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Abstract

This paper presents a computer program that
simulates situations (called "MIKROKOSMS") in
which severl entities (called "organisms") wan-
der around in an environment that includes one
another plus other, apparently simpler, entities
(called "objects"). The program has a rather sim-
ple set of "laws" of objects, which can be thought
of as the laws of physics of the MIKROKOSM. It
also has other specifications for organisms - their
input and output functions (called "perception"
and "response"), their reward functions (called
"motivation" or "needs"), and their mechanisms
for building up internal memories (called "learning
and "hypothesis formation") that will'help them to
recognize objects in the future, and respond ap-
propriately to them (for example, in order to max-
imize expected rewards). This program lays bare
the processes that are needed to handle inter-
actions among simulated organisms and objects,
including the learning of hypotheses that will

guide future action. The present program has only
the simplest of pattern recognition, hypothesis
formation and need-satisfaction capabilities. Its
purpose is to make clear and concrete how such
things can be interrelated in a complete system.
Descriptors: Robots, mikrokosms, computers, inte-
grative systems, pattern recognition, learning,
hypothesis-formation.

Background

Several relatively simple and special-purpose
precursors to MIKROKOSMS have been reported in
the literature. Toda'® discussed the decision-
making problem of organisms that move at some
cost in energy in order to get energy-giving "mush-
rooms." Doran'? also examines very simple simu-
lated organisms moving through a space. Travis'
simulation and discussion of problem-solving in
the form of a chess knight moving in order to cover
a board can be thought of from this point of view'”.
Indeed, all game-playing and theorem-proving
programs can be thought of as simulating the
pieces of the game or the expressions of the logis-
tic system as they move about the environment of
the gameboard or the proof tree. (For examples,
think of Samuel's checker player'®, Greenblatt's
chess player*, Zobrist's GO program?®, Gelernter's
geometry theorem prover®, Newell and Simon's
logic theorist® . These programs become more per-
tinent when they attempt to be general over several
games, for example, Newell and Ernst's General
Problem Solver®, Pitrats’® and Newman and
Uhr's™® to-some-extent-general game players.)
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But none of the above seem to be exploring
the issues for which the MIKROKOSM programs
were developed (Kochen and Uhr®). They do not
try to tear apart what we mean by environments,
objects, organisms, hypotheses, learning, and
so on. They do not try to vary, and to generalize
about, these things. Rather, they look at rela-
tively peculiar and rigid spaces (a checker board,
a logistic system), and their "organisms" (which
contain little in the way of perceptual systems,
memory, or learning abilities) are rather ad hoc
to their space (e.g., chess pieces, logical ex-
pressions).

During the past few years four large "robot"
projects have been developed (Pingle et al'" ;
Minsky & Papert® ; Raphael'®; Sutro & Kilmer'®) and
there turn out to be certain similarities between
robots and MIKROKOSMS. Robots are real phys-
ical objects that wander around in our real phys-
ical world. Movies can be made of them; when
they bump into walls or people they can leave
scars. The objects in a MIKROKOSM are computer
simulations that consist of internal representations
of numbers and letters, of bits, or of magnetic or
electrical impulses - whichever you prefer. They
can indeed be photographed if a program monitors
them onto a scope; and still another equally trivial
program could monitor them by having plastic and
metal physical objects moving around through a
room, just as the scope monitor has grades of
light moving around over a phosphorescent screen.

The differences of "reality, " of physical
"hardness" and ability to bump and scar, are differ-
ences that we had best leave to the ontologists.
But there are important differences that we can
understand. MIKROKOSMS force us to understand,
or at least to code, our environments and their
interfaces with our organisms (which simulate ro-
bots); whereas the robot researchers simply stick
their real robots into the real world, and thus
' For people partial to acronyms, MIKROKOSM
might stand for: "Models of Inductive Knowledge
in Responding Organisms Konstructed (from CHAOS
by Concept-formation, Heuristics and Adaptation
to Organization Sensed) from Only Sensation,
Memory, and_Sweat.

2 Robots on their way to the moon might be
thought of as Real Orbiting Bits of Ostensible
Things.

®This research was partially supported by NIH
Grant, 12977.
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(potentially) get all the advantages of real-world
complexity into their environments. The cost they
pay is the cost and the trouble of building robots
(which is something that has turned out to take
several years, several people and several hun-
dreds of thousands of dollars). This cost will go
down and disappear. They may also pay the more
important costs of reduced complexity of the orga-
nisms they can handle, and rigid behavior on the
part of these organisms. Or at least this seems to
be the case to date. Finally, they have not yet
actually taken advantage of the complexity of the
real world into which they can put their robots. We
will return to these issues in the discussion at the
end of this paper.

MIKROKOSMS Described

We will now give a brief description of
MIKROKOSMS in the following way: 1) An actual
running computer program (called "MIKRO-I") will
be discussed. This program is presented in the
Appendix, along with an English-language "Precis
that gives a detailed statement-by-statement des-
cription of its processes and its flow of control.
2) Comments will be made about the general func-
tion embodied in each section of the program, with
special emphasis on how it might be simplified to
a bare-bones minimum. 3) We will discuss and
suggest ways in which the function might be made
more powerful.

The MIKROKOSM programs, at least as we
conceive of them at present, break down into the
following sections:

. Initialize parameters.
Il.  Generate the initial state of the MIKROKOSM.
A. Generate objects, and put them into the
space.
B. Generate organisms, and put them into the
space.
IIl. Compute environment-organism interaction
(for each organism).
A. Print out the present state of the
MIKROKOSM.
B. Present its updated view to the organism.
C. Let the organism process this view:
1. Recognize objects .
2. Conjecture pertinent hypotheses.

3. Choose the most highly valued hypothesis.

IV. Update the MIKROKOSM to advance to the next

time interval.

A. Compute and effect physical law changes.

B. Compute and effect changes resulting from
organisms' acts.

C. Have the organism learn as a function of
feedback from eating

D. Go to step Ill, advancing time by 1 unit.

Initialization of Parameters

The program must first be given a picture of
the kind of mikrokosm space it should generate.
This includes the dimensions of the space, the
number of organisms and of objects in the space,

and the characteristics of the organisms and the
objects. This might be done in a very general way,
by parametrizing all of these characteristics and
having the program choose random values for the
parameters. Or it might be done with precise des-
criptions of all the pertinent details.

