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Abstract 
Recent work on learning apprentice systems suggests new 

approaches for using interactive programming environments to 
promote software reuse. Methodologies for software 
specification and validation yield natural domains of application 
for explanation-based learning techniques. This paper develops a 
relation between data abstractions in software and explanation-
based generalization problems and shows how explanation-based 
learning can be used to generalize program abstractions to pro­
mote their reuse. This method is applied in the design of a sys­
tem called LASR (Learning Apprentice for Software Reuse) 
which will acquire programming knowledge by capturing and 
generalizing interconnections between abstract data type theories. 
The technical role of theories in defining learned concepts in this 
application suggests their more general use in representing prob­
lems in explanation-based learning. 

1. Introduct ion 

There has been considerable attention given recently to 
making use of formal program specifications to promote 
software reuse and to developing programming metho­
dologies suited to that purpose [4,12]. Among the require­
ments for software to be reusable are that it possess higher 
levels of robustness and generality than are usual in ordi­
nary programming practice. The purpose of this paper is 
to show how explanation-based learning can be used with 
formal specifications to capture and generalize program 
abstractions developed in practice to increase their poten­
tial for reuse. This particular approach to applying 
machine learning in software is motivated especially by 
the explicit domain knowledge embodied in data type 
specifications and the mechanisms for reasoning about 
such knowledge used in validating software. These deduc­
tive methods from software engineering fit well with the 
requirements for explanation-based learning problems in 
which a single training example is explained (validated) in 
terms of a domain theory. The training examples in our 
setting correspond to (semantically correct) interconnec­
tions between software components. In generalizing from 
these interconnections, new data abstractions are formed 
which yield minimal requirements for reuse. Such syn­
thesized abstractions can also be useful in their own right 
in suggesting alternatives in program derivations. 

The software principles involved in this application are 
more abstract than those most commonly used in program­
ming practice. It is generally hoped that time wi l l close 

this gap. Nevertheless, the level of abstraction seems most 
appropriate both for this application of machine learning 
and also for promoting advances in software reuse. The 
discussion and examples given below attempt to show that 
the implications of those principles are in fact quite con­
crete and relevant The notion of a theory is of central 
importance in much modern software research. Mechan­
isms for composing theories support construction of com­
plex abstractions. It turns out to be natural in this applica­
tion of explanation-based learning to define the learned 
concepts in terms of theories. This theory interpretation of 
learned concepts seems applicable in representing other 
explanation-based learning problems. 

It is desirable to incorporate these methods for general­
izing software with an interactive programming environ­
ment such as Goguen describes in [4]. While supporting 
practical system development, such a system would 
automatically add new generalized components to its 
software base for reuse. Such a system would be a learn­
ing apprentice in the sense of [10]. This paper also 
describes the design of a system called LASR (Learning 
Apprentice for Software Reuse) which is under develop­
ment at Hewlett-Packard. Its purpose is to determine the 
potential for applying the ideas presented here to practical 
software engineering. 

2. Learning f rom Explanations 

Explanation-based learning is a comparatively recent 
paradigm in machine learning concerned with generating 
concepts using an explanation of a single training example 
in terms of a domain theory. The papers [3] and [11] con­
tain extensive discussion and references to work in 
explanation-based learning. The methods of explanation-
based generalization developed in [11] in particular derive 
a concept definition by analyzing a proof which accounts 
for the training example as a logical consequence of 
domain axioms. It is the use of deductive reasoning in a 
formal domain which gives a basis for applying 
explanation-based learning to software. 

The explanation-based approach to machine learning is 
often contrasted with so-called similarity-based methods 
which derive conceptual classifications by noticing pat-
terns in multiple observations. Similarity-based learning is 
more computationally intensive, typically involving 
searching in a large space of possible concepts (e.g., com­
binations of constraints on feature values). It is data-
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intensive, and its results are always subject to revision 
since further observations may invalidate empirical gen­
eralizations. Similarity-based learning is essential, how­
ever, especially in the absence of sufficient domain 
knowledge. In [2], similarity-based learning is applied to 
program synthesis by considering learned concept predi­
cates as declarative computer programs. 

