
Machine Learning for Software Reuse
Walter L.Hill

Hewlett-Packard Laboratories
P.O. Box 10490, Palo Alto CA 94303-0971

(415) 857-7310
whill@hplabs.hp.com

Abstract
Recent work on learning apprentice systems suggests new

approaches for using interactive programming environments to
promote software reuse. Methodologies for software
specification and validation yield natural domains of application
for explanation-based learning techniques. This paper develops a
relation between data abstractions in software and explanation-
based generalization problems and shows how explanation-based
learning can be used to generalize program abstractions to pro­
mote their reuse. This method is applied in the design of a sys­
tem called LASR (Learning Apprentice for Software Reuse)
which will acquire programming knowledge by capturing and
generalizing interconnections between abstract data type theories.
The technical role of theories in defining learned concepts in this
application suggests their more general use in representing prob­
lems in explanation-based learning.

1. Introduct ion

There has been considerable attention given recently to
making use of formal program specifications to promote
software reuse and to developing programming metho­
dologies suited to that purpose [4,12]. Among the require­
ments for software to be reusable are that it possess higher
levels of robustness and generality than are usual in ordi­
nary programming practice. The purpose of this paper is
to show how explanation-based learning can be used with
formal specifications to capture and generalize program
abstractions developed in practice to increase their poten­
tial for reuse. This particular approach to applying
machine learning in software is motivated especially by
the explicit domain knowledge embodied in data type
specifications and the mechanisms for reasoning about
such knowledge used in validating software. These deduc­
tive methods from software engineering fit well with the
requirements for explanation-based learning problems in
which a single training example is explained (validated) in
terms of a domain theory. The training examples in our
setting correspond to (semantically correct) interconnec­
tions between software components. In generalizing from
these interconnections, new data abstractions are formed
which yield minimal requirements for reuse. Such syn­
thesized abstractions can also be useful in their own right
in suggesting alternatives in program derivations.

The software principles involved in this application are
more abstract than those most commonly used in program­
ming practice. It is generally hoped that time wi l l close

this gap. Nevertheless, the level of abstraction seems most
appropriate both for this application of machine learning
and also for promoting advances in software reuse. The
discussion and examples given below attempt to show that
the implications of those principles are in fact quite con­
crete and relevant The notion of a theory is of central
importance in much modern software research. Mechan­
isms for composing theories support construction of com­
plex abstractions. It turns out to be natural in this applica­
tion of explanation-based learning to define the learned
concepts in terms of theories. This theory interpretation of
learned concepts seems applicable in representing other
explanation-based learning problems.

It is desirable to incorporate these methods for general­
izing software with an interactive programming environ­
ment such as Goguen describes in [4]. While supporting
practical system development, such a system would
automatically add new generalized components to its
software base for reuse. Such a system would be a learn­
ing apprentice in the sense of [10]. This paper also
describes the design of a system called LASR (Learning
Apprentice for Software Reuse) which is under develop­
ment at Hewlett-Packard. Its purpose is to determine the
potential for applying the ideas presented here to practical
software engineering.

2. Learning f rom Explanations

Explanation-based learning is a comparatively recent
paradigm in machine learning concerned with generating
concepts using an explanation of a single training example
in terms of a domain theory. The papers [3] and [11] con­
tain extensive discussion and references to work in
explanation-based learning. The methods of explanation-
based generalization developed in [11] in particular derive
a concept definition by analyzing a proof which accounts
for the training example as a logical consequence of
domain axioms. It is the use of deductive reasoning in a
formal domain which gives a basis for applying
explanation-based learning to software.

The explanation-based approach to machine learning is
often contrasted with so-called similarity-based methods
which derive conceptual classifications by noticing pat-
terns in multiple observations. Similarity-based learning is
more computationally intensive, typically involving
searching in a large space of possible concepts (e.g., com­
binations of constraints on feature values). It is data-

338 KNOWLEDGE ACQUISITION

intensive, and its results are always subject to revision
since further observations may invalidate empirical gen­
eralizations. Similarity-based learning is essential, how­
ever, especially in the absence of sufficient domain
knowledge. In [2], similarity-based learning is applied to
program synthesis by considering learned concept predi­
cates as declarative computer programs.

