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Abstract. We present experimental results about learning function val-
ues (i.e. Bellman values) in stochastic dynamic programming (SDP). All
results come from openDP (opendp.sourceforge.net), a freely available
source code, and therefore can be reproduced. The goal is an independent
comparison of learning methods in the framework of SDP.

1 What is stochastic dynamic programming (SDP) ?

We here very roughly introduce stochastic dynamic programming. The in-
terested reader is referred to [1] for more details. Consider a dynamical sys-
tem that stochastically evolves in time depending upon your decisions. As-
sume that time is discrete and has finitely many time steps. Assume that
the total cost of your decisions is the sum of instantaneous costs. Precisely:
cost = c1 + c2 + · · · + cT , ci = c(i, xi, di), xi = f(xi−1, di−1, ωi), di−1 =
strategy(xi−1, ωi) where xi is the state at time step i, the ωi are a random pro-
cess, cost is to be minimized, and strategy is the decision function that has to be
optimized. Stochastic dynamic programming is a control problem : the element
to be optimized is a function. Stochastic dynamic programming is based on the
following principle : Take the decision at time step t such that the sum ”cost at
time step t due to your decision” plus ”expected cost from time steps t + 1 to
T from the state resulting from your decision” is minimal. Bellman’s optimality
principle states that this strategy is optimal. Unfortunately, it can only be ap-
plied if the expected cost from time steps t+1 to T can be guessed, depending on
the current state of the system and the decision. Bellman’s optimality principle
reduces the control problem to the computation of this function. If xt can be
computed from xt−1 and dt−1 (i.e., if f is known) then this is reduced to the
computation of

V (t, xt) = Ec(t, xt, dt) + c(t + 1, xt+1, dt+1) + · · · + c(T, xT , dT )
Note that this function depends on the strategy. We consider this ex-

pectation for any optimal strategy (even if many strategies are optimal, V
is uniquely determined). Stochastic dynamic programming is the computa-
tion of V backwards in time, thanks to the following equation : V (t, xt) =
infdt c(t, xt, dt) + V (t + 1, xt+1), or equivalently

V (t, xt) = inf
dt

[
c(t, xt, dt) + Eωt+1V (t + 1, f(xt, dt, ωt+1))

]
(main equation)

Thanks to Bellman’s optimality principle, the computation of V is suffi-
cient to define an optimal strategy by di−1 = argmin ci−1 + V (i, xi) =
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arg min [c(i − 1, xi−1, di−1) + EωiV (i, f(xi−1, di−1, ωi))]. This is a well known,
robust solution, applied in many areas including the famous problem of power
supply management, which is a stock management problem. A general intro-
duction, including learning, is [1]. Combined with learning, SDP can lead to
positive results in spite of large dimensions. It can also be combined with vari-
ous techniques for restrictions the domain ([2],[3]). Indeed, this equation can not
be applied to all possible xt (the domain is usually infinite). The usual solution
is based on learning : V (t, x) is evaluated for a finite number of x, and a full
function V (t, .) is obtained by learning. The sampling method refers to the way
of choosing the x’s for a learning. The regression refers to the way V (t, .) is built
from examples. The optimizer refers to the method used for solving the main
equation above in dt for one particular value of t, xt, V (t + 1, .) being already
approximated. Using regression (instead of interpolation or discretization) is in
particular usual in the area of reinforcement learning, which is a generalization
of dynamic programming ([2, 3]). We here consider an approach based on back-
wards (in time) induction of the whole function value. The pros of this method
are (i) robustness wrt the initial state (ii) stable convergence by decomposi-
tion among time steps (no fixed point iterations) (iii) learning is performed on
noise-free points, within the precision of the optimization and of the previously
computed V (t, .).

2 Why this article provides interesting results

Many results have been reported in the literature, in particular in cases in which
dynamic optimization without learning would be untractable. Learning was
sometimes based on neural networks ([4, 5]), adaptive discretization ([6]), CMAC
([7],[8]), EM-learning of a sum of gaussians ([9]), or various forms of local units
([10, 11, 12]). But as pointed out in [13], learning-based dynamic optimization
has not reached the industry ; this is at least partially due to the lack of clear
comparison between the different learning-techniques in this framework, each
author implementing one algorithm and comparing it to existing results on one
problem, sometimes with different values of parameters, different loss functions,
different time steps, different action spaces (many algorithms being in particular
unable to deal with continuous and/or multi-dimensional action spaces). In par-
ticular, the lack of standard format for describing problems in continuous state
spaces with no prior knowledge on the transition function makes comparisons
difficult ; also, such a format is very difficult to define, as Turing-computability
is nearly the only common basis for various problems (and some authors even
only work on logs of simulations). We therefore implemented a full learning-base
dynamic programming tool, freely available, in which any author can add an op-
timization tool, a sampling method or a learning method. For this first work
based on this tool, we mainly integrated the full Weka suite, which allows the
comparison of many learning methods, and some www-available learning tools.
We compare in the same framework (same problems, same optimizers, same
sampling methods, same fitnesses), many classical learning tools. We believe
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that the comparisons are very different from standard learning benchmarks, as
in the SDP case (i) robustness is much more important, (ii) the existence of false
local minima in the approximation of the function value might be misleading for
optimizers, and (iii) the decay of contrasts through time is an important trouble
(iv) the exact loss function (L2 norm, Lp norm, something else ?) that should
be used during learning is not clearly known even in theory (see [14] for some
elements).