In using an explanation to generalize a training exam­
ple, one obtains a characterization of a family of examples 
of a more general goal concept, including the given exam­
ple. The learned concept definition is thus a specialization 
of that goal concept. The process of specialization (goal 
regression) transforms the goal concept over inference 
steps in the explanation until it is "operational". Opera-
tionality of a concept definition depends on the particular 
generalization problem. In the application of these 
methods to software, we define operationality in terms of 
levels of abstract machine. Following [11], Figure 1 
shows the requirements for an explanation-based generali­
zation problem. For such a problem, the generalization 
process consists of first constructing an explanation of the 
training example in terms of the domain theory, and then 
using that explanation to accomplish the generalization. 

Given: 
* Goal Concept 

A concept definition describing 
the concept to be learned. 

* Training Example 
An example of the goal concept. 

* Domain Theory 
A set of rules and facts to be used 
in explaining how the Training Example 
is an example of the Goal Concept. 

* Operationality Criterion 
A predicate over concept definitions, 
specifying the form in which the 
learned definition must be expressed. 

Determine: 
* A generalization of the training example that is a sufficient 

concept definition for the Goal Concept and that satisfies the 
Operationality Criterion. 

Figure 1. Explanation-Based Generalization Problem 

We describe below examples of explanation-based 
generalization problems in designing software and 
mechanisms for solving them automatically. For further 
discussion and examples, see [11]. 

3. Domain Theories in Software 

In order to apply explanation-based learning to 
software, it is necessary to associate goal concepts and 
domain theories with computer programs. In doing so, it 
is reasonable to expect relationships between goal con­
cepts and program abstractions, and between explanation 
and program verification. One rather obvious approach to 
applying explanation-based learning to procedural abstrac­
tions in software is to use Hoare-style verifications to 
derive the characteristic behaviors of procedures in 

imperative languages, notably in terms of weakest precon­
ditions. Under various names, there is already a consider­
able literature on this subject in both the software and AI 
communities [7,11,14). While that approach does merit 
elaboration from the point of view of machine learning, 
the goal of this paper is to discover other applications of 
explanation-based learning in software which seem more 
enlightening and more promising for future developments 
both in software engineering1 and machine learning. 

In modern programming methodology, formal theories 
of data abstractions in programs play an important role in 
designing and validating software and in promoting its 
reuse [4,12). Such theories are represented explicitly in 
languages such as OBJ [6] and the Larch shared language 
[8]. As wi l l be shown below, these theories give rise 
naturally to applications of explanation-based learning by 
providing domain theories for explanation-based generali­
zation problems. The theories discussed here, so-called 
many-sorted equational theories, correspond to collections 
of abstract data types. Such a theory consists of finite sets 
of sorts (the "data types"), operations on them, and equa­
tions relating those operations. Those equations, or equa­
tional axioms, provide a logical theory completely charac­
terizing their associated "data types". Figure 2 gives a 
simple presentation of a theory of stacks. The presentation 
of a theory can be thought of as having two parts. The first 
declares the operations and their types; such declarations 
are conventional in the specification parts of modules in 
languages like Ada and Modula-2. The second part pro­
vides the semantic constraints which the operations satisfy. 
Operations are side-effect free; in Figure 2 it is necessary 
to provide separate top and pop operations. 

THEORY Stack 
SORTS stack element 
OPS empty: -> stack 

push: element stack -> stack 
pop: stack -> stack 
top: stack -> element 
empty?: stack -> boolean 

VARS e: element 
s: stack 

EQNS pop(empty) = empty 
pop(push(e,s)) = s 
top(push(e,s)) = e 
empty?(empty) = true 
empty?(push(e,s)) = false 

Figure 2. Data Theory of Stacks 

1. We have learned quite recently (subsequent to submitting this paper) 
of current work by C.A.R. Hoare, He Jifeng, and J.W. Sanders [15-17] 
which, although not employing explanation-based methods, contains 
ideas quite similar to some of those presented here. 
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To make data theories useful in constructing programs, 
there are mechanisms for composing and refining them. A 
particularly important construct in this regard is the theory 
morphism. A theory morphism from a theory Tl to a 
theory T2 maps sorts and operations of T l , respectively, to 
sorts and operations of T2. Moreover, it preserves the 
equations of Tl in the sense that each axiom of T l , when 
rewritten in terms of the sorts and operations of T2, can be 
deduced in T2. We will call Tl the source theory and T2 
the target theory. 