In using an explanation to generalize a training exam­
ple, one obtains a characterization of a family of examples
of a more general goal concept, including the given exam­
ple. The learned concept definition is thus a specialization
of that goal concept. The process of specialization (goal
regression) transforms the goal concept over inference
steps in the explanation until it is "operational". Opera-
tionality of a concept definition depends on the particular
generalization problem. In the application of these
methods to software, we define operationality in terms of
levels of abstract machine. Following [11], Figure 1
shows the requirements for an explanation-based generali­
zation problem. For such a problem, the generalization
process consists of first constructing an explanation of the
training example in terms of the domain theory, and then
using that explanation to accomplish the generalization.

Given:
* Goal Concept

A concept definition describing
the concept to be learned.

* Training Example
An example of the goal concept.

* Domain Theory
A set of rules and facts to be used
in explaining how the Training Example
is an example of the Goal Concept.

* Operationality Criterion
A predicate over concept definitions,
specifying the form in which the
learned definition must be expressed.

Determine:
* A generalization of the training example that is a sufficient

concept definition for the Goal Concept and that satisfies the
Operationality Criterion.

Figure 1. Explanation-Based Generalization Problem

We describe below examples of explanation-based
generalization problems in designing software and
mechanisms for solving them automatically. For further
discussion and examples, see [11].

3. Domain Theories in Software

In order to apply explanation-based learning to
software, it is necessary to associate goal concepts and
domain theories with computer programs. In doing so, it
is reasonable to expect relationships between goal con­
cepts and program abstractions, and between explanation
and program verification. One rather obvious approach to
applying explanation-based learning to procedural abstrac­
tions in software is to use Hoare-style verifications to
derive the characteristic behaviors of procedures in

imperative languages, notably in terms of weakest precon­
ditions. Under various names, there is already a consider­
able literature on this subject in both the software and AI
communities [7,11,14). While that approach does merit
elaboration from the point of view of machine learning,
the goal of this paper is to discover other applications of
explanation-based learning in software which seem more
enlightening and more promising for future developments
both in software engineering1 and machine learning.

In modern programming methodology, formal theories
of data abstractions in programs play an important role in
designing and validating software and in promoting its
reuse [4,12). Such theories are represented explicitly in
languages such as OBJ [6] and the Larch shared language
[8]. As wi l l be shown below, these theories give rise
naturally to applications of explanation-based learning by
providing domain theories for explanation-based generali­
zation problems. The theories discussed here, so-called
many-sorted equational theories, correspond to collections
of abstract data types. Such a theory consists of finite sets
of sorts (the "data types"), operations on them, and equa­
tions relating those operations. Those equations, or equa­
tional axioms, provide a logical theory completely charac­
terizing their associated "data types". Figure 2 gives a
simple presentation of a theory of stacks. The presentation
of a theory can be thought of as having two parts. The first
declares the operations and their types; such declarations
are conventional in the specification parts of modules in
languages like Ada and Modula-2. The second part pro­
vides the semantic constraints which the operations satisfy.
Operations are side-effect free; in Figure 2 it is necessary
to provide separate top and pop operations.

THEORY Stack
SORTS stack element
OPS empty: -> stack

push: element stack -> stack
pop: stack -> stack
top: stack -> element
empty?: stack -> boolean

VARS e: element
s: stack

EQNS pop(empty) = empty
pop(push(e,s)) = s
top(push(e,s)) = e
empty?(empty) = true
empty?(push(e,s)) = false

Figure 2. Data Theory of Stacks

1. We have learned quite recently (subsequent to submitting this paper)
of current work by C.A.R. Hoare, He Jifeng, and J.W. Sanders [15-17]
which, although not employing explanation-based methods, contains
ideas quite similar to some of those presented here.