MIKRO-I is a simple mixture of easily param-
etrized and built-in characteristics. The basic
parameters (PARAMS) for a space are taken to be
its row and column size (all spaces are 2-dimen-
sional), the number of organisms and the number
of objects in the total space, and the distance that
each organism can see. The program is given a set
of standard values for these parameters (7 rows,
20 columns, 3 organisms each seeing 5 columns in
either direction, and 4 objects). But the program
will attempt to read a data card at run time, on
which new parameter values can be given to it.

The objects that will be placed into the space
will be exact copies of the general object types

(GENOBJS). These are descriptions of the set of
points, (that is, the shape) of the objects, and of
the physical qualities (such things as color, break-

ability, motion, weight, and caloric value).
Whereas information about the space is param-

etrized, and information about objects is stored in
tables, information about organisms is embodied in
code. [This probably reflects the relative simpli-

city of the space, and the relative complexity of
organisms. E<t it probably also reflects the prim-
itive stage of this program: a better program would
have better reasons for using parameters, tables,
or code.] Essentially, an organism is some calls
to subroutines that a) take a look, b) pattern
recognize, c) test hypotheses, d) choose acts,
and e) generate and learn new hypotheses.

Generation of the Initial State of the MIKROKOSM

The program uses ihe parameters that define
the space to compute the average distance between
objects and between organisms, and then generates
and places the specified number of each. MIKRO-I|
makes several simplifications to shorten the code
and speed up processing time. Some of these lead
to peculiar characteristics, but all could be coded
properly - in most cases with very little trouble.

Objects. Objects are generated first, by
making one specific object from each general ob-
ject, in turn, until the specified total number of
objects has been made. To avoid any need to
check whether several objects are put into the
same place (though in fact in MIKRO-I space this
will happen later, causing peculiarities but no fata]
problems), all objects are put into the top row of
the space, at distances computed so that the spec-
ified total number of objects will be equally distri-
buted. Initially, all specific objects of each gen-
eral type will be identical, except for position in
the space. But as time passes objects may move,
bounce, break, and in other ways change in value.
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Organisms_, MIKRO-I now generates the
specified number of organisms and distributes
them uniformly along the bottom row of the space.
An organism is simply a name that contains a set
of lists with that organism's qualities (energy
level, location, direction and force of motion), its
hypotheses (after it has learned some), its present
view of the space, and some memory as to its own
acts and changes it has noted in its environment.

Organisms resemble objects in that they both
have physical characteristics; but they differ in
that only organisms store and learn hypotheses,
view the environment, and have some memory. At
present these differences reflect our own primitive
thinking on the subject; it will be of great interest
to see what differences remain when we have tried
to force as much similarity as possible.

There are several major peculiarities to the
space of objects and organisms generated up to
this point. There is insufficient space to describe
discuss, and justify them all in detail, but briefly:
Although objects have shapes in 2-dimensions,
they are stored as though at points. This avoids
the necessity of detecting and computing overlap
between objects, which would either force us into
3-dimensional space (which would be expensive of
memory and processing time) or a peculiar physics
of objects occupying the same point at the same
time. The proper way to handle the space would
be for all objects to reside, properly positioned,
in a background of emptiness or noise (chaos).

But this would introduce a number of processing
steps that would make this aspect of the program
far more sophisticated than needed for the low
level of sophistication of the rest. So we store
objects and organisms on lists, and designate
their positions explicitly by the coordinate num-
bers, rather than implicitly by their actual posi-
tions in the framework of the space.

Computation of Environment-Organism Interactions

Printout. The program outputs the present
state of the mikrokosm before it begins the set of
object-organisms interactions that will lead to
change, and before each subsequent time period.
This printout draws a picture of the current space,
with its organisms and objects, and also exhibits
the present state and innards of all objects and
organisms.

Organism Views its Environment. That part of
the total space that lies within its field of view is
presented to each organism, in turn. Only the ex-
ternally-visible shape of objects (including the
viewing organism) can be seen, and the position of
each object is computed and given to the organism
relative to its own position. Changes in these
relative positions are also detected and given to
the organism.

Pattern Recognition and Hypothesis-Testing.
The organism now begins to apply its set of hy-

potheses to its seen view. [Specific hypotheses
might be coded in advance into each organism's
hypotheses table, but the alternative procedure
that we prefer is to rely upon the organism's
learning abilities to form these hypotheses through
experiences gained in interaction with the environ-
ment.] Tor each object in its view, the organism
checks to see if there is an hypothesis in its mem-
ory with that object as one of its premises. It is
here that the program does a very primitive kind of
"pattern recognition, " in which the description of
the object must match a template representation
stored in the organism's memory.

The interesting thing about this process is the
structure of an hypothesis, even in its overly-sim-
plc present form. An hypothesis is a statement
about what the organism should do, and subsequent-
ly expect, when a certain thing(s) is recognized in
the environment and the organism is in a certain
state(s). At present the thing recognized is one of
our simple and undeviating objects, recognition is
effected by a perfect template, the acts are simple
built-in sequences of code, and the expectations
are of a certain amount of positive or negative
change ("pleasure" or "pain"). But we feel
justified in suggesting that it is fine to keep pat-
tern recognition as simple as possible, when we
have so many other problems in the total system,
and we know a great deal about how to make more
sophisticated pattern recognizers. An especially
appropriate type of pattern recognizer will be the
sort of flexible heirarchical compound learning
program discussed in Uhr'® . We should also note
that the recognition of more complex compounds of
varying internal states within the organism can be
handled in exactly the same way as external recog-
nition, for these are merely two (sets of) premises
of an hypothesis. The issue of "planning" is cap-
tured in the setting up and learning ot sequences of
acts for the organism to do, which form the conse-
quences of an hypothesis, and also sequences of
hypotheses that the program might act upon over
time. It is in the individual hypothesis and the
methods for choosing among hypotheses, that much
of what we call "pattern recognition, " "planning, "
and "problem-solving" lie. MIKRO-I handles these
problems in the grossest and most primitive ways,
but it also makes painfully and hopefully clear how
our mechanisms for hypothesis-application and
hypothesis-formation can be improved.

