnrich, B. How we found our imu: Guidelines to IMU selection and a comparison of seven IMUs for pervasive healthcare applications. Sensors 2020, 20, 4090. [Google Scholar] [CrossRef]
- Iosa, M.; Picerno, P.; Paolucci, S.; Morone, G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices 2016, 13, 641–659. [Google Scholar] [CrossRef]
- Mundt, M.; Koeppe, A.; David, S.; Witter, T.; Bamer, F.; Potthast, W.; Markert, B. Estimation of Gait Mechanics Based on Simulated and Measured IMU Data Using an Artificial Neural Network. Front. Bioeng. Biotechnol. 2020, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tunca, C.; Pehlivan, N.; Ak, N.; Arnrich, B.; Salur, G.; Ersoy, C. Inertial sensor-based robust gait analysis in non-hospital settings for neurological disorders. Sensors 2017, 17, 825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wouda, F.J.; Giuberti, M.; Bellusci, G.; Veltink, P.H. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach? Sensors 2016, 16, 2138. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Tunca, C.; Fischer, E.; Brahms, C.M.; Ersoy, C.; Granacher, U.; Arnrich, B. Validation of an IMU Gait Analysis Algorithm for Gait Monitoring in Daily Life Situations. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4229–4232. [Google Scholar]
- Zago, M.; Sforza, C.; Pacifici, I.; Cimolin, V.; Camerota, F.; Celletti, C.; Condoluci, C.; De Pandis, M.F.M.F.; Galli, M. Gait evaluation using inertial measurement units in subjects with Parkinson’s disease. J. Electromyogr. Kinesiol. 2018, 42, 44–48. [Google Scholar] [CrossRef]
- Lopez-Nava, I.H.; Muñoz-Meléndez, A. Wearable Inertial Sensors for Human Motion Analysis: A review. IEEE Sens. J. 2016, 16, 7821–7834. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.; Zanotto, D. Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 191–202. [Google Scholar] [CrossRef]
- Ferrari, A.; Ginis, P.; Hardegger, M.; Casamassima, F.; Rocchi, L.; Chiari, L. A mobile Kalman-filter based solution for the real-time estimation of spatio-temporal gait parameters. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Nhat Hung, T.; Soo Suh, Y. Inertial sensor-based two feet motion tracking for gait analysis. Sensors 2013, 13, 5614–5629. [Google Scholar] [CrossRef]
- Caldas, R.; Mundt, M.; Potthast, W.; Buarque, F.; Neto, D.L. Gait & Posture A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait Posture 2017, 57, 204–210. [Google Scholar]
- Bugané, F.; Benedetti, M.G.; Casadio, G.; Attala, S.; Biagi, F.; Manca, M.; Leardini, A. Estimation of spatial-temporal gait parameters in level walking based on a single accelerometer: Validation on normal subjects by standard gait analysis. Comput. Methods Programs Biomed. 2012, 108, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Del Din, S.; Hickey, A.; Hurwitz, N.; Mathers, J.C.; Rochester, L.; Godfrey, A. Measuring gait with an accelerometer-based wearable: Influence of device location, testing protocol and age. Physiol. Meas. 2016, 37, 1785–1797. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, A.; Del Din, S.; Barry, G.; Mathers, J.C.; Rochester, L. Instrumenting gait with an accelerometer: A system and algorithm examination. Med. Eng. Phys. 2015, 47, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Mapelli, A.; Zago, M.; Fusini, L.; Galante, D.; Colombo, A.; Sforza, C. Validation of a protocol for the estimation of three-dimensional body center of mass kinematics in sport. Gait Posture 2014, 39, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef] [PubMed]
- Keloth, S.M.; Viswanathan, R.; Jelfs, B.; Arjunan, S.; Raghav, S.; Kumar, D. Which gait parameters and walking patterns show the significant differences between Parkinson’s disease and healthy participants? Biosensors 2019, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Yeo, S.S.; Park, G.Y. Accuracy Verification of Spatio-Temporal and. Sensors 2020, 20, 1343. [Google Scholar] [CrossRef] [Green Version]
- Rhudy, M. Time Alignment Techniques for Experimental Sensor Data. Int. J. Comput. Sci. Eng. Surv. 2014, 5, 1–14. [Google Scholar] [CrossRef]
- Costa-Júnior, J.F.S.; Cortela, G.A.; Maggi, L.E.; Rocha, T.F.D.; Pereira, W.C.A.; Costa-Felix, R.P.B.; Alvarenga, A.V. Measuring uncertainty of ultrasonic longitudinal phase velocity estimation using different time-delay estimation methods based on cross-correlation: Computational simulation and experiments. Meas. J. Int. Meas. Confed. 2018, 122, 45–56. [Google Scholar] [CrossRef]
- Tirosh, O.; Sparrow, W.A. Identifying heel contact and toe-off using forceplate thresholds with a range of digital-filter cutoff frequencies. J. Appl. Biomech. 2003, 19, 178–184. [Google Scholar] [CrossRef]