Figure 42 gives an example of a morphism from the 
theory of stacks to the theory of arrays with a dis­
tinguished index. Note that this morphism implements 
stack operations in a (programming) language based on 
arrays and natural numbers. From that point of view, the 
morphism plays the role of a program, the theories are 
specifications, and the proof that the axioms are preserved 
is a validation of the program. We will see how this leads 
naturally to a generalization of the program using the vali­
dation as explanation. 

The example in Figure 5 of the Integer-Array theory 
can be interpreted as an instance of a parameterized Array 
theory with an unconstrained "element" sort analogous to 
the one in Figure 2. It turns out [4] that theory morphisms 
in general provide the bindings for instantiating generic 
parameters. What Goguen calls views in [4] are essen­
tially theory morphisms. 

4. Using Validations to Generalize Software 

In adapting explanation-based generalization to data 
abstractions, the data theories provide domain theories for 
explaining explicit morphisms, which take the role of 
training examples. Concept definitions in this setting are 
presentations of target data theories of morphisms. Intui­
tively, such concept definitions specify a language for 
interpreting (or implementing3) the morphism's source 
theory. The object of generalization is to use a proof that a 
particular interpretation is valid to reduce the language 
(indeed, its semantics as well as its syntax) to one which 
provides a minimal valid interpretation. In other words, 
the generalization provides requirements for an interpret­
ing language. 

2. A little care must be taken in interpreting this definition. The target 
theory is obtained by extending the I-Array theory to make the OPS rules 
shown in Figure 4 into equational axioms. This requires adding new 
operations to the theory corresponding to push, pop, etc. We call the 
operation <_,_> and the operations imported from theories Nat and Array 
primitive. Primitive operations are used to characterize operationality. It 
is conventional in presenting morphisms to suppress obvious 
correspondences, e.g. (element => element) associating stack elements 
with array elements. 
3. An implementation or data refinement is a morphism which has 
reasonable behavior on models for its source and target theories. While 
any morphism can be generalized, many readers will find the notion of 
implementation more intuitive. 

What most distinguishes this form of explanation-
based learning is that the learned concepts are presented 
explicitly in terms of theories; there is no difference in 
kind between the domain theory used for the explanation 
and the new target theory obtained from generalization. 
Nevertheless, the differences between this approach and, 
for example, that of [11] are only in interpretation; the 
learned concepts in the examples in that paper are 
described in terms of single predicates, but could also be 
presented in terms of theories in an appropriate logic. 
Making theories explicit is advantageous for representing 
and reasoning about complex abstractions [1]. Also, in 
contrast to attempting to reuse individual procedures or 
predicates, theories provide a granularity which better pro­
motes software reuse much as classes do in object-oriented 
programming. 

4.1 Validations are Explanations 

A morphism M between data theories Tl and T2 can 
be used for constructing explanation-based generalization 
problems. The requirements shown in Figure 1 are met by 
defining the following correspondences: 

Training Example: 
The mapping on sorts and operations defined by M. 

Domain Theory: 
The data theory T2. 

Goal Concept: 
A morphism M' from Tl to a subtheory T2' of T2 

The Operationality Criterion is defined by the require­
ment that the axioms defining the target theory be 
expressed in terms of primitive operations of T2. 

An explanation is, of course, a proof that M is a mor­
phism. In other words, it is a collection of proofs for the 
axioms in the source theory when interpreted in the target 
theory. 

42 Goal Regression in Equational Theories 

Validations of morphisms between the equational data 
theories described above are collections of proofs that 
equations corresponding to axioms of one theory follow 
from the axioms of the other. A simple example of such a 
proof from the Stack-with-Offset morphism of Figure 4 is 
the following: 

assign(a,j,e)[i] = if i=j then e else a[i] 
assign(a,n+l,e)[i] = a[i] if not(i=n+l) 
assign(a,n+l,e)[i] = a[i] if i<=n 
<assign(a,n+l,e),n> = <a,n> 
pop(<assign(a,n+l,e),n+l>) = <a,n> 
pop(push(e,<a,n>)) = <a,n> 

Proof steps in equational logic use so-called rules of 
equational reasoning (reflexive, symmetric, and transitive 
laws, together with substitution and instantiation) and may 
also use axioms and inference rules from first-order predi­
cate logic, and reasoning about representing and 
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distinguishing terms. The text [9] treats equational reason­
ing for data theories. 