An hypothesis is conjectured to apply because
something in the environment was found to be one
of its premises, and hence implied it, and then the
organism found that its own present state satisfied
the internal state premised by the hypothesis, and
finally computed a positive expected value of this
hypothesis (which is a function of expected return
from the object involved, the object's distance: a
rough measure of difficulty of applying the hypoth-
esis, and the weight of assurance with which this
hypothesis is held). After the program has found all
such pertinent hypotheses, it chooses the one with
the highest positive weight. [A better program would
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allow an organism to do more than one thing at a
time, to decide what to do before it had spent all
the time needed to examine everything, and to
make decisions as a function of sets of mutually
complementary hypotheses. A simpler program
might ignore internal states, and merely choose a
single act as a function of a single recognized ob-
ject. Such a program would be doing straightfor-
ward pattern recognition. The program might
merely have one act, rather than sequences of
acts, stored as the consequence of each hypoth-
esis. It would then be incapable of building up
coherent strategies or plans. It is at this point,
when a program is given the ability to build up
sequences and compounds of characterizers of
environments and of internal states, and of acts
and expectations, that it begins to build up the
capability of doing interesting pattern recognition,
concept formation, serial prediction, problem-
solving, and planning.]

Up-dating the MIKROKOSM to Advance to the Next
Time Interval

After all organisms have been given the
chance to interact with their perceived environ-
ments, the UPDATE routines change the
MIKROKOSM, as indicated by two lists: a) the
physical qualities of all the organisms and objects,
and b) the UPDATE list of the organisms' chosen
acts.

Physical Changes. The only physical quality
that is examined by MIKRO-i is the object's mo-
tion. The object is moved as indicated and, if it
has hit a border of the space, is kept at that bor-
der . [A better program would allow objects to
accelerate in their motion, and to change directioa
for example after hitting one another. The program
should also compute other changes in objects, for
example decay and cracking over time, and changes
that are a function of interactions between objects,
for example breaking or fading.]

Organisms' Acts. The acts that the organisms
chose to put into UPDATE are now carried out. An
act is a sequence of one or more things to do, and
each such thing names a subroutine that does it.
At present, the program has subroutines that allow
the organism to: 1) GET (move | step toward the
specified object), 2) DESTROY (wipe out the
specified object if it is at the same location as
the organism), 3) FLAIL (move | step in a ran-
domly chosen direction), and 4) EAT (wipe out
the specified object, and also add the object's
specified caloric content to its own internal energy
level). This is a rather arbitrary set of primitive
acts, chosen primarily to get MIKROs started do-
ing something. But note that some are binary
(DESTROY, EAT) and some unary (FLAIL, GET), and
that string of acts can be compounded together.

Learning. EAT is of special interest because
only here is there real feedback to the organism,

when its energy level is changed as a function of
the object's caloric value (which can be negative,
denoting a noxious object). It is therefore here,
and here only, that the organisms in MIKRO-1
"learn." [A more sophisticated program would
have learning occur from a wider variety of feed-
back information - for example, from noting that
objects are getting closer, or that a certain se-
quence of acts (as stored in the organism's running
memory of past-done things) resulted in desirable
or undesirable consequences. In MIKRO-i there is
only one overall "energy level, " which is changed
when an object is eaten and its "caloric content"
adds to or subtracts from that level. There might
be several components of proper functioning - eg.
protein, fat, water, oxygen, touching - and there
might now be a need to develop characterizers
about the self's patterning of these components,
and changes in this patterning. ]

When the organism's energy level is changed
as a function of eating an object, the program
hunts through the past done acts of that organism
to find an hypothesis that led to acts with the
eaten object as their object. Two types of hypoth-
esis are stored on the organism's past-done list:
the single hypothesis chosen at each time interval,
and the rest of the hypotheses conjectured. If no
chosen hypothesis turns out to be about the object
eaten, the organism goes through its conjectured
hypotheses and, if one is found about that object,
raises the value of that hypothesis, so that, since
it is pertinent, it will more likely be chosen the
next time. [This is a rather arbitrary thing to do,
and should not be taken very seriously; it merely
demonstrates how easy it is to program in variant
types of learning.]

The first pertinent hypothesis that is found is
then up-weighted or down-weighted, depending up-
on whether the object eaten was positive or nega-
tive (noxious) in caloric content. [A better pro-
gram might change the weight as a function of the
actual caloric value, as well as its sign.] If
down-weighted, the new weight is examined to see
if it has fallen below some acceptable minimum.

If it has, the hypothesis is discarded. [MIKRO-1
arbitrarily sets the initial weight of an hypothesis
at 5, and discards the hypothesis when its weight
goes below I. A more sophisticated program might
keep a better record of the good and bad conse-
quences of an hypothesis, and run more sensitive
statistical tests to see whether the hypothesis has
proved itself good or bad over a sufficiently large
sample.]

MIKRO-I generates a new hypothesis a) when
an hypothesis is discarded and b) after each time
period. [It would be better to keep some count of
the amount of space available for the organism's
hypotheses - its memory size - and then eliminate
the least valued hypotheses when there was not
enough room for everything. Alternately, the

-544-



organism's level of functioning and improvement
rate on this level might be stored, with hypoth-
eses being discarded and generated as deemed
best to improve further. A number of extremely
interesting aspects of learning pop up at this pointj

The variety of new hypotheses MIKRO-I can
generate is limited. If the caloric content of the
eaten object was positive, the consequent acts of
the hypothesis will be "get, eat:" if negative,
they will be "get, destroy." The object's descrip-
tion is stored as one premise, so that the simplest
kind of whole-template pattern recognition is
learned and used. The initial expectation and
weight of all hypotheses are set at the same level-
90 and 5. The program checks whether a newly-
generated hypothesis has already been discarded
in the past; if it has, it doesn't bother to generate
it again. [This is a subtle issue; if the mikrokosm
were noisy or changed over time, organisms
should be able to try hypotheses again. On the
other hand, if there is a large set of possible
hypotheses, learning might be slowed dangerously
if the organism tried again hypotheses' it had al-
ready found worthless.]

Printout

The program listing ends with the code that
prints out the state of the mikrokosm after each
time period. This printout is cumbersome, and
need not be described in detail. Essentially, the
actual Z-dimensional representation of the
mikrokosm is printed as a matrix, all organisms
and objects that still exist are listed, and the con-
tents (the internal states) of these organisms and
objects are given.