3 Methods

We compare the following learning methods. A linear regression on the
kernel (LRK) matrix K, where K(i, j) = (1 + xy)d (polynomial case)
or K(i, j) = exp(−||x − y||2/σ2) (gaussian case). I.e., with n examples
(xi, yi)i∈[[1,n]], this method builds K and performs a linear regression (regular-
ized by the weights) on examples (K(i, 1), K(i, 2), . . . , K(i, n)), yi). Using Weka
[15] (the descriptions below are slightly adapted from the Weka www-site), we
also use : meta.AdditiveRegression (AR): Meta classifier that enhances the
performance of a regression base classifier. Each iteration fits a model to the
residuals left by the classifier on the previous iteration. Prediction is accom-
plished by adding the predictions of each classifier. Smoothing is accomplished
through varying the shrinkage (learning rate) parameter. The base classifier
is here decision stump (see below). rules.ConjunctiveRule : this class im-
plements a single conjunctive rule learner. A rule consists of a conjunction of
antecedents and the consequent (class value) for the regression. In this case,
the consequent is the distribution of the available classes (or numeric value) in
the dataset. If the test instance is not covered by this rule, then it’s predicted
using the default class distributions/value of the data not covered by the rule
in the training data. This learner selects an antecedent by computing the Infor-
mation Gain of each antecendent and prunes the generated rule using Reduced
Error Prunning (REP). For regression, the Information is the weighted aver-
age of the mean-squared errors of both the data covered and not covered by the
rule. In pruning, the weighted average of the mean-squared errors of the pruning
data is used for regression. trees.DecisionStump : decision stump algorithm,
i.e. one-node decision trees (with one-variable-comparison-to-real in the node).
rules.DecisionTable : building and using a simple decision table majority
classifier. For more information see [16]. lazy.IBk : k-nearest neighbours al-
gorithm. lazy.KStar : K* is an instance-based classifier, that is the class of a
test instance is based upon the class of those training instances similar to it, as
determined by some similarity function. The underlying assumption of instance-
based classifiers such as K*, IB1, PEBLS, etc, is that similar instances will have
similar classes. For more information on K*, see [17]. functions.LeastMedSq
: implements a least median squared linear regression using the robust regression
and outlier regression ([18]). functions.LinearRegression : linear regression
based on the Akaike criterion for model selection. trees.lmt.LogisticBase :
LogitBoost algorithm (see [19]). functions.MultilayerPerceptron (MLP)
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: the multilayer perceptron of weka. functions.RBFNetwork : implements
a normalized Gaussian radial basis function network. It uses the k-means clus-
tering algorithm to provide the basis functions and learns a linear regression
(numeric class problems) on top of that. Symmetric multivariate Gaussians
are fit to the data from each cluster. It standardizes all numeric attributes to
zero mean and unit variance. trees.REPTree : fast decision tree learner.
Builds a regression tree using variance reduction and prunes it using reduced-
error pruning (with backfitting). Only sorts values for numeric attributes once.
functions.SimpleLinearRegression (SLR) : a simple linear regression model.
functions.SMOreg : implements A.J.Smola and B. Scholkopf sequential min-
imal optimization algorithm for training a support vector regression using poly-
nomial or RBF kernels ([20, 21]). This implementation normalizes all attributes.
rules.ZeroR : simply predicts the mean ; only for comparison.