Hill 339

To make data theories useful in constructing programs,
there are mechanisms for composing and refining them. A
particularly important construct in this regard is the theory
morphism. A theory morphism from a theory Tl to a
theory T2 maps sorts and operations of T l , respectively, to
sorts and operations of T2. Moreover, it preserves the
equations of Tl in the sense that each axiom of T l , when
rewritten in terms of the sorts and operations of T2, can be
deduced in T2. We will call Tl the source theory and T2
the target theory.

Figure 42 gives an example of a morphism from the
theory of stacks to the theory of arrays with a dis­
tinguished index. Note that this morphism implements
stack operations in a (programming) language based on
arrays and natural numbers. From that point of view, the
morphism plays the role of a program, the theories are
specifications, and the proof that the axioms are preserved
is a validation of the program. We will see how this leads
naturally to a generalization of the program using the vali­
dation as explanation.

The example in Figure 5 of the Integer-Array theory
can be interpreted as an instance of a parameterized Array
theory with an unconstrained "element" sort analogous to
the one in Figure 2. It turns out [4] that theory morphisms
in general provide the bindings for instantiating generic
parameters. What Goguen calls views in [4] are essen­
tially theory morphisms.

4. Using Validations to Generalize Software

In adapting explanation-based generalization to data
abstractions, the data theories provide domain theories for
explaining explicit morphisms, which take the role of
training examples. Concept definitions in this setting are
presentations of target data theories of morphisms. Intui­
tively, such concept definitions specify a language for
interpreting (or implementing3) the morphism's source
theory. The object of generalization is to use a proof that a
particular interpretation is valid to reduce the language
(indeed, its semantics as well as its syntax) to one which
provides a minimal valid interpretation. In other words,
the generalization provides requirements for an interpret­
ing language.

2. A little care must be taken in interpreting this definition. The target
theory is obtained by extending the I-Array theory to make the OPS rules
shown in Figure 4 into equational axioms. This requires adding new
operations to the theory corresponding to push, pop, etc. We call the
operation <_,_> and the operations imported from theories Nat and Array
primitive. Primitive operations are used to characterize operationality. It
is conventional in presenting morphisms to suppress obvious
correspondences, e.g. (element => element) associating stack elements
with array elements.
3. An implementation or data refinement is a morphism which has
reasonable behavior on models for its source and target theories. While
any morphism can be generalized, many readers will find the notion of
implementation more intuitive.

What most distinguishes this form of explanation-
based learning is that the learned concepts are presented
explicitly in terms of theories; there is no difference in
kind between the domain theory used for the explanation
and the new target theory obtained from generalization.
Nevertheless, the differences between this approach and,
for example, that of [11] are only in interpretation; the
learned concepts in the examples in that paper are
described in terms of single predicates, but could also be
presented in terms of theories in an appropriate logic.
Making theories explicit is advantageous for representing
and reasoning about complex abstractions [1]. Also, in
contrast to attempting to reuse individual procedures or
predicates, theories provide a granularity which better pro­
motes software reuse much as classes do in object-oriented
programming.

4.1 Validations are Explanations

A morphism M between data theories Tl and T2 can
be used for constructing explanation-based generalization
problems. The requirements shown in Figure 1 are met by
defining the following correspondences:

Training Example:
The mapping on sorts and operations defined by M.

Domain Theory:
The data theory T2.

Goal Concept:
A morphism M' from Tl to a subtheory T2' of T2

The Operationality Criterion is defined by the require­
ment that the axioms defining the target theory be
expressed in terms of primitive operations of T2.

An explanation is, of course, a proof that M is a mor­
phism. In other words, it is a collection of proofs for the
axioms in the source theory when interpreted in the target
theory.