Discussion

MIKRO-I is already too complex to lay bare
the minimal structure of a mikrokosm, yet it is far
too simple to be very convincing or interesting.
Our intent is that this is the first in a continuing
series of more complex and more sophisticated
programs. These will look into each of the aspects
of a mikrokosm separately (pattern recognition,
hypothesis formation, heirarchical compounding,
planning, inductive learning, discovery, and so
on). It should also be instructive to simplify, to
try to get at the essence of, mikrokosms by:

a) getting at their bare bones, and b) general-

izing, eliminating as much as possible of the
built-in.
Motivation

There are a number of reasons why
MIKROKOSMs seem interesting things to worry
about and to simulate.

A) They force those of us interested in model-
ing intelligent processes (whether "artificial"
and/or "natural") to take into account all aspects
of our problem, and to contend with the central

issue of integrating into a visible whole the various
functions that we typically study separately. On
the one hand many of us (including the authors)
argue that our problem is far too big, so that we
should simplify as much as possible; and that,
further, not until we have far larger computers will
our models exhibit diverse, flexible, and interest-
ing behavior, which we feel may to a great extent
be a function of size of memory. So we separately
study "pattern recognition" or "concept formation"
or "verbal learning" or "problem solving" (e.g.,
"game playing," "theorem proving," "serial predic-
tion") or "decision functions" or "responding”
(moving a "hand" oran"arm" or a "robot"). This is,
we hope, right and proper. But we should also be-
gin to combine these various functions. They are
merely pieces of a total program, and we had better
start worrying about whether we can ever get those
pieces working efficiently together.

B) By putting the different functions together
at the precise level of computer code, we gain the
opportunity to generalize across them. We should
force ourselves to do so. One gets the impression
from papers and talks about some of the "robot"
projects that they intend to take a pattern recogni-
tion program, and a question-answering program,
and a concept formation program, and a theorem
proving program, and maybe a few other programs,
and put them together into a Frankenstein monster.
On the contrary, we should use this opportunity to
tear apart and try to understand our code and the
functions we are trying to compute, so that general-
purpose routines are achieved. For example, almost
certainly most if not all of "pattern recognition”
and "concept formation" should be performed by a
single subroutine. Those aspects of pattern recog-
nition that involve deductive inference should have
subroutines in common with problem-solving. And
so on. We must confront ourselves with general
criteria for theory-building: keep the set of con-
structs as simple, elegant, non-redundant, power-
ful, and insight-producing as possible.

C) The MIKROKOSM situation raises some
extremely interesting new questions of generality.
Tor example, when we work with typical pattern
recognition or artificial intelligence programs the
patterns or other external objects with which they
interact are merely presented to them. But now we
must describe objects in the same kind of computer
code with which we describe our perceiving, prob-
lem-solving organisms. We can now try to describe
both objects and organisms with the same subrou-
tines and the same tables, and we can begin to ask
how they are similar, and how they differ. This fo-
cuses us on the fascinating issue of what turns an
object into an organism. It prepares us to wonder
about how a self-organizing system of objects
might begin to evolve some organisms . It forces
us to think about what must minimally be given to a
MIKROKOSM for it to contain, or evolve, objects
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among which will be organisms.

D) We can hold one or more parts of the total
MIKROKOSM constant or trivially simple, vary the
rest, and examine the resulting behavior.

E) We can ask a number of questions about
learning that cannot be so clearly asked in any
other situation. We can ask what is a minimal or-
ganism that will learn; what kinds of environmental
experiences must this organism undergo; what
kinds of information must this organism store.
Since we have close control over both environment
and organism (at least until they start to interact
and to learn), we can constantly think about one
with respect to the other, and we can continually
try to simplify both.

F) We can ask two closely related questions
that have simply not been asked before at the pre-
cise level of computer modelling: I) How do two or
more organisms learn to talk, including the develop-
ment of vocabulary, grammar, and semantic refer-
ence, and the development of the mutually under-
stood convention that these things should be devel-
oped, and should have common meaning to all or-
ganisms belonging to that linguistic community?
2) How do two or more organisms come to compete,
and to cooperate; and what is the relation of such
social behavior to a) their basic needs and ways
in which they can be satisfied on the one hand,
and b) their development of language on the other
hand?

G) We can try to simplify to the point where
we may pinpoint what is absolutely essential. For
example, it is not clear whether such a
MIKROKOSM must have a motivating force in the
form of the organisms' internal needs. We keep
being forced back to such a beginning, or some
close equivalent, such as a diffuse curiosity or a
neural itch, despite the fact that this somehow, in
a very vague way, feels ad hoc and intuitively un-
satisfying.

MIKROKOSMS and Robots

The Stanford University robot project (Pingle
et al, ") has developed a robot that (at least so
far) can do the following: if several large
wooden blocks are scattered on a table, a robot
hand with several fingers will zero in to hover
above each block, close its fingers around that
block, pick it up, and put it on top of a tower of
like-sized blocks it is building. It thus percep-
tually sorts out the blocks by size, positions itself
to pick up a block, and then places the block very
carefully, so that it sits square enough on top of
its tower so that the tower does not too often come
tumbling down. This involves some extremely com-
plex matters of precise positioning of fingers
around blocks, and of blocks on top of other blocks.
These problems may well be horrendous, if not im-
possible; but unfortunately this may be the case be-
cause they are being handled with several built-in

strikes against the robot. For it gets no feedback
about, and has no ability to adapt to, slight varia-
tions in position; it is in the same unfortunate
position as a guidance system that must compute
its trajectory to hit the moon without any oppor-
tunity for subsequent self-correction from feedback
as to its deviations.

The Stanford Research Institute robot (Rosen,
Nillson, Raphael; see Raphael'®) can wander
through a room that has irregularly shaped objects
placed in it, and learn through experiences of
bumping into objects how to avoid them, and final-
ly wander through the room without bumping into
these objects. But its methods appear to be rather
rigid and ad hoc - essentially, it stores a graph-
paper representation of the room, and it fills in
squares as "containing object, so avoid" whenever
either its TV camera "eye" or its bumpers find a
block covering the corresponding section of the
room.