Viewing each axiom in the source theory of a mor-
phism as a goal, the equational inference steps transform it 
into formulas, ultimately in the target theory. This 
transformation process constitutes goal regression of the 
axiom, and corresponds to the regressing of goal concepts 
through explanation steps as described in [11], with the 
rules of equational reasoning explicitly added. The algo­
rithm of [11] for using regression to extract the generaliza­
tion from an explanation of a goal applies directly here, 
except formulas for (conjunctive) branches in the proof are 
collected as distinct axioms for the derived theory. Since 
the validation assures that the regressed goals follow from 
the original implementing theory, the generalized theory is 
the subtheory consisting of the regressed goals and the 
sorts and operations used to express them. 

Theories describing learned concepts here are in a 
sense more "rigid" than simple predicates would be for the 
same purpose. There is a certain give-and-take in regress­
ing a collection of axioms. While the collection of 
regressed source axioms (or their conjunction) may be dis­
tinct from the original target axioms, the theory they deter­
mine may be equivalent. In that case, the effort of regress­
ing the axioms is wasted since the original target axioms 
could be used just as well. The significance of this distinc­
tion between theory and predicate becomes more apparent 
in observing that structural properties of a theory mor-
phism may detect such equivalence. Although it isn't 
immediately obvious, this is the case, for example, if the 
operations in the source theory are explicit generators. For 
example, a stack s can always be written in the form 
pop(s') from the axiom pop(push(e,s))=s. It is not true that 
regressing that axiom over the given proof above would 
weaken the target axiom 

<a,n> = <b,m> if m=n and a[i]=bfi] for i<=n 

for the morphism in Figure 4 to 

<assign(a,n+l,e),n> = <a,n> 
since pop(<a,n>) = <a,n-l> can be applied inductively to 
recover the original axiom. An example of non-trivial 
goal regression is given below. 

5. Examples 

5.1 Stacks as Arrays with Distinguished Index 

Figure 4 describes a theory morphism refining the 
abstract stack data type to that of arrays with a dis­
tinguished index, called here the theory of i-arrays. The 
I-Array theory in Figure 3 imports the sorts and operations 
of the theories Nat, of natural numbers, and Array. In par­
ticular, I-Array uses the operations "assign" from Array 
and"+" from Nat. 

What is interesting about this example is that if the I-
Array theory is replaced by any other target in defining 
this morphism, then the generalization recovers precisely 
the I-Array theory. In effect, this morphism is the result of 

THEORY I-Array / Nat Array 
SORTS i-array 
OPS <__,_>: array nat -> i-array 
VARS a,b: array 

m,n: nat 

EQNS <a,n> = <b,m> if m=n and a[i]=b[i] for i<=m 

Figure 3. Data Theory of I-Arrays 

MORPHISM Stack-with-Offset Stack => I-Array 
SORTS (stack => i-array) 

VARS e: element 
a: array 
n: nat 

OPS (empty =><new-array,0>) 
(push(e,<a,n>) => <assign(a,n+l,e),n+l>) 
(pop(<a,n>) => <a,n-l>) 
(top(<a,n>) => a[n]) 
(empty?(<a,n>) => if n=0 then true else false) 

Figure 4. Stack Implementation Morphism 

generalization. In practice, an implementation of stacks is 
with respect to some richer theory. Although the theories 
discussed here are not adequate to specify conventional 
programming languages such as Lisp or C, it is neverthe­
less helpful to think of the operations of a theory as the 
primitives for a programming language it defines. The 
generalization process here is analogous to going from a 
program in Lisp, say, to a "more abstract" program which 
could be transformed into another language such as C. 
This process, however, should not be confused with that of 
translating between two specific languages. It is better to 
think in terms of extracting an application from a larger 
system in which it has been implemented to retarget it to 
other, possibly smaller systems. Figure 4 prescribes an 
implementation of stacks in any theory (language) contain­
ing pairs of arrays and natural numbers. The recovery of 
the I-Array theory from a validation of Figure 4 which was 
discussed above shows that this morphism can't be gen­
eralized further. 