- Zago, M.; Sforza, C.; Dolci, C.; Tarabini, M.; Galli, M. Use of machine learning and wearable sensors to predict energetics and kinematics of cutting maneuvers. Sensors 2019, 19, 3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchet, O.; Allali, G.; Sekhon, H.; Verghese, J.; Guilain, S.; Steinmetz, J.P.; Kressig, R.W.; Barden, J.M.; Szturm, T.; Launay, C.P.; et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The biomathics and canadian gait consortiums initiative. Front. Hum. Neurosci. 2017, 11, 353. [Google Scholar] [CrossRef] [PubMed]
- Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011, 34, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciprandi, D.; Bertozzi, F.; Zago, M.; Ferreira, C.L.P.; Boari, G.; Sforza, C.; Galvani, C. Study of the association between gait variability and physical activity. Eur. Rev. Aging Phys. Act. 2017, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Freiberger, E.; Annweiler, C.; Kressig, R.; Herrmann, F.; Allali, G. Test-retest reliability of stride time variability while dual tasking in healthy and demented adults with frontotemporal degeneration. J. Neuroeng. Rehabil. 2011, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Agiovlasitis, S.; McCubbin, J.A.; Yun, J.; Mpitsos, G.; Pavol, M.J. Effects of Down syndrome on three-dimensional motion during walking at different speeds. Gait Posture 2009, 30, 345–350. [Google Scholar] [CrossRef]
- Carbajales-Lopez, J.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Casado-Hernández, I.; Benito-De Pedro, M.; Rodríguez-Sanz, D.; Calvo-Lobo, C.; Antolín, M.S. The optogait motion analysis system for clinical assessment of 2D spatio-temporal gait parameters in young adults: A reliability and repeatability observational study. Appl. Sci. 2020, 10, 3726. [Google Scholar] [CrossRef]
- Coviello, G.; Avitabile, G.; Florio, A. A synchronized multi-unit wireless platform for long-term activity monitoring. Electronics 2020, 9, 1118. [Google Scholar] [CrossRef]
Signal | Time Domain | Frequency Domain |
---|---|---|
Acceleration (3 channels) | Root mean squared | Dominant frequency |
Variance | Power at dominant frequency | |
Kurtosis | ||
Skewness | ||
Linear Correlation (x-y, x-z, y-z) | ||
Angular velocity (3 channels) | Root mean squared | Dominant frequency |
Variance | Power at dominant frequency | |
Kurtosis | ||
Skewness | ||
Linear Correlation (x-y, x-z, y-z) |
Item | Heel-Strike vs. Other (1a) | Toe-Off vs. Other (1b) | Stance vs. Swing (2) |
---|---|---|---|
Prediction accuracy | 93.3% | 91.4% | 95.6% |
Observations | 218,933 | 218,933 | 218,933 |
Misclassification cost | 14,713 | 18,754 | 9428 |
Prediction speed | 7 × 106 observations/s | 7 × 106 observations/s | 6.9 × 106 observations/s |
Training time | 52.145 s | 18.137 s | 49.694 s |
Size of training data | 87 MB | 85 MB | 87 MB |
Validation | Hold-out | Hold-out | Hold-out |
Features whose importance was greater than 5% | Mediolateral mean ω Vertical acc. RMS | Vertical acc. Mean AP ω mean AP ω var | Vertical acc. RMS AP acc. Mean |
Method | Mean | SD | RMSE | U | U10 | 95%CI | p | ES |
---|---|---|---|---|---|---|---|---|
Heel-strike identification | ||||||||
Heel-strike and toe-off (1a, 1b) | −20 | 111 | 113 | 7 | 35 | −33, −6 | - | - |
Stance vs. swing (2) | −3 | 59 | 59 | 4 | 19 | −11, 5 | - | - |
Toe-off identification | ||||||||
Heel-strike and toe-off (1a, 1b) | 95 | 233 | 251 | 21 | 74 | 54, 136 | - | - |
Stance vs. swing (2) | 19 | 165 | 166 | 15 | 52 | −13, 50 | - | - |
Stance phase estimation | ||||||||
Heel-strike and toe-off (1a, 1b) | −113 | 214 | 241 | 19 | 68 | −150, −75 | <0.001 | 0.514 |
Stance vs. swing (2) | −26 | 168 | 169 | 16 | 53 | −50, 5 | 0.098 | 0.158 |
Swing phase estimation | ||||||||
Heel-strike and toe-off (1a, 1b) | 39 | 221 | 224 | 20 | 70 | 0, 78 | 0.048 | 0.205 |
Stance vs. swing (2) | 5 | 179 | 178 | 17 | 56 | −29, 38 | 0.782 | 0.034 |
Stride time | ||||||||
Heel-strike and toe-off (1a, 1b) | −74 | 140 | 158 | 12 | 44 | −98, −49 | <0.001 | 0.258 |
Stance vs. swing (2) | −22 | 79 | 81 | 7 | 25 | −36, −7 | 0.004 | 0.122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zago, M.; Tarabini, M.; Delfino Spiga, M.; Ferrario, C.; Bertozzi, F.; Sforza, C.; Galli, M. Machine-Learning Based Determination of Gait Events from Foot-Mounted Inertial Units. Sensors 2021, 21, 839. https://doi.org/10.3390/s21030839
Zago M, Tarabini M, Delfino Spiga M, Ferrario C, Bertozzi F, Sforza C, Galli M. Machine-Learning Based Determination of Gait Events from Foot-Mounted Inertial Units. Sensors. 2021; 21(3):839. https://doi.org/10.3390/s21030839
Chicago/Turabian StyleZago, Matteo, Marco Tarabini, Martina Delfino Spiga, Cristina Ferrario, Filippo Bertozzi, Chiarella Sforza, and Manuela Galli. 2021. "Machine-Learning Based Determination of Gait Events from Foot-Mounted Inertial Units" Sensors 21, no. 3: 839. https://doi.org/10.3390/s21030839
APA StyleZago, M., Tarabini, M., Delfino Spiga, M., Ferrario, C., Bertozzi, F., Sforza, C., & Galli, M. (2021). Machine-Learning Based Determination of Gait Events from Foot-Mounted Inertial Units. Sensors, 21(3), 839. https://doi.org/10.3390/s21030839