Both of these robots do things that
MIKROKOSM organisms do riot do, and they force
the researcher to contend with problems that
MIKROKOSMs avoid. It is up to the individual re-
searcher's interests and tastes which he decides to
be the more important problems, or the problems
most central to modelling of intelligence. Robot
projects must contend with the noises introduced by
TV camera inputs and by mechanical contraptions
that can't move around without joggling their TV
eyes, stop suddenly without randomly overstepping
their intended stopping-point, or place one finger
on an object without moving that object slightly so
that the computed position for the next finger is no
longer correct. New and interesting pattern recog-
nition problems are confronted when the images of
possibly interposed 3-dimensional objects on a
table or in a room, with their shadows and grada-
tions of intensity, must be recognized. These are
problems the real world environment forces upon
one, and it is good to be confronted by the real
world.

A MIKROKOSM simulation could be expanded
to handle 3-dimensional partially-viewed, shaded
patterns, and these are large problems of pattern
recognition on which research should be done. But
most pattern recognition researchers would, we
think, agree that such research should be done with
computer programs and special-purpose pattern re-
cognition computers, not with robots. In fact the
actual pattern recognition programs incorporated
into these robots are at a very low level of sophis-
tication compared with existing pattern recognition
research (see, e.g., Uhr'®, Nagy’).

It would be more difficult to simulate prob-
lems of bouncing objects and falling towers; but it
is hard to judge their centrality.

The above is intended to suggest that robot
researchers may be tackling difficult problems that
are not really their central problems - the mechan-
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ics of putting a robot together; the issues of illu-
mination, contrast, color, and noisiness of pat-
terns input; and the mechanical problems of exact
motion and placement - andare simplifying the
artificial intelligence aspects of their robots to the
point where they are actually less sophisticated
than existing computer simulations, including func-
tions, that have been put into

our simple MIKROKOSM organisms. But it is not at
all intended to criticize the intent of robot re-
search, which we take to be to confront artificial
intelligences with the enormous and, intriguingly,
inexhaustible and infinite complexity of the real
world.

On the contrary, it seems to us crucial to at
some point put our simulated organisms into the
real world. The complexity of the real world may be
necessary for adequate learning; there may even
be something to the infinite variety of the real
world that is fundamentally unprogrammabie, and
we will never know and benefit from this until our
learning programs are hooked into the real world.
(We assume that good artificial intelligences will
be learning programs - they must be able to adapt,
and they will be far too complex for anyone to
succeed in formulating, or programming.)

But there is a lot to discover about our organ-
isms before they are ready to be put into the real
world. People who don't have the mechanical bent
skills, or money to build robots can still play an
important role in this aspect of robot research. The
interfaces between our organisms and the real
world almost certainly should be richer than those
developed so far in the robot projects . For example,
the lack of ability to continually monitor feedbacks
and modify behavior accordingly puts existing
robots at a tremendous disadvantage. And the
""real world"" has to be an interesting part of the
"real world." To what extent is a robot confronting
the real world when the room it is in contains two
sizes of blocks, sufficiently illuminated so that
they can be psrfectly resolved through the input
device used? This is merely a world of blocks and
positions, even simpler than the simulated worlds
of MIKROKOSMs .

Summary

This paper describes and discusses a simple
program, "MIKRO-L," that simulates the inter-
action between a set of "objects, " some of which
are "organisms, " wandering around within a little
"mikrokosm" space'. This is the first of what we
hope will be a series of programs to explore com-
plex intellectual processes by combining the
various functions (pattern recognition, concept for-
mation, problem solving, decision making, remem-
bering, learning, and hypothesis formation) that
have typically been studied separately.

The basic structure of a mikrokosm appears to
be the following: it must include a set of objects,

some of which are organisms, that interact within
some space. There must, therefore, be ways of
describing or generating objects and organisms,
and placing them in interrelations. Both objects
and organisms must have qualities that are inter-
preted according to "physical laws" of the
mikrokosm; among these will be n-ary qualities
that are functions of interactions (e.g., "breaking,"
"eating "). Organisms must be able to generate
acts as a function of interactions. In particular,
sensory interaction (seeing at a distance) and
hypothesizing and learning (generating and storing
sets of premises as to the states of the external
environment and of the internal characteristics of
the organism) seem necessary for any interesting
variety of organism behavior. The mikrokosm must
be able to collate all the changes of organisms and
objects, and up-date itself to the next time period.

MIKRO-L contains a special kind of object,
a "shout, " that is located everywhere. This we
take to be the basis of future language learning.
But MIKRO-I makes no use of shouts. Nor does it
have a very sophisticated set of basic acts (eat,
get, flail, destroy), reasons for learning (the
positive or negative caloric content of an eaten
object), or pattern recognition ability (whole-tem-
plate matching). It has rigid methods for forming
hypotheses, and it has no ability to put anything -
hypotheses, pattern characterizes, or acts - into
interesting compounds or heirarchies . But
mikrokosms make painfully apparent the need for
such improvements, and we think that they are an
especially good test-bed within which to construct
and examine more sophisticated processors.

APPENDIX
"BSTRACT FOR MIKRO-I .

A Get PARAMS: ROWS, COLS, NORGS, VIEWORG,
NOBJS, OBJDESCRIPTIONS.

GENERATE SPECIFIED NUMBER OF OBJECTS,
SPREAD ACROSS ROW L.

GENERATE SPECIFIED NUMBER OF ORGANISMS,
SPREAD ACROSS ROW N.

B PRINT OUT THE MIKRO, CHANGES, AND THE
ORGANISM'S INTERNAL STATES.

C PRESENT THE NEXT ORGANISM WITH THE VIEW
OF WHAT IT CAN SENSE, BUILDING UP A
CHANGES LIST FROM LAST TIME.

WHEN NO MORE OGRANISMS, GO TO D.
THIS ORGANISM FINDS ALL HYPOTHESES
IMPLIED BY WHAT'S IN VIEW, COMPUTES
A VALUE FOR EACH HYPOTHESIS, CHOOSES
THE SINGLE MOST HIGHLY VALUED
HYPOTHESIS, AND PLACES IT IN UPDATE
AND IN ITS OWN PASTDO LIST.
GO TO C.
D I/PDATE THE MIKRO FOR THE NEXT TIME PERIOD:
MOVE EACH OBJECT (INCLUDING THE ORGAN-
ISMS) AS SPECIFIED IN THEIR DXY (CHANGE*
OF-LOCATION) VALUE.
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FOR EACH ORGANISM, DO THE STRING OF ACTS
SPECIFIED: (INCLUDE MOVING - FLAILING,
GETTING - , EATING, DESTROYING.)