42 Goal Regression in Equational Theories

Validations of morphisms between the equational data
theories described above are collections of proofs that
equations corresponding to axioms of one theory follow
from the axioms of the other. A simple example of such a
proof from the Stack-with-Offset morphism of Figure 4 is
the following:

assign(a,j,e)[i] = if i=j then e else a[i]
assign(a,n+l,e)[i] = a[i] if not(i=n+l)
assign(a,n+l,e)[i] = a[i] if i<=n
<assign(a,n+l,e),n> = <a,n>
pop(<assign(a,n+l,e),n+l>) = <a,n>
pop(push(e,<a,n>)) = <a,n>

Proof steps in equational logic use so-called rules of
equational reasoning (reflexive, symmetric, and transitive
laws, together with substitution and instantiation) and may
also use axioms and inference rules from first-order predi­
cate logic, and reasoning about representing and

340 KNOWLEDGE ACQUISITION

distinguishing terms. The text [9] treats equational reason­
ing for data theories.

Viewing each axiom in the source theory of a mor-
phism as a goal, the equational inference steps transform it
into formulas, ultimately in the target theory. This
transformation process constitutes goal regression of the
axiom, and corresponds to the regressing of goal concepts
through explanation steps as described in [11], with the
rules of equational reasoning explicitly added. The algo­
rithm of [11] for using regression to extract the generaliza­
tion from an explanation of a goal applies directly here,
except formulas for (conjunctive) branches in the proof are
collected as distinct axioms for the derived theory. Since
the validation assures that the regressed goals follow from
the original implementing theory, the generalized theory is
the subtheory consisting of the regressed goals and the
sorts and operations used to express them.

Theories describing learned concepts here are in a
sense more "rigid" than simple predicates would be for the
same purpose. There is a certain give-and-take in regress­
ing a collection of axioms. While the collection of
regressed source axioms (or their conjunction) may be dis­
tinct from the original target axioms, the theory they deter­
mine may be equivalent. In that case, the effort of regress­
ing the axioms is wasted since the original target axioms
could be used just as well. The significance of this distinc­
tion between theory and predicate becomes more apparent
in observing that structural properties of a theory mor-
phism may detect such equivalence. Although it isn't
immediately obvious, this is the case, for example, if the
operations in the source theory are explicit generators. For
example, a stack s can always be written in the form
pop(s') from the axiom pop(push(e,s))=s. It is not true that
regressing that axiom over the given proof above would
weaken the target axiom

<a,n> = <b,m> if m=n and a[i]=bfi] for i<=n

for the morphism in Figure 4 to

<assign(a,n+l,e),n> = <a,n>
since pop(<a,n>) = <a,n-l> can be applied inductively to
recover the original axiom. An example of non-trivial
goal regression is given below.

5. Examples

5.1 Stacks as Arrays with Distinguished Index

Figure 4 describes a theory morphism refining the
abstract stack data type to that of arrays with a dis­
tinguished index, called here the theory of i-arrays. The
I-Array theory in Figure 3 imports the sorts and operations
of the theories Nat, of natural numbers, and Array. In par­
ticular, I-Array uses the operations "assign" from Array
and"+" from Nat.

What is interesting about this example is that if the I-
Array theory is replaced by any other target in defining
this morphism, then the generalization recovers precisely
the I-Array theory. In effect, this morphism is the result of

THEORY I-Array / Nat Array
SORTS i-array
OPS <__,_>: array nat -> i-array
VARS a,b: array

m,n: nat

EQNS <a,n> = <b,m> if m=n and a[i]=b[i] for i<=m

Figure 3. Data Theory of I-Arrays

MORPHISM Stack-with-Offset Stack => I-Array
SORTS (stack => i-array)

VARS e: element
a: array
n: nat

OPS (empty =><new-array,0>)
(push(e,<a,n>) => <assign(a,n+l,e),n+l>)
(pop(<a,n>) => <a,n-l>)
(top(<a,n>) => a[n])
(empty?(<a,n>) => if n=0 then true else false)