5.2 Optimizing Functions on Arrays 

In this example, integer arrays are implemented as 
arrays with an extra slot to hold the value of some given 
function of the array. The particular example4 with f(a) = 

a[m] can be generalized to other integer-valued array 
m=0 

4. The upper summation index is suppressed to make the formulas more 
readable. The sums are over all (finitely many) non-zero array values 
starting at the lower summation index. The size operation in this theory 
provides the upper bound in such sums and is used in reasoning about 
them. f(a)= £ a[m] should be read f(a)= £ a[m] 

m=0 m=0 
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functions. The motivation for this data refinement opera­
tion is that, in practice, often when an array instance is 
created, certain functions may be evaluated repeatedly for 
it, in which case storing the value as part of the array 
entity makes sense in the implementation. Needless to 
say, this is a very concrete case of a general programming 
strategy. 

THEORY Integer-Array / Nat Integer 
SORTS integer-array 
OPS new-array: -> integer-array 

assign: integer-array nat integer -> integer-array 
J J : integer-array nat -> integer 
size: integer-array -> nat 
sum: integer-array -> integer 

VARS a: integer-array 
j,m,n: nat 
i: integer 

EQNS 
(1) assign(a,n,i)[m] = if n=m then i else a[m] 
(2) new-array[n] = 0 
(3) size(new-array) = 0 
(4) size(assign(a,n,i)) = max(size(a),n) 
(5) sum(new-array) = 0 
(6) sum(assign(a,n,i)) = £ a[j] - a[n] + i 

j=0 

Figure 5. Data Theory of Integer-Arrays 

MORPHISM Array-with-Sum Integer-Array => Integer-Array 
VARS a: array 

n: nat 
i: integer 

OPS (a[nl=>a[n+l]) 
(size(a) => max(size'(a)-l,0)) 
(sum(a) => a[0]') 
(assign(a,n,i) => 

assign'(assign'(a,n+l,i),0,£ a[j+l] '- a[n+1]' + i)) 
j=0 

Figure 6. Caching Sums Morphism 

The implementation is given by the morphism shown 
in Figure 6 which maps the theory Integer-Array (Figure 
5) to itself. Note that for convenience in this example, 
integer arrays are initialized to zero. We haven't bothered 
bounding the arrays; the size operation just keeps track of 
the highest index for which a (possibly) non-zero value 
has been set: In Figure 6, to distinguish operations in the 
source and target theories, those in the latter are primed, 
e.g. assign' is the assign operation in the target theory. 

A validation of the morphism in Figure 6 consists of 
proofs for each of the 6 equational axioms for the Integer-
Array theory. Given such a validation, the morphism is 
generalized by constructing a new target theory from those 
axioms regressed over the proofs. It is not difficult to con­
struct such a validation for which regressions of axioms 
(1) through (5) essentially reproduce those axioms as a 
group, except axiom (1) is weakened to 

assign'(a,n,i)[n] ' = if n>0 then (1 a) 
if m=n then i else a[n] ' 

The following formulas show the main steps in a proof of 
axiom 6 (using ( la)): 

assign'(a,0,t)[0]' = t 

assign'(a,0, £ a[m]') [0 ] ' = £ a[m] ' 
m=l m=l 

assign '(assign '(a,n+l,i),0, £ a[m+l]' - a[n+l]' + i)[0]' 

= 2 afm+1]'-a[n+l] ' + i 
m=0 

assign(a,n,i)[0]' = £ a [m+ l ] ' - a[n+l ] ' + i 

sum(assign(a,n,i)) = £ a[m] - a[n] + i. 

For this derivation, the regressed goal is then 

assign'(assign'(a,n+l,i),0, £ a [m+ l ] ' - a [n+ l ] ' + i ) [0 ] ' 

= £ a [m+ l ] ' - a [ n + l ] ' + i . 