REWEIGHT THE ACTED-UPON HYPOTHESIS
UP OR DOWN.
IF WEIGHTED DOWN TEST WHETHER IT
SHOULD BE THROWN OUT.
IF YES, PUT IT ON DISCARDS LIST,
AND TRY TO GENERATE A NEW
HYPOTHESIS FOR THIS ORGANISM.
WHEN ALL ORGANISMS ARE DONE,
GO TO B.
END GO TO A.

*PRECIS MIKRO-I. SIMPLEST 2-DIM. Statement
ENVIRON. OBJS PUT IN ROW L. Number
**INITIALIZE THE PROGRAM'S
PARAMETERS.
GO 0

Let GENerateOBJects (GENOBJS) contain a
list of the prototype objects and their
descriptions.

Let each prototype object contain a list 1-5
of its physical qualities.

DEFINE the function BORD (which keeps 5
objects within borders).

DEFINE the function PUTOUT (which 6
outputs information about the state
of the mikrokosm after each time
period).

Let PARAMeterS contain a standard set
of parameters.

READ in a different set of parameters 7
for this run (if given)
Get from PARAMS the individual 8
parameters: RWS (RoWS of space);
CLS (CoLumnS of space); NORG 9

(Number of ORGanisms); OSEE
(Organism's-SEEn-view); NOBJ
(Number of OBJects).
Let RandomBACKground (RBACK) contain 10
a random list of symbols.
Let RANDom contain a random list of Il

I, 0, -1.

Let SHOUT contain the physical 12
qualities of shouts.

Let OBJectTYPES contain the names 13

of the prototype objects .
Let PRIMDO contain the primitive acts 14
an organism can do before learning.

**BEGIN TO GENERATE OBJECTS.

BEGIN 15
Let the average DISTance-between-
Objects (DISTO) equal the number
of CoLumnS (CLS) divided by the
Number-of-OBJects.
B6
Is the Number-of-Objects-generated 16
(NO) GreaterThan the Number-of-
OBJects-to-be-generated (NOBJ)?
Yes - Go to BI.

Statement

Number
No - Let 12 equal I. (puts all 17
objects in row 1).
From GENOBJS, get the first TyPe of 18
object and its DEScription, and put
it after the REST, at the end of
GENOBJS (so will generate one
example of each type of object in
turn).
Add 1 to the Number-of-Objects-generated 19
(NO).
Let the column where the next object will 20

be PUT equal the present PUT (which
is 0 initially) plus DISTO (the
DISTance-between-Objects)

*NOTE THAT HERE AND ELSEWHERE THE RANDOM
NUMBERS CAN BE USED TO VARY POSITIONS.

Add to OBJS (the list of all OBJectS- 21
generated) this object's name (OBI,

OB2, .. .OB(NO)) followed by its TyPe,
DEScription, and row (12) and column
(PUT) locations.

Let this object's name (OB(NO)) contain 22
its LOCation, (I2*PUT) and a description
of its physical qualities (stored in TyPe).
Go to B6, to generate the next object.

**PLACE ORGANISMS.
BI 23

Let DISTance-between-Organisms (DISTO)
equal the number-of-CoLumnS divided
by the Number-of-ORGanisms .

Let the column where the first organism 24
will be PUT equal i DISTO.

If PUT equals 0, set it equal to | (so 1st 25
organism will be inside).

B8 26

Add | to NO.

Add to ORGS (the list of all ORGanismS- 27
generated) this organism's name (ORG
(NO)), where NO are the integers that
follow the integers used for objects),
the number of this organism (NORG),
this organism's name again, and row
(RWS, the last row) and column (PUT)
locations. (== indicates organism; =*
indicates object.)

Let this organism's name (ORG(NO)) 28
contain its attributes (ENergy, initial
location (RWS*PUT), and an initial
description of its physical qualities
and its past memory (initially blank)).

Subtract | from the Number-of-ORGanisms 29
(NORG)-to-be-generated.

Is NORG LessThan | ? Yes - Go to B9. 30
No -Add the DISTance-between- 31

Organisms (DISTO) to PUT, for
placing the next organism. Go to B8.
**PRESENT ITS VIEW TO EACH ORGANISM.
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Statement
Number
B9 32
Add the list of ORGanismS to the end
of the list of OBJectS.
TNEXT 33
(after each Time-NEXT) PUTOUT the
present state of the mikrokosm.

Advance TIME by | . 34

Is TIME GreaterThan 57?7 Yes - END this 35
run.

TNI 36

No - Make a Copy-ORGanismS (CORGS)
of ORGanismS (ORGS) list.
B7 37
Get the next Name-of-ORGanism from
CORGS. (If no more, Go to UPDATER)
From NORG, get this organism's STATE, 38
HYPotheses, PASTDOne acts, VIEW,
and OLDCHANGES.
From STATE, get this organism's
LOCation= (ROW, COL). 39
Let the LEFT border of this organism's 40
view be its COLumn minus OSEE
(dis tance -in-one -direction-of
Organism's -SEEn-view).
Let the RIGHT border be its COLumn plus 41

OSEE.
BIO 42
Make a Copy-OBJectS (COBJS) of OBJects
(OBJS) list,

BLANK out (erase) LVIEW and CHANGES. 43
¢LIST FOR THIS ORGANISM THE OBJECTS IN
ITS VIEW, INCLUDING ITSELF.
Bl 1 44
From COBJS, get the next Name-of-

Object (NO), its TyPe (TP), and
DEScription. (If no more, Fail to B12).

For this Named-Object (NO), get its 45
LOCation (ROw * COlumn).

Is this object of TyPe 'SHOUT' ? Yes - 46
Go to B17.

Is this object's COlumn GreaterThan 47

the LEFTmost column viewed? No -
Go to Bl 1 (it's not in this organism's
field of view).
Yes - Is CO LessThan the RIGHTmost 48
column viewed? No - Go to Bl 1.
¢GET AND USE DISTANCES FROM ORGANISM
TO OBJECTS.