Figure 4. Stack Implementation Morphism

generalization. In practice, an implementation of stacks is
with respect to some richer theory. Although the theories
discussed here are not adequate to specify conventional
programming languages such as Lisp or C, it is neverthe­
less helpful to think of the operations of a theory as the
primitives for a programming language it defines. The
generalization process here is analogous to going from a
program in Lisp, say, to a "more abstract" program which
could be transformed into another language such as C.
This process, however, should not be confused with that of
translating between two specific languages. It is better to
think in terms of extracting an application from a larger
system in which it has been implemented to retarget it to
other, possibly smaller systems. Figure 4 prescribes an
implementation of stacks in any theory (language) contain­
ing pairs of arrays and natural numbers. The recovery of
the I-Array theory from a validation of Figure 4 which was
discussed above shows that this morphism can't be gen­
eralized further.

5.2 Optimizing Functions on Arrays

In this example, integer arrays are implemented as
arrays with an extra slot to hold the value of some given
function of the array. The particular example4 with f(a) =

a[m] can be generalized to other integer-valued array
m=0

4. The upper summation index is suppressed to make the formulas more
readable. The sums are over all (finitely many) non-zero array values
starting at the lower summation index. The size operation in this theory
provides the upper bound in such sums and is used in reasoning about
them. f(a)= £ a[m] should be read f(a)= £ a[m]

m=0 m=0

HIM 341

functions. The motivation for this data refinement opera­
tion is that, in practice, often when an array instance is
created, certain functions may be evaluated repeatedly for
it, in which case storing the value as part of the array
entity makes sense in the implementation. Needless to
say, this is a very concrete case of a general programming
strategy.

THEORY Integer-Array / Nat Integer
SORTS integer-array
OPS new-array: -> integer-array

assign: integer-array nat integer -> integer-array
J J : integer-array nat -> integer
size: integer-array -> nat
sum: integer-array -> integer

VARS a: integer-array
j,m,n: nat
i: integer

EQNS
(1) assign(a,n,i)[m] = if n=m then i else a[m]
(2) new-array[n] = 0
(3) size(new-array) = 0
(4) size(assign(a,n,i)) = max(size(a),n)
(5) sum(new-array) = 0
(6) sum(assign(a,n,i)) = £ a[j] - a[n] + i

j=0

Figure 5. Data Theory of Integer-Arrays

MORPHISM Array-with-Sum Integer-Array => Integer-Array
VARS a: array

n: nat
i: integer

OPS (a[nl=>a[n+l])
(size(a) => max(size'(a)-l,0))
(sum(a) => a[0]')
(assign(a,n,i) =>

assign'(assign'(a,n+l,i),0,£ a[j+l] '- a[n+1]' + i))
j=0

Figure 6. Caching Sums Morphism

The implementation is given by the morphism shown
in Figure 6 which maps the theory Integer-Array (Figure
5) to itself. Note that for convenience in this example,
integer arrays are initialized to zero. We haven't bothered
bounding the arrays; the size operation just keeps track of
the highest index for which a (possibly) non-zero value
has been set: In Figure 6, to distinguish operations in the
source and target theories, those in the latter are primed,
e.g. assign' is the assign operation in the target theory.

A validation of the morphism in Figure 6 consists of
proofs for each of the 6 equational axioms for the Integer-
Array theory. Given such a validation, the morphism is
generalized by constructing a new target theory from those
axioms regressed over the proofs. It is not difficult to con­
struct such a validation for which regressions of axioms
(1) through (5) essentially reproduce those axioms as a
group, except axiom (1) is weakened to

assign'(a,n,i)[n] ' = if n>0 then (1 a)
if m=n then i else a[n] '

The following formulas show the main steps in a proof of
axiom 6 (using (la)):

assign'(a,0,t)[0]' = t

assign'(a,0, £ a[m]') [0] ' = £ a[m] '
m=l m=l

assign '(assign '(a,n+l,i),0, £ a[m+l]' - a[n+l]' + i)[0]'

= 2 afm+1]'-a[n+l] ' + i
m=0

assign(a,n,i)[0]' = £ a [m+ l] ' - a[n+l] ' + i

sum(assign(a,n,i)) = £ a[m] - a[n] + i.