Using ( la) , this reduces to 

assign'(a,0, £ a[m]') [0] ' = £ a[m]' ( lb) . 
m=l m=l 

The generalized theory is gotten by replacing the 
axiom (1) with ( la) together with the weaker regressed 
goal ( lb) . In that theory, the 0 array slot is required to 
behave in the usual way only if it contains the sum of the 
other array values. This generalization allows many alter­
native specializations, for example, 

assign(a,0,i)[n] = if n=0 then £ a[m] ( lc ) 
m=l 

else a[n] 

which leads to an array-like data type in which, however, 
assignments to slot 0 are ignored and slot 0 always evalu­
ates to the sum of the other slots, or 

assign(a,0,i)[n] = if n=0 then max ( i , £ a[m]) ( Id) 

else a[n] 

in which assignments are effective only for values greater 
than the sum of the other slots. These special types are 
reminiscent of structures which occur especially in 
hardware optimizations in which the behavior of special 
registers or memory addresses may differ in similar ways 
from ordinary array slots. In this case, explanation-based 
generalization yields an abstraction which can suggest 
more efficient alternative specializations. 

6. Learning Apprentice Systems 

Learning apprentice systems were introduced in [10]. 
A learning apprentice is a knowledge-based interactive 
system which assists a user working in a problem-solving 
domain. It acquires new knowledge in the course of nor­
mal use by capturing and generalizing the problem-solving 
steps carried out by the user. The system recycles this 
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knowledge by using it to make suggestions in subsequent 
problem-solving situations. 

The objective of learning apprentice systems is to 
reduce the knowledge acquisition bottleneck by minimiz­
ing the separate investment of effort by experts and 
knowledge engineers in creating and maintaining the 
knowledge-base. Instead, it provides a mechanism for 
adding to the knowledge base automatically through 
expert use. In the domain of software development, pro-
gramming languages and software libraries typically con­
stitute invested expert knowledge. As discussed below, a 
learning apprentice for software development is a pro­
gramming environment which makes components of user 
programs, as they are created, effectively reusable. 

A particular learning apprentice system called LEAP is 
described in [10]. LEAP applies explanation-based learn­
ing to VLSI design. It suggests structural decompositions 
of VLSI circuits described by functional specifications. 
The LEAP user may accept its advice or else construct an 
alternative refinement. In the latter case, LEAP will 
attempt to validate the user's solution and use the valida­
tion (explanation) to generalize it 

LEAP'S knowledge is in the form of rules: IF a circuit 
performs a certain function (e.g., conversion of a serial 
signal to parallel), THEN it may be implemented using a 
particular network (e.g., a shift register). LEAP'S general­
ization component takes a particular implementation and 
abstracts both sides of the rule. 

Current work on learning apprentice systems centers 
on applying explanation-based learning. That approach is 
especially appropriate for applications to programming 
since domain theories are inherent in software, as we've 
discussed in this paper. Nevertheless, there is every rea­
son to expect future learning apprentice systems to benefit 
from and in fact stimulate research in other machine learn­
ing paradigms. 

The knowledge acquisition bottleneck addressed by 
learning apprentice systems has a direct counterpart in 
software engineering. Programming expertise is invested, 
for example, in developing component libraries (functions, 
procedures, modules, classes, etc., depending on the pro­
gramming paradigm). The selection and creation of 
library components to promote reuse require considerable 
effort which is distinct from the primary problem-solving 
activity of programming. A learning apprentice system for 
programming should promote reuse of "live" code. In 
other words, it should take over responsibility for general­
izing and validating program components and cataloging 
them. 

The use of software validation is especially interesting 
here. It is generally recognized that validation is important 
for the reliability of reusable code. In this application, the 
use of validations to make particular software more gen­
eric adds a new dimension and helps offset the additional 
cost of validation. 

7. LASR: A Learning Apprentice for Software Reuse 

LASR is an experimental learning apprentice system 
which applies explanation-based learning to abstract data 
types using the principles developed in this paper. It 
brings together essential ideas from [4] and [10]. Its pri­
mary purpose is for use in testing the reuse potential of the 
interconnections derived from explanation-based generali­
zation described in this paper and for experimenting with 
programming methodologies which promote such reuse. 
LASR is being developed currently at Hewlett Packard. 
The following diagram gives an overview of the com­
ponents of LASR which deal explicitly with reuse. 