Let RO (Row-of-Object) equal ROW 49
(ROW-of-organism) minus RO (to get
row distance from organism to object).

Let CO (Column-of-Object) equal COL 50
(COLumn-of-organism) minus CO.

BLANK out ROA, COA. 51
B17 52
From this organism's VIEW, get the TyPe
(TP), DEScription, Name-of-Object (NO),
and its location (ROA * COA). (If no more,

Statement
Number
Fail to B18)
Add this TyPe, DEScription, Name-of- 53
OBJect and its location (RO * CO) to
LVIEW (the Left-VIEW).
Do the old locations (ROA, COA) of this 54
object EQUALS the new, computed
locations (RO, CO) ? Yes - Go to Bl 1
(no changes).
Is this object of TyPe "SHOUT* (which 55
is located everywhere) ? Yes - Go to Bl | .
B20 56

To CHANGES, add this object (its TyPe,
DEScription, Name-Object, and its
changes in location (RO-ROA, CO-COA)).

Go to B11 .
BL8 57

To the beginning of LVIEW, add this new
object (its TyPe, DEScription, Name-of-
Object, and location (RO* CO). Goto
B20.

+¢THIS ORGANISM NOW APPLIES ITS LEARNED
HYPOTHESES TO THE VIEW PRESENTED IT.

BI 2 58
Let VIEW contain what LVIEW contains.
Let MAYDO equal PRIMDO (those acts 59
PRIMitively-DOne).
Bl 6 60

From LVIEW, get the next object's TyPe,

DEScription, Name-of-Object, and
location (RO ¢CO). (If no more, Fail to
B13.)

If this TyPe and its DEScription are found 61
on the list oi this organism's HYPotheses,
get the acts-to-DO, state-of-SELF,
EXPECTations, and WeighT. (If not found,
Fail to B16.)

Does this organism's STATE contain the 62
SELF-state specified for this hypothesis?
(No - Go to Bl 6.)

Let VALUE equal the EXPECTed-need- 63
change times the WeighT of this
hypothesis, divided by the ROw plus
COlumn distance plus 10.

Get the absolute VALUE (delete any minus 64
sign (-)).

Add this hypothesis to the list of things 65
the organism MAYDO: VALUE, acts-to-DQ
Name-of-Object, location (RO * CO), what

to EXPECT, the object's TyPe and
DEScription, and the SELF state found. Go
to B16.

+¢CHOOSES TO DO AS MOST HIGHLY VALUED
HYPOTHESIS ON MAYDO SUGGESTS.
Bl 3 66
BLANK out VALA, XXA, LM.
From MAYDO, get the first VALueA and the 67
rest of the information (XXA) about this
hypothesis. (If none Fail to B15.)
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Statement
Number
B14 68

From MAYDO, get the next value (VALB)
and the rest of the information (XXB)
about that hypothesis. (If no more
hypotheses, Fail to B15.)

Is VALB GreaterThan VALA ? (If yes, 69
Go to B19.)

No - Add to LM (Lesser-Maydo) VALB 70
and XXB (the less valued hypothesis).
Go to BU.
B19 71

Add to LM VALA and XXA (the less valued
hypothesis).

Let VALA equal VALB (which has a higher 72
value).

Let XXA equal XXB. Go to BM. 73

B15 74

Add to UPDATE this organism's name
(NORG), location (ROW* COL) and
the information about its most highly
valued implied hypothesis (XXA)

From PASTDOne, erase the act-done 75
farthest in the past (XX, which is
first on this inverted list), and add
the chosen hypothesis (VALA, XXA,
followed by all Less-valued-Maydos
(LM).

Re-store under this organism's name 76
(NORG) its updated STATE, HYPotheses,
PASTDOnes, VIEW, and CHANGES. Go
to B7, to start processing for the next
organism.

*UPDATE THE MIKROKOSM FOR THE NEXT TIME
PERIOD.
UPDATER 77

Let Copy-OBJectS contain what OBJectS
contains; erase OBJectS.

**UPDATE OBJECTS ACCORDING TO PHYSICAL
LAWS.
U3 78

From COBJS, get the next object's Name-
Object, TyPe, DEScription, the first
symbol after the '=' (call it OX), and
the rest (YY). (If no more objects, Fail
to U1 .)

In this Named-Object, get its motion 79
(DXY) in X (DX) and Y (DY) directions.

In NO, get, and erase, its LOCation 80
(RO*CO).

BORDer this object (computing from its 81
location (RO and CO) and motion (DX
and DY) whether it will remain within
the space, so that it will be made to
stick to the border) - a function that
starts with the statement labeled
BORDI.

In NO, put the newly-computed LOCation 82
(NEWRow-Column).

Statement
Number
Add to OBJectS this object: Name-of- 83
Object, TyPe, DEScription, what's
in OX, and its new location (NEWRC).
Add to REPL this object's location 84
(RO*CO) and TyPe. Go to U3.
**FUNCTION THAT COMPUTES NEW LOCATION
AND KEEPS OBJECT WITHIN BORDERS.

BORDI 85
Let NRO = RW + DR (new-ROw = RoW +
Delta-Row).
Let NCO = CL + DC (New-CoLumn = 86

CoLumn + Delta-Column).

If NRO is LessThan I, let NRO equal | . 87

If NRO is GreaterThan RWS (the last 88
RoWS), let NRO equal RWS.

If NCO is LessThan L, let NCO equal I. 89

If NCO is GreaterThan CLS (the last 90
CoLumnS), let NCO equal CLS.

Subtract L from CoLumn 91

In the designated RoW of the Picture 92

of the space, replace the SSymbol
where this object used to be (CL
symbols from the left) by a period (.)
(which indicates empty space).
Let NEWRow-Column equal NRO *NCO. 93
RETURN from this function.
**UPDATE AS A FUNCTION OF ORGANISMS'
CHOSEN ACTS.
ul 94
From UPDATE, get the next chosen-act-
to-do (Name-of-ORGanism, ROW,

COLumn, acts-to-DO, Name-of-Object,
and the rest (XX)). (If no more, Fail to
TNEXT.)
Get the LOCation (RO * CO) of this 95
Named-Object.
Erase WASH2 from NO. 96
u2 97
Put LOBJS back at the left of OBJectS.
Erase (WASH) LOBJS. 98
U2A 99
From DO, get the next specific DO-X.