For this derivation, the regressed goal is then

assign'(assign'(a,n+l,i),0, £ a [m+ l] ' - a [n+ l] ' + i) [0] '

= £ a [m+ l] ' - a [n + l] ' + i .

Using (la) , this reduces to

assign'(a,0, £ a[m]') [0] ' = £ a[m]' (lb) .
m=l m=l

The generalized theory is gotten by replacing the
axiom (1) with (la) together with the weaker regressed
goal (lb) . In that theory, the 0 array slot is required to
behave in the usual way only if it contains the sum of the
other array values. This generalization allows many alter­
native specializations, for example,

assign(a,0,i)[n] = if n=0 then £ a[m] (lc)
m=l

else a[n]

which leads to an array-like data type in which, however,
assignments to slot 0 are ignored and slot 0 always evalu­
ates to the sum of the other slots, or

assign(a,0,i)[n] = if n=0 then max (i , £ a[m]) (Id)

else a[n]

in which assignments are effective only for values greater
than the sum of the other slots. These special types are
reminiscent of structures which occur especially in
hardware optimizations in which the behavior of special
registers or memory addresses may differ in similar ways
from ordinary array slots. In this case, explanation-based
generalization yields an abstraction which can suggest
more efficient alternative specializations.

6. Learning Apprentice Systems

Learning apprentice systems were introduced in [10].
A learning apprentice is a knowledge-based interactive
system which assists a user working in a problem-solving
domain. It acquires new knowledge in the course of nor­
mal use by capturing and generalizing the problem-solving
steps carried out by the user. The system recycles this

342 KNOWLEDGE ACQUISITION

knowledge by using it to make suggestions in subsequent
problem-solving situations.

The objective of learning apprentice systems is to
reduce the knowledge acquisition bottleneck by minimiz­
ing the separate investment of effort by experts and
knowledge engineers in creating and maintaining the
knowledge-base. Instead, it provides a mechanism for
adding to the knowledge base automatically through
expert use. In the domain of software development, pro-
gramming languages and software libraries typically con­
stitute invested expert knowledge. As discussed below, a
learning apprentice for software development is a pro­
gramming environment which makes components of user
programs, as they are created, effectively reusable.

A particular learning apprentice system called LEAP is
described in [10]. LEAP applies explanation-based learn­
ing to VLSI design. It suggests structural decompositions
of VLSI circuits described by functional specifications.
The LEAP user may accept its advice or else construct an
alternative refinement. In the latter case, LEAP will
attempt to validate the user's solution and use the valida­
tion (explanation) to generalize it

LEAP'S knowledge is in the form of rules: IF a circuit
performs a certain function (e.g., conversion of a serial
signal to parallel), THEN it may be implemented using a
particular network (e.g., a shift register). LEAP'S general­
ization component takes a particular implementation and
abstracts both sides of the rule.

Current work on learning apprentice systems centers
on applying explanation-based learning. That approach is
especially appropriate for applications to programming
since domain theories are inherent in software, as we've
discussed in this paper. Nevertheless, there is every rea­
son to expect future learning apprentice systems to benefit
from and in fact stimulate research in other machine learn­
ing paradigms.

The knowledge acquisition bottleneck addressed by
learning apprentice systems has a direct counterpart in
software engineering. Programming expertise is invested,
for example, in developing component libraries (functions,
procedures, modules, classes, etc., depending on the pro­
gramming paradigm). The selection and creation of
library components to promote reuse require considerable
effort which is distinct from the primary problem-solving
activity of programming. A learning apprentice system for
programming should promote reuse of "live" code. In
other words, it should take over responsibility for general­
izing and validating program components and cataloging
them.