4 Results

All our benchmarks have been designed in a manner that make greedy optimiza-
tion unefficient ; for most problems, the rewards are provided only at the time
at which the goal is reached (for robotic problems), or problems are designed in
such a way that greedy algorithms are known inefficient (stock management ;
here, as in many interesting cases of stock management, the greedy algorithm is
worst than the algorithm that randomly chooses a decision). We however always
compare our results to the greedy one, that decids only by instantaneous min-
imization of the loss, and to the so-called random one (that randomly chooses
one decision consistent with constraints). The problems are presented below :

Problem Stock Simp. Bot Many Arm Away
manag. bot bots

State space dim 4 2 2 8 2 2
Random process dim 1 0 0 0 2 2

Action space dim 4 1 1 4 2 2
Nb timesteps 30 20 20 20 30 40
Nb scenarii 9 0 0 0 3 2

Rough description : stock management: use your stocks optimally to satisfy
a demand ; simple bot : avoid an obstacle and reach a target ; bot : avoid many
obstacles and reach a target ; many bots : get together and reach a target ; arm
: follow a moving target with the hand ; away : your hand must avoid a bug. In
problems of bots, the only choice is the angle of the direction (the speed is con-
stant). All action spaces are continuous. All state variables are continuous. In
some cases, the random process is not exactly markovian (but almost). Learning
methods were compared on various (very different) problems and can be repro-
duced by the (linux-equiped) reader thanks to the freely available source-code.
Hyper-parameters where the default ones in the source codes that have been
used, except for (i) the Γ parameter of SMOReg, the inverse of the variance, is
set to 10, (ii) there are 15 neurons in the hidden layer of the MLP, (iii) in IBk,
the are k = 5 neighbours and the weighting scheme is the inverse-distance. The
architecture of the code is designed for an easy introduction of new software and
the authors are available for helping people interested in introducing/comparing
new methods. We only report the results for the seven best methods and for the
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best among ”greedy” and ”stupid”. All local optimizations have been performed
by the naive genetic algorithm provided in the source code, allowed to use 70
function evaluations. 300 points were sampling in a quasi-random manner (the
Niedereiter sequence ; see e.g. [22]).

Away

SMOreg 2.6 ± 0.2
IBk 2.7 ± 0.331662

KStar 2.7 ± 0.244949
LRK(Gaussian) 3.05 ± 0.15

SLR 3.1 ± 0.2
AR 3.3 ± 0.458258

REPTree 3.5 ± 0.316228
Stupid 6 ± 1.41421

Arm

SMOreg 278 ± 45.3431
IBk 357 ± 44.2832

LRK(poly) 473 ± 90.89
LeastMedSq 503 ± 77.9808

MLP 522 ± 61.2862
LRK(gaus) 530 ± 73.6206
LRK(linear) 567 ± 59.8415

Greedy 600 ± 0.0

Arm

SMOreg 6.90001 ± 0.111998
MLP 8.11303 ± 0.567178

LeastMedSq 8.52682 ± 0.723674
KStar 8.97947 ± 0.0615761
IBk 8.98368 ± 0.0387504
AR 8.99936 ± 0.00191481

LRK(gaus) 9 ± 3.16228e-16
Greedy 9 ± 0.0

Stock Management

MLP 1863.63 ± 7.06183
SMOreg 2196.03 ± 11.9168

LinearRegression 2333.77 ± 1.39077
IBk 2377 ± 15.5075

Stupid 2562.94 ± 2514.3
KStar 2589.71 ± 25.9275

LRK(gaus) 2719.04 ± 165.774
LRK(linear) 2747.29 ± 23.5923

Simple Bot

SMOreg 550 ± 3.16228e-16
IBk 550 ± 3.16228e-16

KStar 650 ± 3.16228e-16
DecisionTable 700 ± 74.162

REPTree 875 ± 130.863
LRK(gauss) 1000 ± 3.16228e-16
LRK(linear) 1000 ± 3.16228e-16

Greedy/Stupid 1000 ± 0.0

Bot

LRK(poly) 60 ± 3.16228e-16
SMOreg 60.5 ± 1.5

MLP 61 ± 2
IBk 65 ± 3.16228e-16

REPTree 91 ± 8.88819
AR 92.5 ± 6.80074

LRK(gaus) 100 ± 3.16228e-16
Greedy 100 ± 0.0

5 Conclusion

We compared various learning algorithms in the case of dynamic programming.
The focus was on a limited number of sample points per time step (300). SVM
with the SMO algorithm and gaussian kernel was the best algorithm in 4 cases,
and the second best in the two remaining cases. One can note that sigmoids
look very natural for function values in stock management (classical curves,
when they follow the law of increasing marginal cost, are strictly convex and
”look like” sigmoidal functions). If one is interested in symbolic controlers, one
can note the good overall performance of REPTree, that was always better than
the greedy/stupid method, whereas many learners were not. Note that our
results might strongly rely on the fact that we restrict our attention to a limited
number of sample points per time step. All the experiments can be performed
with http://opendp.sourceforge.net.
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