If succeed, go to the statement whose
label is stored in DOX; if Fail, go to
ul.
**THE ROUTINES THAT EFFECT THE SPECIFIC
ACTS FOLLOW.

GET 100
BLANK out DX and DY.
PRINT out '///GETS///' (to inform that 101
acting).
Does the organism's ROW EQual the 102
object's ROw? Yes - Go to GI.
No - If the organism's ROW is Greater- 103

Than the object's ROw, let DX (change
in the X direction) equal -1 and Go to G2.
Or let DX equal +1, and Go to G2. 104
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Statement
Number
Gl 105
Does the organism's COL EQual the
object's COlumn? Yes - Go to G2.
No - If the organism's COL is 106
GreaterThan the object's CO1, let
DY (change in the Y direction) equal
-1 and Go to G2.

Or let DY equal +1 . 107
G2 108
From OBJectS, get this NORG's ROW
and COL.
BORDer this organism (calling the 109

function BORD, which will move it

and keep it within the borders).

On OBJS, find NORG, and add its new 1 10
location (NEWRC).

Add this location (NEWRC) and Name- 111
of-ORGanism to REPL.

Change the LOCation stored under 112
this Name-of-ORGanism to NEWRC.

Go to U2, to get and do the next act.

DESTROY L13
Get the NEXT object from OBJectS. (If

no more, Fail to U2.)

Add this object to Left-OBJectS. I 14
From NEXT, if the location is NEWRC, 115
immediately following '=*', get

Name-Object, TyPe, and DEScription.

(If fail, go to DESTROY.)

Succeed - Add this Name-of-Object, 116
as 'DESTROYEDBY' the Name-of-
ORGanism, to GONEOBJS. Go to U6.

FLAIL 117
From RANDom, get the first two (pseudo-
random) numbers (called DX and DY),

and put them at the end of RANDom.

Go to G2, where these will be used to

randomly move and flail the organism.

EAT I 18
Get the NEXT object from OBJectS. (If

no more, Fail to U2.)

Add this object to Left-OBJectS. 119
From NEXT, if the location is NEWRC, 120
immediately following the '=*', get

Name-of-Object, TyPe, and

DEScription. (If fail, Go to EAT)

Succeed - PRINT out '///EATI///". 121
For this Name-of-Object, get its
CALoric VALue. 122

From this Name-of-ORGanism, get its 123
ENergy level, and add the object's
CALoric value to this ENergy level.

Add this Name-of-Object as 'ATEBY' 124
this Name-of-ORGanism to GONEOBJS.

**RE-WEIGHTS LEARN HYPOTHESES AS A
FUNCTION OF FEEDBACK FROM EATING.
**FINDS AN HYPOTHESES ABOUT THIS EATEN

OBJECT.
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Statement

Number
BLANK out PAST, OPAST, and DEX 125
From this Named-ORGanism, get its 126

STATE, HYPotheses, PASTDOne,
VIEW, and OCHANGES (get, but don't
erase them.)
L3 127
From PASTDOne, get the next chosen-
act's VALue, DZ, Name-of-Object-I
(NOI), location (ROI*COI), Expectations,
and the REST of the conjectured hypotheses
for that time period. (If no more, Fail to

L6.)
From EXpect, get EXPECT, TyPel, DES- 128
criptionl, and SELF.
Add 1 to PAST. 129
Add the REST to Other-PAST 130
Does the Named-Object EQUALS the 131

Named-Objectl? No - Fail to L3.
**RE-WEIGHTS AN HYPOTHESIS ABOUT THE
OBJECT EATEN.
L7 132
Yes - On the organism's HYPotheses,
if TyPel and DEScriptionl are found,
get and remove DoY, SELF, EXPECT,

and WeighT.
Add Delta-Expectation (DEX) to EXPECT. 1 33
WASH (erase) DEX. 134
Is the CALoric content negative (-)? 135
Yes - Go to L4.
No - Add 1 to WeighT. 136
L5 137

Put back on HYPothesis the components
of the hypothesis that was taken off by
statement L7 and reweighted. Go to U6.
L4 138
Lower WeighT by 1 (this was a noxious
object that the organism should learn
not to eat).
Is the WeighT now LessThan | ? No - Go 139
to L5 (to put this down-weighted
hypothesis back onto HYPotheses).
**DISCARD AN HYPOTHESIS WHOSE WEIGHT HAS
GONE BELOW 1.
Add to the list of DISCARDS the TyPel, 140
DEScriptionl, DoY, SELF, and EXPECT
of this discarded hypothesis. Go to L8.
*IF NONE OF THE HYPOTHESES ACTED UPON WAS
PERTINENT, CHECK ALL OTHERS ON OPAST.
L6 141
From Other-PAST, get the next hypothesis
(VALue, DoY, Name-of-Objectl, location
(ROwI*COH), and Expectation). (If no
more, Fail to L8)

From EXpect, get EXPECT, TyPel, 142
DEScription, and SELF.
Does Namea-Object EQual Named* 143
Objectl? No - Fail to L6.

Yes - Let Delta-Expectation (DEX) 144



Statement
Number 8.
equal 3 (so that this hypothesis will
have a higher expectation, and will
more likely be chosen and acted 9.
upon, in the future). Go to L7.

**A NEW HYPOTHESIS IS GENERATED

L8

L9

LIO

U6

Is the CALoric content of the eaten object
negative (-)? Yes - Go to L9.
No - Let New-Do (ND) equal "GET,

Go to LIO. 11

expectation-level (90),

145

146
EAT.".
147

Let the New-Do (ND) equal "GET.
DESTROY.".
148 12.
See if DISCARDS already has this new
hypothesis' TyPe,
New-Do.
Add this newly-generated hypothesis to
the organism's HYPotheses: its TyPe,
and initial 14.

DEScription, and
(If yes,

149
DEScription, New-Do,
and weight (5).

150

Erase information about this eaten or
destroyed Named-Object.

Put the Left-OBJectS back onto the
start of the OBJectS list.

WASH (erase) Left-OBJectS.

Erase this (eaten or destroyed) Named-
Object from the OBJectS list.

151

153
Go to U2A.

**FUNCTION FOLLOWS TO PRINT OUT

INFORMATION ABOUT MIKRO AT EACH TIME

PERIOD.

1.
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