The use of software validation is especially interesting
here. It is generally recognized that validation is important
for the reliability of reusable code. In this application, the
use of validations to make particular software more gen­
eric adds a new dimension and helps offset the additional
cost of validation.

7. LASR: A Learning Apprentice for Software Reuse

LASR is an experimental learning apprentice system
which applies explanation-based learning to abstract data
types using the principles developed in this paper. It
brings together essential ideas from [4] and [10]. Its pri­
mary purpose is for use in testing the reuse potential of the
interconnections derived from explanation-based generali­
zation described in this paper and for experimenting with
programming methodologies which promote such reuse.
LASR is being developed currently at Hewlett Packard.
The following diagram gives an overview of the com­
ponents of LASR which deal explicitly with reuse.

The LASR interface allows the user to specify a
module to be refined. The system first attempts to match
the specification against possible refinements in its
software base. The software base consists of views
(essentially theory morphisms) which are represented as
pairs of data theories together with a mapping from sorts
and operations of one to the other, and a proof that the
mapping is valid, i.e., that it preserves the properties of the
operations. Views are retrieved from the software base
using consistent matching of terms in the view's source
specification with the specification provided by the user.
The view's source specification may contain more opera­
tions and axioms than are used in the matching. For exam­
ple, if the software base contains an implementation of
deques (two-ended stacks), that implementation could be
suggested for implementing stacks. This corresponds at
least in part to generalizing the left-hand side of LEAP'S
rules and to the notion of implementation inheritance in
[13].

If no suitable match for the specification is found, or if
the proposed implementations are rejected, then the user
refines the specification directly. The system attempts to
validate the refinement step using an equational theorem
prover. If a validation is obtained, then it is used to gen­
eralize the view provided by the refinement. It is the gen­
eralization, of course, which is added to the software base.

Hill 343

8. Future Research Acknowledgements

Along with using LASR to evaluate the benefits of
learning apprentice systems for practical software
engineering, there are a number of ways in which the
methods described here may be fruitfully extended. For
example, equational theories have important technical lim­
itations to their use in specifying software systems. There
are other logical systems with different properties such as
Hom-clause logic, temporal logic and process logic which,
like equational logic, may be used for representing and
reasoning about programs. The notion of an institution [5]
gives a common framework for treating such systems. It
is desirable to carry over the application of explanation-
based methods and goal regression for equational theories
to theories in other institutions5 and to seek a more intrin­
sic characterization6 of the generalized objects obtained
from their application. Also the notion of morphism dis­
cussed here inhibits transformations on theories which are
well motivated in practice [12]. It is important to deter­
mine how the methods presented here can be applied to
that programming knowledge as well. In a different direc­
tion, it is quite natural to ask how reuse based on the idea
here of weakening the specification of the base theory in
an implementation is related to reuse using other forms of
generalization, e.g. through parametrization or inheritance.

9. Conclusions

The application of explanation-based learning
presented in this paper provides a new approach to gen­
eralizing software developed in practice. It depends on
and complements other research into the problem of
software reuse based on formal methods for program
specification. The abstract data types synthesized using
explanation-based generalization provide minimal require­
ments for the valid reuse of interconnections between
software components. At the same time, they can be used
directly in modifying program derivations.

The creation of reusable software components consti­
tutes a knowledge acquisition bottleneck for which a
learning apprentice system can prove valuable. The
results of this paper provide the basis for developing such
a system as we are now doing (LASR).

The adaptation of explanation-based generalization is
framed in terms of theories. Theories provide a granular­
ity more suitable for application to software reuse than sin­
gle goal predicates do and are more suitable for represent­
ing and reasoning about complex abstractions. They may
also prove valuable in other applications of explanation-
based learning.