The LASR interface allows the user to specify a 
module to be refined. The system first attempts to match 
the specification against possible refinements in its 
software base. The software base consists of views 
(essentially theory morphisms) which are represented as 
pairs of data theories together with a mapping from sorts 
and operations of one to the other, and a proof that the 
mapping is valid, i.e., that it preserves the properties of the 
operations. Views are retrieved from the software base 
using consistent matching of terms in the view's source 
specification with the specification provided by the user. 
The view's source specification may contain more opera­
tions and axioms than are used in the matching. For exam­
ple, if the software base contains an implementation of 
deques (two-ended stacks), that implementation could be 
suggested for implementing stacks. This corresponds at 
least in part to generalizing the left-hand side of LEAP'S 
rules and to the notion of implementation inheritance in 
[13]. 

If no suitable match for the specification is found, or if 
the proposed implementations are rejected, then the user 
refines the specification directly. The system attempts to 
validate the refinement step using an equational theorem 
prover. If a validation is obtained, then it is used to gen­
eralize the view provided by the refinement. It is the gen­
eralization, of course, which is added to the software base. 
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8. Future Research Acknowledgements 

Along with using LASR to evaluate the benefits of 
learning apprentice systems for practical software 
engineering, there are a number of ways in which the 
methods described here may be fruitfully extended. For 
example, equational theories have important technical lim­
itations to their use in specifying software systems. There 
are other logical systems with different properties such as 
Hom-clause logic, temporal logic and process logic which, 
like equational logic, may be used for representing and 
reasoning about programs. The notion of an institution [5] 
gives a common framework for treating such systems. It 
is desirable to carry over the application of explanation-
based methods and goal regression for equational theories 
to theories in other institutions5 and to seek a more intrin­
sic characterization6 of the generalized objects obtained 
from their application. Also the notion of morphism dis­
cussed here inhibits transformations on theories which are 
well motivated in practice [12]. It is important to deter­
mine how the methods presented here can be applied to 
that programming knowledge as well. In a different direc­
tion, it is quite natural to ask how reuse based on the idea 
here of weakening the specification of the base theory in 
an implementation is related to reuse using other forms of 
generalization, e.g. through parametrization or inheritance. 

9. Conclusions 

The application of explanation-based learning 
presented in this paper provides a new approach to gen­
eralizing software developed in practice. It depends on 
and complements other research into the problem of 
software reuse based on formal methods for program 
specification. The abstract data types synthesized using 
explanation-based generalization provide minimal require­
ments for the valid reuse of interconnections between 
software components. At the same time, they can be used 
directly in modifying program derivations. 

The creation of reusable software components consti­
tutes a knowledge acquisition bottleneck for which a 
learning apprentice system can prove valuable. The 
results of this paper provide the basis for developing such 
a system as we are now doing (LASR). 

The adaptation of explanation-based generalization is 
framed in terms of theories. Theories provide a granular­
ity more suitable for application to software reuse than sin­
gle goal predicates do and are more suitable for represent­
ing and reasoning about complex abstractions. They may 
also prove valuable in other applications of explanation-
based learning. 

5. The work reported in [15-17] suggests in particular applications 
involving non-determinism, and has been applied to deriving a minimal 
lowest layer of a multi-layered communications network architecture 
[18]. 
6. Intuitively, explanation-based generalization here can be thought of as 
the adjoint to the functor which maps validated morphisms to their 
validation. 

I would like to thank Tom Mitchell for introducing me 
to explanation-based learning and learning apprentice sys­
tems, and especially for a discussion which led to this 
work. Discussions with C.A.R. Hoare and He Jifeng were 
very helpful for understanding their notion of weakest 
prespecification in data refinement; they also suggested the 
interpretation of generalizations in terms of adjoint func­
tors. I am very grateful to Alan Snyder, Martin Griss, and 
Ira Goldstein of HP Labs for enabling me to pursue this 
research. 
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