5. The work reported in [15-17] suggests in particular applications
involving non-determinism, and has been applied to deriving a minimal
lowest layer of a multi-layered communications network architecture
[18].
6. Intuitively, explanation-based generalization here can be thought of as
the adjoint to the functor which maps validated morphisms to their
validation.

I would like to thank Tom Mitchell for introducing me
to explanation-based learning and learning apprentice sys­
tems, and especially for a discussion which led to this
work. Discussions with C.A.R. Hoare and He Jifeng were
very helpful for understanding their notion of weakest
prespecification in data refinement; they also suggested the
interpretation of generalizations in terms of adjoint func­
tors. I am very grateful to Alan Snyder, Martin Griss, and
Ira Goldstein of HP Labs for enabling me to pursue this
research.

References
[l]Burstall, R.M., Goguen, J.A. Putting Theories Together to Make

Specifications. Proceedings of the Fifth International Joint Confer­
ence on Artificial Intelligence, 1977, pp. 1045-1058

[2] Cohen, B., Sammut, C. Program Synthesis through Concept Learn­
ing. In A. Bierman, G. Guiho, Y. Kodratoff (Eds.) Automatic Pro­
gram Construction Techniques New York: Macmillan, 1984

[3] DeJong, G., Mooney, R. Explanation-Based Learning: An Alternative
View. Machine Learning, Vol. 1, No. 2,1986, pp. 145-176

[4] Goguen, J.A. Reusing and Interconnecting Software Components.
IEEE Computer, Vol. 19, No. 2,1986, pp. 16-28.

[51 Goguen, J.A., Burstall, R.M. Introducing Institutions. In E. Clark, D.
Kozen (Eds.) Proc. Logics of Programming Workshop. Lecture
Notes in Computer Science, Vol. 164, Springer-Verlag, 1984, pp.
221-256

[6] Goguen, J.A., Tardo, J. An Introduction to OBJ: A Language for
Writing and Testing Software Specifications. In Specification of
Reliable Software, IEEE, 1979

[7J Grics, D. Science of Programming. New York: Springer. 1981.

[8]Guttag, J.V., Horning, J.J., Wing, J.M. Larch in Five Easy Pieces.
Technical Report 5, Digital Equipment Corp. - Systems Research
Center, 1985

[9] Liskov, B., Guttag, J. Abstraction and Specification in Program
Development Cambridge, Mass.: MIT Press, 1986, Chapter 10

[10] Mitchell, T.M., Utgoff, P.E., Banjeri, R.B. LEAP: A Learning
Apprentice for VLSI Design. Proceedings of the Ninth Interna­
tional Joint Conference on Artificial Intelligence, 1985, pp. 573-580

1111 Mitchell, T.M., Keller, R.M., Kedar-Cabelli, S.T. Explanation-
Based Generalization: A Unifying View. Machine Learning, Vol.
l ,No. 1,1986, pp. 47-80

[12] Scherlis, W.L. Abstract Data Types, Specialization, and Program
Reuse. (Preliminary Version) IFIP International Workshop on
Advanced Programming Environments, 1986

[13] Snyder, A. Encapsulation and Inheritance in Object-Oriented Pro­
gramming Languages. Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications,
ACM, 1986, pp. 38-45

[14] Waldinger, R. Achieving several goals simultaneously. InE.Elcock,
D. Michie (Eds.), Machine Intelligence 8, 1977 Also in B.L.
Webber, N.J. Nilsson (Eds.), Readings in Artificial Intelligence.

[15] Hoare, C.A.R., He, J. The Weakest Prespecification. Fundamenta
Informaticae DC, 1986, pp. 51-84, 217-252

[16] Hoare, C.A.R., He, J., Sanders, J. W. Prespecification in Data
Refinement. Oxford University preprint, November, 1986

[17] He, J., Hoare, C.A.R., Sanders, J. W. Data Refinement Refined.
Report of Programming Research Group, Oxford, February, 1987

[18] He, J. Personal communication, April, 1987

344 KNOWLEDGE ACQUISITION

